Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA Simple Baseline that Questions the Use of Pretrained-Models in Continual Learning
With the success of pretraining techniques in representation learning, a number of continual learning methods based on pretrained models have been proposed. Some of these methods design continual learning mechanisms on the pre-trained representations and only allow minimum updates or even no updates of the backbone models during the training of continual learning. In this paper, we question whether the complexity of these models is needed to achieve good performance by comparing them to a simple baseline that we designed. We argue that the pretrained feature extractor itself can be strong enough to achieve a competitive or even better continual learning performance on Split-CIFAR100 and CoRe 50 benchmarks. To validate this, we conduct a very simple baseline that 1) use the frozen pretrained model to extract image features for every class encountered during the continual learning stage and compute their corresponding mean features on training data, and 2) predict the class of the input based on the nearest neighbor distance between test samples and mean features of the classes; i.e., Nearest Mean Classifier (NMC). This baseline is single-headed, exemplar-free, and can be task-free (by updating the means continually). This baseline achieved 88.53% on 10-Split-CIFAR-100, surpassing most state-of-the-art continual learning methods that are all initialized using the same pretrained transformer model. We hope our baseline may encourage future progress in designing learning systems that can continually add quality to the learning representations even if they started from some pretrained weights.
AF Adapter: Continual Pretraining for Building Chinese Biomedical Language Model
Continual pretraining is a popular way of building a domain-specific pretrained language model from a general-domain language model. In spite of its high efficiency, continual pretraining suffers from catastrophic forgetting, which may harm the model's performance in downstream tasks. To alleviate the issue, in this paper, we propose a continual pretraining method for the BERT-based model, named Attention-FFN Adapter. Its main idea is to introduce a small number of attention heads and hidden units inside each self-attention layer and feed-forward network. Furthermore, we train a domain-specific language model named AF Adapter based RoBERTa for the Chinese biomedical domain. In experiments, models are applied to downstream tasks for evaluation. The results demonstrate that with only about 17% of model parameters trained, AF Adapter achieves 0.6%, 2% gain in performance on average, compared to strong baselines. Further experimental results show that our method alleviates the catastrophic forgetting problem by 11% compared to the fine-tuning method.
A Closer Look at Rehearsal-Free Continual Learning
Continual learning is a setting where machine learning models learn novel concepts from continuously shifting training data, while simultaneously avoiding degradation of knowledge on previously seen classes which may disappear from the training data for extended periods of time (a phenomenon known as the catastrophic forgetting problem). Current approaches for continual learning of a single expanding task (aka class-incremental continual learning) require extensive rehearsal of previously seen data to avoid this degradation of knowledge. Unfortunately, rehearsal comes at a cost to memory, and it may also violate data-privacy. Instead, we explore combining knowledge distillation and parameter regularization in new ways to achieve strong continual learning performance without rehearsal. Specifically, we take a deep dive into common continual learning techniques: prediction distillation, feature distillation, L2 parameter regularization, and EWC parameter regularization. We first disprove the common assumption that parameter regularization techniques fail for rehearsal-free continual learning of a single, expanding task. Next, we explore how to leverage knowledge from a pre-trained model in rehearsal-free continual learning and find that vanilla L2 parameter regularization outperforms EWC parameter regularization and feature distillation. Finally, we explore the recently popular ImageNet-R benchmark, and show that L2 parameter regularization implemented in self-attention blocks of a ViT transformer outperforms recent popular prompting for continual learning methods.
PILOT: A Pre-Trained Model-Based Continual Learning Toolbox
While traditional machine learning can effectively tackle a wide range of problems, it primarily operates within a closed-world setting, which presents limitations when dealing with streaming data. As a solution, incremental learning emerges to address real-world scenarios involving new data's arrival. Recently, pre-training has made significant advancements and garnered the attention of numerous researchers. The strong performance of these pre-trained models (PTMs) presents a promising avenue for developing continual learning algorithms that can effectively adapt to real-world scenarios. Consequently, exploring the utilization of PTMs in incremental learning has become essential. This paper introduces a pre-trained model-based continual learning toolbox known as PILOT. On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt. On the other hand, PILOT also fits typical class-incremental learning algorithms (e.g., DER, FOSTER, and MEMO) within the context of pre-trained models to evaluate their effectiveness.
SLCA: Slow Learner with Classifier Alignment for Continual Learning on a Pre-trained Model
The goal of continual learning is to improve the performance of recognition models in learning sequentially arrived data. Although most existing works are established on the premise of learning from scratch, growing efforts have been devoted to incorporating the benefits of pre-training. However, how to adaptively exploit the pre-trained knowledge for each incremental task while maintaining its generalizability remains an open question. In this work, we present an extensive analysis for continual learning on a pre-trained model (CLPM), and attribute the key challenge to a progressive overfitting problem. Observing that selectively reducing the learning rate can almost resolve this issue in the representation layer, we propose a simple but extremely effective approach named Slow Learner with Classifier Alignment (SLCA), which further improves the classification layer by modeling the class-wise distributions and aligning the classification layers in a post-hoc fashion. Across a variety of scenarios, our proposal provides substantial improvements for CLPM (e.g., up to 49.76%, 50.05%, 44.69% and 40.16% on Split CIFAR-100, Split ImageNet-R, Split CUB-200 and Split Cars-196, respectively), and thus outperforms state-of-the-art approaches by a large margin. Based on such a strong baseline, critical factors and promising directions are analyzed in-depth to facilitate subsequent research. Code has been made available at: https://github.com/GengDavid/SLCA.
Towards Anytime Fine-tuning: Continually Pre-trained Language Models with Hypernetwork Prompt
Continual pre-training has been urgent for adapting a pre-trained model to a multitude of domains and tasks in the fast-evolving world. In practice, a continually pre-trained model is expected to demonstrate not only greater capacity when fine-tuned on pre-trained domains but also a non-decreasing performance on unseen ones. In this work, we first investigate such anytime fine-tuning effectiveness of existing continual pre-training approaches, concluding with unanimously decreased performance on unseen domains. To this end, we propose a prompt-guided continual pre-training method, where we train a hypernetwork to generate domain-specific prompts by both agreement and disagreement losses. The agreement loss maximally preserves the generalization of a pre-trained model to new domains, and the disagreement one guards the exclusiveness of the generated hidden states for each domain. Remarkably, prompts by the hypernetwork alleviate the domain identity when fine-tuning and promote knowledge transfer across domains. Our method achieved improvements of 3.57% and 3.4% on two real-world datasets (including domain shift and temporal shift), respectively, demonstrating its efficacy.
Enhancing Visual Continual Learning with Language-Guided Supervision
Continual learning (CL) aims to empower models to learn new tasks without forgetting previously acquired knowledge. Most prior works concentrate on the techniques of architectures, replay data, regularization, \etc. However, the category name of each class is largely neglected. Existing methods commonly utilize the one-hot labels and randomly initialize the classifier head. We argue that the scarce semantic information conveyed by the one-hot labels hampers the effective knowledge transfer across tasks. In this paper, we revisit the role of the classifier head within the CL paradigm and replace the classifier with semantic knowledge from pretrained language models (PLMs). Specifically, we use PLMs to generate semantic targets for each class, which are frozen and serve as supervision signals during training. Such targets fully consider the semantic correlation between all classes across tasks. Empirical studies show that our approach mitigates forgetting by alleviating representation drifting and facilitating knowledge transfer across tasks. The proposed method is simple to implement and can seamlessly be plugged into existing methods with negligible adjustments. Extensive experiments based on eleven mainstream baselines demonstrate the effectiveness and generalizability of our approach to various protocols. For example, under the class-incremental learning setting on ImageNet-100, our method significantly improves the Top-1 accuracy by 3.2\% to 6.1\% while reducing the forgetting rate by 2.6\% to 13.1\%.
Preventing Zero-Shot Transfer Degradation in Continual Learning of Vision-Language Models
Continual learning (CL) can help pre-trained vision-language models efficiently adapt to new or under-trained data distributions without re-training. Nevertheless, during the continual training of the Contrastive Language-Image Pre-training (CLIP) model, we observe that the model's zero-shot transfer ability significantly degrades due to catastrophic forgetting. Existing CL methods can mitigate forgetting by replaying previous data. However, since the CLIP dataset is private, replay methods cannot access the pre-training dataset. In addition, replaying data of previously learned downstream tasks can enhance their performance but comes at the cost of sacrificing zero-shot performance. To address this challenge, we propose a novel method ZSCL to prevent zero-shot transfer degradation in the continual learning of vision-language models in both feature and parameter space. In the feature space, a reference dataset is introduced for distillation between the current and initial models. The reference dataset should have semantic diversity but no need to be labeled, seen in pre-training, or matched image-text pairs. In parameter space, we prevent a large parameter shift by averaging weights during the training. We propose a more challenging Multi-domain Task Incremental Learning (MTIL) benchmark to evaluate different methods, where tasks are from various domains instead of class-separated in a single dataset. Our method outperforms other methods in the traditional class-incremental learning setting and the MTIL by 9.7% average score. Our code locates at https://github.com/Thunderbeee/ZSCL.
DualPrompt: Complementary Prompting for Rehearsal-free Continual Learning
Continual learning aims to enable a single model to learn a sequence of tasks without catastrophic forgetting. Top-performing methods usually require a rehearsal buffer to store past pristine examples for experience replay, which, however, limits their practical value due to privacy and memory constraints. In this work, we present a simple yet effective framework, DualPrompt, which learns a tiny set of parameters, called prompts, to properly instruct a pre-trained model to learn tasks arriving sequentially without buffering past examples. DualPrompt presents a novel approach to attach complementary prompts to the pre-trained backbone, and then formulates the objective as learning task-invariant and task-specific "instructions". With extensive experimental validation, DualPrompt consistently sets state-of-the-art performance under the challenging class-incremental setting. In particular, DualPrompt outperforms recent advanced continual learning methods with relatively large buffer sizes. We also introduce a more challenging benchmark, Split ImageNet-R, to help generalize rehearsal-free continual learning research. Source code is available at https://github.com/google-research/l2p.
Continual Learning of Large Language Models: A Comprehensive Survey
The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at https://github.com/Wang-ML-Lab/llm-continual-learning-survey.
Beyond Cosine Decay: On the effectiveness of Infinite Learning Rate Schedule for Continual Pre-training
The ever-growing availability of unlabeled data presents both opportunities and challenges for training artificial intelligence systems. While self-supervised learning (SSL) has emerged as a powerful paradigm for extracting meaningful representations from vast amounts of unlabeled data, existing methods still struggle to adapt to the non-stationary, non-IID nature of real-world data streams without forgetting previously learned knowledge. Recent works have adopted a repeated cosine annealing schedule for large-scale continual pre-training; however, these schedules (1) inherently cause forgetting during the re-warming phase and (2) have not been systematically compared to existing continual SSL methods. In this work, we systematically compare the widely used cosine schedule with the recently proposed infinite learning rate schedule and empirically find the latter to be a more effective alternative. Our extensive empirical evaluation across diverse image and language datasets demonstrates that the infinite learning rate schedule consistently enhances continual pre-training performance compared to a repeated cosine decay without being restricted to a fixed iteration budget. For instance, in a small-scale MAE pre-training setup, it outperforms several strong baselines from the literature. We then scale up our experiments to larger MAE pre-training and autoregressive language model pre-training. Our results show that the infinite learning rate schedule remains effective at scale, surpassing repeated cosine decay for both MAE pre-training and zero-shot LM benchmarks.
Continual Learning with Pre-Trained Models: A Survey
Nowadays, real-world applications often face streaming data, which requires the learning system to absorb new knowledge as data evolves. Continual Learning (CL) aims to achieve this goal and meanwhile overcome the catastrophic forgetting of former knowledge when learning new ones. Typical CL methods build the model from scratch to grow with incoming data. However, the advent of the pre-trained model (PTM) era has sparked immense research interest, particularly in leveraging PTMs' robust representational capabilities. This paper presents a comprehensive survey of the latest advancements in PTM-based CL. We categorize existing methodologies into three distinct groups, providing a comparative analysis of their similarities, differences, and respective advantages and disadvantages. Additionally, we offer an empirical study contrasting various state-of-the-art methods to highlight concerns regarding fairness in comparisons. The source code to reproduce these evaluations is available at: https://github.com/sun-hailong/LAMDA-PILOT
The effectiveness of MAE pre-pretraining for billion-scale pretraining
This paper revisits the standard pretrain-then-finetune paradigm used in computer vision for visual recognition tasks. Typically, state-of-the-art foundation models are pretrained using large scale (weakly) supervised datasets with billions of images. We introduce an additional pre-pretraining stage that is simple and uses the self-supervised MAE technique to initialize the model. While MAE has only been shown to scale with the size of models, we find that it scales with the size of the training dataset as well. Thus, our MAE-based pre-pretraining scales with both model and data size making it applicable for training foundation models. Pre-pretraining consistently improves both the model convergence and the downstream transfer performance across a range of model scales (millions to billions of parameters), and dataset sizes (millions to billions of images). We measure the effectiveness of pre-pretraining on 10 different visual recognition tasks spanning image classification, video recognition, object detection, low-shot classification and zero-shot recognition. Our largest model achieves new state-of-the-art results on iNaturalist-18 (91.3%), 1-shot ImageNet-1k (62.1%), and zero-shot transfer on Food-101 (96.0%). Our study reveals that model initialization plays a significant role, even for web-scale pretraining with billions of images.
A Unified Continual Learning Framework with General Parameter-Efficient Tuning
The "pre-training rightarrow downstream adaptation" presents both new opportunities and challenges for Continual Learning (CL). Although the recent state-of-the-art in CL is achieved through Parameter-Efficient-Tuning (PET) adaptation paradigm, only prompt has been explored, limiting its application to Transformers only. In this paper, we position prompting as one instantiation of PET, and propose a unified CL framework with general PET, dubbed as Learning-Accumulation-Ensemble (LAE). PET, e.g., using Adapter, LoRA, or Prefix, can adapt a pre-trained model to downstream tasks with fewer parameters and resources. Given a PET method, our LAE framework incorporates it for CL with three novel designs. 1) Learning: the pre-trained model adapts to the new task by tuning an online PET module, along with our adaptation speed calibration to align different PET modules, 2) Accumulation: the task-specific knowledge learned by the online PET module is accumulated into an offline PET module through momentum update, 3) Ensemble: During inference, we respectively construct two experts with online/offline PET modules (which are favored by the novel/historical tasks) for prediction ensemble. We show that LAE is compatible with a battery of PET methods and gains strong CL capability. For example, LAE with Adaptor PET surpasses the prior state-of-the-art by 1.3% and 3.6% in last-incremental accuracy on CIFAR100 and ImageNet-R datasets, respectively. Code is available at https://github.com/gqk/LAE.
Continual Pre-training of Language Models
Language models (LMs) have been instrumental for the rapid advance of natural language processing. This paper studies continual pre-training of LMs, in particular, continual domain-adaptive pre-training (or continual DAP-training). Existing research has shown that further pre-training an LM using a domain corpus to adapt the LM to the domain can improve the end-task performance in the domain. This paper proposes a novel method to continually DAP-train an LM with a sequence of unlabeled domain corpora to adapt the LM to these domains to improve their end-task performances. The key novelty of our method is a soft-masking mechanism that directly controls the update to the LM. A novel proxy is also proposed to preserve the general knowledge in the original LM. Additionally, it contrasts the representations of the previously learned domain knowledge (including the general knowledge in the pre-trained LM) and the knowledge from the current full network to achieve knowledge integration. The method not only overcomes catastrophic forgetting, but also achieves knowledge transfer to improve end-task performances. Empirical evaluation demonstrates the effectiveness of the proposed method.
Adaptive Rank, Reduced Forgetting: Knowledge Retention in Continual Learning Vision-Language Models with Dynamic Rank-Selective LoRA
We investigate whether the pre-trained knowledge of vision-language models (VLMs), such as CLIP, can be retained or even enhanced during continual learning (CL) while absorbing knowledge from a data stream. Existing methods often rely on additional reference data, isolated components for distribution or domain predictions, leading to high training costs, increased inference complexity, and limited improvement potential for pre-trained models. To address these challenges, we first comprehensively analyze the effects of parameter update locations and ranks on downstream adaptation and knowledge retention. Based on these insights, we propose Dynamic Rank-Selective Low Rank Adaptation (LoRA), a universal and efficient CL approach that adaptively assigns ranks to LoRA modules based on their relevance to the current data. Unlike prior methods, our approach continually enhances the pre-trained VLM by retaining both the pre-trained knowledge and the knowledge acquired during CL. Our approach eliminates the need for explicit domain or distribution prediction and additional reference data, enabling seamless integration of new tasks while preserving pre-trained capabilities. It also maintains the original architecture and deployment pipeline of the pre-trained model without incurring any additional inference overhead. Extensive experiments and analyses demonstrate that our method outperforms state-of-the-art approaches in continually absorbing knowledge of downstream tasks while retaining pre-trained knowledge.
CLIP model is an Efficient Continual Learner
The continual learning setting aims to learn new tasks over time without forgetting the previous ones. The literature reports several significant efforts to tackle this problem with limited or no access to previous task data. Among such efforts, typical solutions offer sophisticated techniques involving memory replay, knowledge distillation, model regularization, and dynamic network expansion. The resulting methods have a retraining cost at each learning task, dedicated memory requirements, and setting-specific design choices. In this work, we show that a frozen CLIP (Contrastive Language-Image Pretraining) model offers astounding continual learning performance without any fine-tuning (zero-shot evaluation). We evaluate CLIP under a variety of settings including class-incremental, domain-incremental and task-agnostic incremental learning on five popular benchmarks (ImageNet-100 & 1K, CORe50, CIFAR-100, and TinyImageNet). Without any bells and whistles, the CLIP model outperforms the state-of-the-art continual learning approaches in the majority of the settings. We show the effect on the CLIP model's performance by varying text inputs with simple prompt templates. To the best of our knowledge, this is the first work to report the CLIP zero-shot performance in a continual setting. We advocate the use of this strong yet embarrassingly simple baseline for future comparisons in the continual learning tasks.
Efficient Continual Pre-training by Mitigating the Stability Gap
Continual pre-training has increasingly become the predominant approach for adapting Large Language Models (LLMs) to new domains. This process involves updating the pre-trained LLM with a corpus from a new domain, resulting in a shift in the training distribution. To study the behavior of LLMs during this shift, we measured the model's performance throughout the continual pre-training process. we observed a temporary performance drop at the beginning, followed by a recovery phase, a phenomenon known as the "stability gap," previously noted in vision models classifying new classes. To address this issue and enhance LLM performance within a fixed compute budget, we propose three effective strategies: (1) Continually pre-training the LLM on a subset with a proper size for multiple epochs, resulting in faster performance recovery than pre-training the LLM on a large corpus in a single epoch; (2) Pre-training the LLM only on high-quality sub-corpus, which rapidly boosts domain performance; and (3) Using a data mixture similar to the pre-training data to reduce distribution gap. We conduct various experiments on Llama-family models to validate the effectiveness of our strategies in both medical continual pre-training and instruction tuning. For example, our strategies improve the average medical task performance of the OpenLlama-3B model from 36.2% to 40.7% with only 40% of the original training budget and enhance the average general task performance without causing forgetting. Furthermore, we apply our strategies to the Llama-3-8B model. The resulting model, Llama-3-Physician, achieves the best medical performance among current open-source models, and performs comparably to or even better than GPT-4 on several medical benchmarks. We release our models at https://huggingface.co/YiDuo1999/Llama-3-Physician-8B-Instruct.
CTP: Towards Vision-Language Continual Pretraining via Compatible Momentum Contrast and Topology Preservation
Vision-Language Pretraining (VLP) has shown impressive results on diverse downstream tasks by offline training on large-scale datasets. Regarding the growing nature of real-world data, such an offline training paradigm on ever-expanding data is unsustainable, because models lack the continual learning ability to accumulate knowledge constantly. However, most continual learning studies are limited to uni-modal classification and existing multi-modal datasets cannot simulate continual non-stationary data stream scenarios. To support the study of Vision-Language Continual Pretraining (VLCP), we first contribute a comprehensive and unified benchmark dataset P9D which contains over one million product image-text pairs from 9 industries. The data from each industry as an independent task supports continual learning and conforms to the real-world long-tail nature to simulate pretraining on web data. We comprehensively study the characteristics and challenges of VLCP, and propose a new algorithm: Compatible momentum contrast with Topology Preservation, dubbed CTP. The compatible momentum model absorbs the knowledge of the current and previous-task models to flexibly update the modal feature. Moreover, Topology Preservation transfers the knowledge of embedding across tasks while preserving the flexibility of feature adjustment. The experimental results demonstrate our method not only achieves superior performance compared with other baselines but also does not bring an expensive training burden. Dataset and codes are available at https://github.com/KevinLight831/CTP.
Continual Semi-Supervised Learning through Contrastive Interpolation Consistency
Continual Learning (CL) investigates how to train Deep Networks on a stream of tasks without incurring forgetting. CL settings proposed in literature assume that every incoming example is paired with ground-truth annotations. However, this clashes with many real-world applications: gathering labeled data, which is in itself tedious and expensive, becomes infeasible when data flow as a stream. This work explores Continual Semi-Supervised Learning (CSSL): here, only a small fraction of labeled input examples are shown to the learner. We assess how current CL methods (e.g.: EWC, LwF, iCaRL, ER, GDumb, DER) perform in this novel and challenging scenario, where overfitting entangles forgetting. Subsequently, we design a novel CSSL method that exploits metric learning and consistency regularization to leverage unlabeled examples while learning. We show that our proposal exhibits higher resilience to diminishing supervision and, even more surprisingly, relying only on 25% supervision suffices to outperform SOTA methods trained under full supervision.
Learning to Prompt for Continual Learning
The mainstream paradigm behind continual learning has been to adapt the model parameters to non-stationary data distributions, where catastrophic forgetting is the central challenge. Typical methods rely on a rehearsal buffer or known task identity at test time to retrieve learned knowledge and address forgetting, while this work presents a new paradigm for continual learning that aims to train a more succinct memory system without accessing task identity at test time. Our method learns to dynamically prompt (L2P) a pre-trained model to learn tasks sequentially under different task transitions. In our proposed framework, prompts are small learnable parameters, which are maintained in a memory space. The objective is to optimize prompts to instruct the model prediction and explicitly manage task-invariant and task-specific knowledge while maintaining model plasticity. We conduct comprehensive experiments under popular image classification benchmarks with different challenging continual learning settings, where L2P consistently outperforms prior state-of-the-art methods. Surprisingly, L2P achieves competitive results against rehearsal-based methods even without a rehearsal buffer and is directly applicable to challenging task-agnostic continual learning. Source code is available at https://github.com/google-research/l2p.
A Practitioner's Guide to Continual Multimodal Pretraining
Multimodal foundation models serve numerous applications at the intersection of vision and language. Still, despite being pretrained on extensive data, they become outdated over time. To keep models updated, research into continual pretraining mainly explores scenarios with either (1) infrequent, indiscriminate updates on large-scale new data, or (2) frequent, sample-level updates. However, practical model deployment often operates in the gap between these two limit cases, as real-world applications often demand adaptation to specific subdomains, tasks or concepts -- spread over the entire, varying life cycle of a model. In this work, we complement current perspectives on continual pretraining through a research test bed as well as provide comprehensive guidance for effective continual model updates in such scenarios. We first introduce FoMo-in-Flux, a continual multimodal pretraining benchmark with realistic compute constraints and practical deployment requirements, constructed over 63 datasets with diverse visual and semantic coverage. Using FoMo-in-Flux, we explore the complex landscape of practical continual pretraining through multiple perspectives: (1) A data-centric investigation of data mixtures and stream orderings that emulate real-world deployment situations, (2) a method-centric investigation ranging from simple fine-tuning and traditional continual learning strategies to parameter-efficient updates and model merging, (3) meta learning rate schedules and mechanistic design choices, and (4) the influence of model and compute scaling. Together, our insights provide a practitioner's guide to continual multimodal pretraining for real-world deployment. Our benchmark and code is here: https://github.com/ExplainableML/fomo_in_flux.
Choice of PEFT Technique in Continual Learning: Prompt Tuning is Not All You Need
Recent Continual Learning (CL) methods have combined pretrained Transformers with prompt tuning, a parameter-efficient fine-tuning (PEFT) technique. We argue that the choice of prompt tuning in prior works was an undefended and unablated decision, which has been uncritically adopted by subsequent research, but warrants further research to understand its implications. In this paper, we conduct this research and find that the choice of prompt tuning as a PEFT method hurts the overall performance of the CL system. To illustrate this, we replace prompt tuning with LoRA in two state-of-the-art continual learning methods: Learning to Prompt and S-Prompts. These variants consistently achieve higher accuracy across a wide range of domain-incremental and class-incremental benchmarks, while being competitive in inference speed. Our work highlights a crucial argument: unexamined choices can hinder progress in the field, and rigorous ablations, such as the PEFT method, are required to drive meaningful adoption of CL techniques in real-world applications.
Online Prototype Learning for Online Continual Learning
Online continual learning (CL) studies the problem of learning continuously from a single-pass data stream while adapting to new data and mitigating catastrophic forgetting. Recently, by storing a small subset of old data, replay-based methods have shown promising performance. Unlike previous methods that focus on sample storage or knowledge distillation against catastrophic forgetting, this paper aims to understand why the online learning models fail to generalize well from a new perspective of shortcut learning. We identify shortcut learning as the key limiting factor for online CL, where the learned features may be biased, not generalizable to new tasks, and may have an adverse impact on knowledge distillation. To tackle this issue, we present the online prototype learning (OnPro) framework for online CL. First, we propose online prototype equilibrium to learn representative features against shortcut learning and discriminative features to avoid class confusion, ultimately achieving an equilibrium status that separates all seen classes well while learning new classes. Second, with the feedback of online prototypes, we devise a novel adaptive prototypical feedback mechanism to sense the classes that are easily misclassified and then enhance their boundaries. Extensive experimental results on widely-used benchmark datasets demonstrate the superior performance of OnPro over the state-of-the-art baseline methods. Source code is available at https://github.com/weilllllls/OnPro.
Relational Experience Replay: Continual Learning by Adaptively Tuning Task-wise Relationship
Continual learning is a promising machine learning paradigm to learn new tasks while retaining previously learned knowledge over streaming training data. Till now, rehearsal-based methods, keeping a small part of data from old tasks as a memory buffer, have shown good performance in mitigating catastrophic forgetting for previously learned knowledge. However, most of these methods typically treat each new task equally, which may not adequately consider the relationship or similarity between old and new tasks. Furthermore, these methods commonly neglect sample importance in the continual training process and result in sub-optimal performance on certain tasks. To address this challenging problem, we propose Relational Experience Replay (RER), a bi-level learning framework, to adaptively tune task-wise relationships and sample importance within each task to achieve a better `stability' and `plasticity' trade-off. As such, the proposed method is capable of accumulating new knowledge while consolidating previously learned old knowledge during continual learning. Extensive experiments conducted on three publicly available datasets (i.e., CIFAR-10, CIFAR-100, and Tiny ImageNet) show that the proposed method can consistently improve the performance of all baselines and surpass current state-of-the-art methods.
When Prompt-based Incremental Learning Does Not Meet Strong Pretraining
Incremental learning aims to overcome catastrophic forgetting when learning deep networks from sequential tasks. With impressive learning efficiency and performance, prompt-based methods adopt a fixed backbone to sequential tasks by learning task-specific prompts. However, existing prompt-based methods heavily rely on strong pretraining (typically trained on ImageNet-21k), and we find that their models could be trapped if the potential gap between the pretraining task and unknown future tasks is large. In this work, we develop a learnable Adaptive Prompt Generator (APG). The key is to unify the prompt retrieval and prompt learning processes into a learnable prompt generator. Hence, the whole prompting process can be optimized to reduce the negative effects of the gap between tasks effectively. To make our APG avoid learning ineffective knowledge, we maintain a knowledge pool to regularize APG with the feature distribution of each class. Extensive experiments show that our method significantly outperforms advanced methods in exemplar-free incremental learning without (strong) pretraining. Besides, under strong retraining, our method also has comparable performance to existing prompt-based models, showing that our method can still benefit from pretraining. Codes can be found at https://github.com/TOM-tym/APG
Momentum-based Weight Interpolation of Strong Zero-Shot Models for Continual Learning
Large pre-trained, zero-shot capable models have shown considerable success both for standard transfer and adaptation tasks, with particular robustness towards distribution shifts. In addition, subsequent fine-tuning can considerably improve performance on a selected downstream task. However, through naive fine-tuning, these zero-shot models lose their generalizability and robustness towards distribution shifts. This is a particular problem for tasks such as Continual Learning (CL), where continuous adaptation has to be performed as new task distributions are introduced sequentially. In this work, we showcase that where fine-tuning falls short to adapt such zero-shot capable models, simple momentum-based weight interpolation can provide consistent improvements for CL tasks in both memory-free and memory-based settings. In particular, we find improvements of over +4% on standard CL benchmarks, while reducing the error to the upper limit of jointly training on all tasks at once in parts by more than half, allowing the continual learner to inch closer to the joint training limits.
Continual Pre-Training of Large Language Models: How to (re)warm your model?
Large language models (LLMs) are routinely pre-trained on billions of tokens, only to restart the process over again once new data becomes available. A much cheaper and more efficient solution would be to enable the continual pre-training of these models, i.e. updating pre-trained models with new data instead of re-training them from scratch. However, the distribution shift induced by novel data typically results in degraded performance on past data. Taking a step towards efficient continual pre-training, in this work, we examine the effect of different warm-up strategies. Our hypothesis is that the learning rate must be re-increased to improve compute efficiency when training on a new dataset. We study the warmup phase of models pre-trained on the Pile (upstream data, 300B tokens) as we continue to pre-train on SlimPajama (downstream data, 297B tokens), following a linear warmup and cosine decay schedule. We conduct all experiments on the Pythia 410M language model architecture and evaluate performance through validation perplexity. We experiment with different pre-training checkpoints, various maximum learning rates, and various warmup lengths. Our results show that while rewarming models first increases the loss on upstream and downstream data, in the longer run it improves the downstream performance, outperforming models trained from scratchx2013even for a large downstream dataset.
The Ideal Continual Learner: An Agent That Never Forgets
The goal of continual learning is to find a model that solves multiple learning tasks which are presented sequentially to the learner. A key challenge in this setting is that the learner may forget how to solve a previous task when learning a new task, a phenomenon known as catastrophic forgetting. To address this challenge, many practical methods have been proposed, including memory-based, regularization-based, and expansion-based methods. However, a rigorous theoretical understanding of these methods remains elusive. This paper aims to bridge this gap between theory and practice by proposing a new continual learning framework called Ideal Continual Learner (ICL), which is guaranteed to avoid catastrophic forgetting by construction. We show that ICL unifies multiple well-established continual learning methods and gives new theoretical insights into the strengths and weaknesses of these methods. We also derive generalization bounds for ICL which allow us to theoretically quantify how rehearsal affects generalization. Finally, we connect ICL to several classic subjects and research topics of modern interest, which allows us to make historical remarks and inspire future directions.
Prototype-Sample Relation Distillation: Towards Replay-Free Continual Learning
In Continual learning (CL) balancing effective adaptation while combating catastrophic forgetting is a central challenge. Many of the recent best-performing methods utilize various forms of prior task data, e.g. a replay buffer, to tackle the catastrophic forgetting problem. Having access to previous task data can be restrictive in many real-world scenarios, for example when task data is sensitive or proprietary. To overcome the necessity of using previous tasks' data, in this work, we start with strong representation learning methods that have been shown to be less prone to forgetting. We propose a holistic approach to jointly learn the representation and class prototypes while maintaining the relevance of old class prototypes and their embedded similarities. Specifically, samples are mapped to an embedding space where the representations are learned using a supervised contrastive loss. Class prototypes are evolved continually in the same latent space, enabling learning and prediction at any point. To continually adapt the prototypes without keeping any prior task data, we propose a novel distillation loss that constrains class prototypes to maintain relative similarities as compared to new task data. This method yields state-of-the-art performance in the task-incremental setting, outperforming methods relying on large amounts of data, and provides strong performance in the class-incremental setting without using any stored data points.
Continued Pretraining for Better Zero- and Few-Shot Promptability
Recently introduced language model prompting methods can achieve high accuracy in zero- and few-shot settings while requiring few to no learned task-specific parameters. Nevertheless, these methods still often trail behind full model finetuning. In this work, we investigate if a dedicated continued pretraining stage could improve "promptability", i.e., zero-shot performance with natural language prompts or few-shot performance with prompt tuning. We reveal settings where existing continued pretraining methods lack promptability. We also identify current methodological gaps, which we fill with thorough large-scale experiments. We demonstrate that a simple recipe, continued pretraining that incorporates a trainable prompt during multi-task learning, leads to improved promptability in both zero- and few-shot settings compared to existing methods, up to 31% relative. On the other hand, we find that continued pretraining using MAML-style meta-learning, a method that directly optimizes few-shot promptability, yields subpar performance. We validate our findings with two prompt tuning methods, and, based on our results, we provide concrete recommendations to optimize promptability for different use cases.
Lifelong Pretraining: Continually Adapting Language Models to Emerging Corpora
Pretrained language models (PTLMs) are typically learned over a large, static corpus and further fine-tuned for various downstream tasks. However, when deployed in the real world, a PTLM-based model must deal with data distributions that deviate from what the PTLM was initially trained on. In this paper, we study a lifelong language model pretraining challenge where a PTLM is continually updated so as to adapt to emerging data. Over a domain-incremental research paper stream and a chronologically-ordered tweet stream, we incrementally pretrain a PTLM with different continual learning algorithms, and keep track of the downstream task performance (after fine-tuning). We evaluate PTLM's ability to adapt to new corpora while retaining learned knowledge in earlier corpora. Our experiments show distillation-based approaches to be most effective in retaining downstream performance in earlier domains. The algorithms also improve knowledge transfer, allowing models to achieve better downstream performance over the latest data, and improve temporal generalization when distribution gaps exist between training and evaluation because of time. We believe our problem formulation, methods, and analysis will inspire future studies towards continual pretraining of language models.
Continual Learning with Dynamic Sparse Training: Exploring Algorithms for Effective Model Updates
Continual learning (CL) refers to the ability of an intelligent system to sequentially acquire and retain knowledge from a stream of data with as little computational overhead as possible. To this end; regularization, replay, architecture, and parameter isolation approaches were introduced to the literature. Parameter isolation using a sparse network which enables to allocate distinct parts of the neural network to different tasks and also allows to share of parameters between tasks if they are similar. Dynamic Sparse Training (DST) is a prominent way to find these sparse networks and isolate them for each task. This paper is the first empirical study investigating the effect of different DST components under the CL paradigm to fill a critical research gap and shed light on the optimal configuration of DST for CL if it exists. Therefore, we perform a comprehensive study in which we investigate various DST components to find the best topology per task on well-known CIFAR100 and miniImageNet benchmarks in a task-incremental CL setup since our primary focus is to evaluate the performance of various DST criteria, rather than the process of mask selection. We found that, at a low sparsity level, Erdos-Renyi Kernel (ERK) initialization utilizes the backbone more efficiently and allows to effectively learn increments of tasks. At a high sparsity level, however, uniform initialization demonstrates more reliable and robust performance. In terms of growth strategy; performance is dependent on the defined initialization strategy, and the extent of sparsity. Finally, adaptivity within DST components is a promising way for better continual learners.
Hyperparameters in Continual Learning: a Reality Check
Various algorithms for continual learning (CL) have been designed with the goal of effectively alleviating the trade-off between stability and plasticity during the CL process. To achieve this goal, tuning appropriate hyperparameters for each algorithm is essential. As an evaluation protocol, it has been common practice to train a CL algorithm using diverse hyperparameter values on a CL scenario constructed with a benchmark dataset. Subsequently, the best performance attained with the optimal hyperparameter value serves as the criterion for evaluating the CL algorithm. In this paper, we contend that this evaluation protocol is not only impractical but also incapable of effectively assessing the CL capability of a CL algorithm. Returning to the fundamental principles of model evaluation in machine learning, we propose an evaluation protocol that involves Hyperparameter Tuning and Evaluation phases. Those phases consist of different datasets but share the same CL scenario. In the Hyperparameter Tuning phase, each algorithm is iteratively trained with different hyperparameter values to find the optimal hyperparameter values. Subsequently, in the Evaluation phase, the optimal hyperparameter values is directly applied for training each algorithm, and their performance in the Evaluation phase serves as the criterion for evaluating them. Through experiments on CIFAR-100 and ImageNet-100 based on the proposed protocol in class-incremental learning, we not only observed that the existing evaluation method fail to properly assess the CL capability of each algorithm but also observe that some recently proposed state-of-the-art algorithms, which reported superior performance, actually exhibit inferior performance compared to the previous algorithm.
Don't Stop Pretraining? Make Prompt-based Fine-tuning Powerful Learner
Language models (LMs) trained on vast quantities of unlabelled data have greatly advanced the field of natural language processing (NLP). In this study, we re-visit the widely accepted notion in NLP that continued pre-training LMs on task-related texts improves the performance of fine-tuning (FT) in downstream tasks. Through experiments on eight single-sentence tasks and eight sentence-pair tasks in both semi-supervised and fully-supervised settings, we find that conventional continued pre-training does not consistently provide benefits and can even be detrimental for sentence-pair tasks or when prompt-based FT is used. To tackle these issues, we propose Prompt-based Continued Pre-training (PCP), which combines the idea of instruction tuning with conventional continued pre-training. Our approach aims to improve the performance of prompt-based FT by presenting both task-related texts and prompt templates to LMs through unsupervised pre-training objectives before fine-tuning for the target task. Our empirical evaluations on 21 benchmarks demonstrate that the PCP consistently improves the performance of state-of-the-art prompt-based FT approaches (up to 20.1% absolute) in both semi-supervised and fully-supervised settings, even with only hundreds of unlabelled examples. Additionally, prompt-based FT with the PCP outperforms state-of-the-art semi-supervised approaches with greater simplicity, eliminating the need for an iterative process and extra data augmentation. Our further analysis explores the performance lower bound of the PCP and reveals that the advantages of PCP persist across different sizes of models and datasets.
Don't Stop Learning: Towards Continual Learning for the CLIP Model
The Contrastive Language-Image Pre-training (CLIP) Model is a recently proposed large-scale pre-train model which attracts increasing attention in the computer vision community. Benefiting from its gigantic image-text training set, the CLIP model has learned outstanding capabilities in zero-shot learning and image-text matching. To boost the recognition performance of CLIP on some target visual concepts, it is often desirable to further update the CLIP model by fine-tuning some classes-of-interest on extra training data. This operation, however, raises an important concern: will the update hurt the zero-shot learning or image-text matching capability of the CLIP, i.e., the catastrophic forgetting issue? If yes, could existing continual learning algorithms be adapted to alleviate the risk of catastrophic forgetting? To answer these questions, this work conducts a systemic study on the continual learning issue of the CLIP model. We construct evaluation protocols to measure the impact of fine-tuning updates and explore different ways to upgrade existing continual learning methods to mitigate the forgetting issue of the CLIP model. Our study reveals the particular challenges of CLIP continual learning problem and lays a foundation for further researches. Moreover, we propose a new algorithm, dubbed Learning without Forgetting via Replayed Vocabulary (VR-LwF), which shows exact effectiveness for alleviating the forgetting issue of the CLIP model.
Towards All-in-one Pre-training via Maximizing Multi-modal Mutual Information
To effectively exploit the potential of large-scale models, various pre-training strategies supported by massive data from different sources are proposed, including supervised pre-training, weakly-supervised pre-training, and self-supervised pre-training. It has been proved that combining multiple pre-training strategies and data from various modalities/sources can greatly boost the training of large-scale models. However, current works adopt a multi-stage pre-training system, where the complex pipeline may increase the uncertainty and instability of the pre-training. It is thus desirable that these strategies can be integrated in a single-stage manner. In this paper, we first propose a general multi-modal mutual information formula as a unified optimization target and demonstrate that all existing approaches are special cases of our framework. Under this unified perspective, we propose an all-in-one single-stage pre-training approach, named Maximizing Multi-modal Mutual Information Pre-training (M3I Pre-training). Our approach achieves better performance than previous pre-training methods on various vision benchmarks, including ImageNet classification, COCO object detection, LVIS long-tailed object detection, and ADE20k semantic segmentation. Notably, we successfully pre-train a billion-level parameter image backbone and achieve state-of-the-art performance on various benchmarks. Code shall be released at https://github.com/OpenGVLab/M3I-Pretraining.
Learning an evolved mixture model for task-free continual learning
Recently, continual learning (CL) has gained significant interest because it enables deep learning models to acquire new knowledge without forgetting previously learnt information. However, most existing works require knowing the task identities and boundaries, which is not realistic in a real context. In this paper, we address a more challenging and realistic setting in CL, namely the Task-Free Continual Learning (TFCL) in which a model is trained on non-stationary data streams with no explicit task information. To address TFCL, we introduce an evolved mixture model whose network architecture is dynamically expanded to adapt to the data distribution shift. We implement this expansion mechanism by evaluating the probability distance between the knowledge stored in each mixture model component and the current memory buffer using the Hilbert Schmidt Independence Criterion (HSIC). We further introduce two simple dropout mechanisms to selectively remove stored examples in order to avoid memory overload while preserving memory diversity. Empirical results demonstrate that the proposed approach achieves excellent performance.
Continual Learning with Low Rank Adaptation
Recent work using pretrained transformers has shown impressive performance when fine-tuned with data from the downstream problem of interest. However, they struggle to retain that performance when the data characteristics changes. In this paper, we focus on continual learning, where a pre-trained transformer is updated to perform well on new data, while retaining its performance on data it was previously trained on. Earlier works have tackled this primarily through methods inspired from prompt tuning. We question this choice, and investigate the applicability of Low Rank Adaptation (LoRA) to continual learning. On a range of domain-incremental learning benchmarks, our LoRA-based solution, CoLoR, yields state-of-the-art performance, while still being as parameter efficient as the prompt tuning based methods.
A Theoretical Analysis of Catastrophic Forgetting through the NTK Overlap Matrix
Continual learning (CL) is a setting in which an agent has to learn from an incoming stream of data during its entire lifetime. Although major advances have been made in the field, one recurring problem which remains unsolved is that of Catastrophic Forgetting (CF). While the issue has been extensively studied empirically, little attention has been paid from a theoretical angle. In this paper, we show that the impact of CF increases as two tasks increasingly align. We introduce a measure of task similarity called the NTK overlap matrix which is at the core of CF. We analyze common projected gradient algorithms and demonstrate how they mitigate forgetting. Then, we propose a variant of Orthogonal Gradient Descent (OGD) which leverages structure of the data through Principal Component Analysis (PCA). Experiments support our theoretical findings and show how our method can help reduce CF on classical CL datasets.
Introducing Language Guidance in Prompt-based Continual Learning
Continual Learning aims to learn a single model on a sequence of tasks without having access to data from previous tasks. The biggest challenge in the domain still remains catastrophic forgetting: a loss in performance on seen classes of earlier tasks. Some existing methods rely on an expensive replay buffer to store a chunk of data from previous tasks. This, while promising, becomes expensive when the number of tasks becomes large or data can not be stored for privacy reasons. As an alternative, prompt-based methods have been proposed that store the task information in a learnable prompt pool. This prompt pool instructs a frozen image encoder on how to solve each task. While the model faces a disjoint set of classes in each task in this setting, we argue that these classes can be encoded to the same embedding space of a pre-trained language encoder. In this work, we propose Language Guidance for Prompt-based Continual Learning (LGCL) as a plug-in for prompt-based methods. LGCL is model agnostic and introduces language guidance at the task level in the prompt pool and at the class level on the output feature of the vision encoder. We show with extensive experimentation that LGCL consistently improves the performance of prompt-based continual learning methods to set a new state-of-the art. LGCL achieves these performance improvements without needing any additional learnable parameters.
An Efficient Rehearsal Scheme for Catastrophic Forgetting Mitigation during Multi-stage Fine-tuning
Incrementally fine-tuning foundational models on new tasks or domains is now the de facto approach in NLP. A known pitfall of this approach is the catastrophic forgetting of prior knowledge that happens during fine-tuning. A common approach to alleviate such forgetting is to rehearse samples from prior tasks during fine-tuning. Several existing works assume a fixed memory buffer to store prior task examples, while relying on inferences (forward passes) with the model at hand for choosing examples for rehearsal from the buffer. However, given the increasing computational cost of model inference, and decreasing cost of data storage, we focus on the setting to rehearse samples with a fixed computational budget instead of a fixed memory budget. We propose a sampling scheme, \bf mix-cd, that prioritizes rehearsal of ``collateral damage'' samples, which are samples predicted correctly by the prior model but forgotten by the incrementally tuned one. The crux of our scheme is a procedure to efficiently estimate the density of collateral damage samples without incurring additional model inferences. Our approach is computationally efficient, easy to implement, and outperforms several leading continual learning methods in compute-constrained settings. All the code will be publicly available at https://github.com/jybai/mix-cd-rehearsal.
On the Effectiveness of Equivariant Regularization for Robust Online Continual Learning
Humans can learn incrementally, whereas neural networks forget previously acquired information catastrophically. Continual Learning (CL) approaches seek to bridge this gap by facilitating the transfer of knowledge to both previous tasks (backward transfer) and future ones (forward transfer) during training. Recent research has shown that self-supervision can produce versatile models that can generalize well to diverse downstream tasks. However, contrastive self-supervised learning (CSSL), a popular self-supervision technique, has limited effectiveness in online CL (OCL). OCL only permits one iteration of the input dataset, and CSSL's low sample efficiency hinders its use on the input data-stream. In this work, we propose Continual Learning via Equivariant Regularization (CLER), an OCL approach that leverages equivariant tasks for self-supervision, avoiding CSSL's limitations. Our method represents the first attempt at combining equivariant knowledge with CL and can be easily integrated with existing OCL methods. Extensive ablations shed light on how equivariant pretext tasks affect the network's information flow and its impact on CL dynamics.
On the Effectiveness of LayerNorm Tuning for Continual Learning in Vision Transformers
State-of-the-art rehearsal-free continual learning methods exploit the peculiarities of Vision Transformers to learn task-specific prompts, drastically reducing catastrophic forgetting. However, there is a tradeoff between the number of learned parameters and the performance, making such models computationally expensive. In this work, we aim to reduce this cost while maintaining competitive performance. We achieve this by revisiting and extending a simple transfer learning idea: learning task-specific normalization layers. Specifically, we tune the scale and bias parameters of LayerNorm for each continual learning task, selecting them at inference time based on the similarity between task-specific keys and the output of the pre-trained model. To make the classifier robust to incorrect selection of parameters during inference, we introduce a two-stage training procedure, where we first optimize the task-specific parameters and then train the classifier with the same selection procedure of the inference time. Experiments on ImageNet-R and CIFAR-100 show that our method achieves results that are either superior or on par with {the state of the art} while being computationally cheaper.
Exemplar-Free Continual Transformer with Convolutions
Continual Learning (CL) involves training a machine learning model in a sequential manner to learn new information while retaining previously learned tasks without the presence of previous training data. Although there has been significant interest in CL, most recent CL approaches in computer vision have focused on convolutional architectures only. However, with the recent success of vision transformers, there is a need to explore their potential for CL. Although there have been some recent CL approaches for vision transformers, they either store training instances of previous tasks or require a task identifier during test time, which can be limiting. This paper proposes a new exemplar-free approach for class/task incremental learning called ConTraCon, which does not require task-id to be explicitly present during inference and avoids the need for storing previous training instances. The proposed approach leverages the transformer architecture and involves re-weighting the key, query, and value weights of the multi-head self-attention layers of a transformer trained on a similar task. The re-weighting is done using convolution, which enables the approach to maintain low parameter requirements per task. Additionally, an image augmentation-based entropic task identification approach is used to predict tasks without requiring task-ids during inference. Experiments on four benchmark datasets demonstrate that the proposed approach outperforms several competitive approaches while requiring fewer parameters.
Continual Learning with Pretrained Backbones by Tuning in the Input Space
The intrinsic difficulty in adapting deep learning models to non-stationary environments limits the applicability of neural networks to real-world tasks. This issue is critical in practical supervised learning settings, such as the ones in which a pre-trained model computes projections toward a latent space where different task predictors are sequentially learned over time. As a matter of fact, incrementally fine-tuning the whole model to better adapt to new tasks usually results in catastrophic forgetting, with decreasing performance over the past experiences and losing valuable knowledge from the pre-training stage. In this paper, we propose a novel strategy to make the fine-tuning procedure more effective, by avoiding to update the pre-trained part of the network and learning not only the usual classification head, but also a set of newly-introduced learnable parameters that are responsible for transforming the input data. This process allows the network to effectively leverage the pre-training knowledge and find a good trade-off between plasticity and stability with modest computational efforts, thus especially suitable for on-the-edge settings. Our experiments on four image classification problems in a continual learning setting confirm the quality of the proposed approach when compared to several fine-tuning procedures and to popular continual learning methods.
Examining Forgetting in Continual Pre-training of Aligned Large Language Models
Recent advances in Large Language Models (LLMs) have exhibited remarkable proficiency across various tasks. Given the potent applications of LLMs in numerous fields, there has been a surge in LLM development. In developing LLMs, a common practice involves continual pre-training on previously fine-tuned models. However, this can lead to catastrophic forgetting. In our work, we investigate the phenomenon of forgetting that occurs during continual pre-training on an existing fine-tuned LLM. We evaluate the impact of continuous pre-training on the fine-tuned LLM across various dimensions, including output format, knowledge, and reliability. Experiment results highlight the non-trivial challenge of addressing catastrophic forgetting during continual pre-training, especially the repetition issue.
Learning to Modulate pre-trained Models in RL
Reinforcement Learning (RL) has been successful in various domains like robotics, game playing, and simulation. While RL agents have shown impressive capabilities in their specific tasks, they insufficiently adapt to new tasks. In supervised learning, this adaptation problem is addressed by large-scale pre-training followed by fine-tuning to new down-stream tasks. Recently, pre-training on multiple tasks has been gaining traction in RL. However, fine-tuning a pre-trained model often suffers from catastrophic forgetting, that is, the performance on the pre-training tasks deteriorates when fine-tuning on new tasks. To investigate the catastrophic forgetting phenomenon, we first jointly pre-train a model on datasets from two benchmark suites, namely Meta-World and DMControl. Then, we evaluate and compare a variety of fine-tuning methods prevalent in natural language processing, both in terms of performance on new tasks, and how well performance on pre-training tasks is retained. Our study shows that with most fine-tuning approaches, the performance on pre-training tasks deteriorates significantly. Therefore, we propose a novel method, Learning-to-Modulate (L2M), that avoids the degradation of learned skills by modulating the information flow of the frozen pre-trained model via a learnable modulation pool. Our method achieves state-of-the-art performance on the Continual-World benchmark, while retaining performance on the pre-training tasks. Finally, to aid future research in this area, we release a dataset encompassing 50 Meta-World and 16 DMControl tasks.
Rethinking Supervised Pre-training for Better Downstream Transferring
The pretrain-finetune paradigm has shown outstanding performance on many applications of deep learning, where a model is pre-trained on a upstream large dataset (e.g. ImageNet), and is then fine-tuned to different downstream tasks. Though for most cases, the pre-training stage is conducted based on supervised methods, recent works on self-supervised pre-training have shown powerful transferability and even outperform supervised pre-training on multiple downstream tasks. It thus remains an open question how to better generalize supervised pre-training model to downstream tasks. In this paper, we argue that the worse transferability of existing supervised pre-training methods arise from the negligence of valuable intra-class semantic difference. This is because these methods tend to push images from the same class close to each other despite of the large diversity in their visual contents, a problem to which referred as "overfit of upstream tasks". To alleviate this problem, we propose a new supervised pre-training method based on Leave-One-Out K-Nearest-Neighbor, or LOOK for short. It relieves the problem of overfitting upstream tasks by only requiring each image to share its class label with most of its k nearest neighbors, thus allowing each class to exhibit a multi-mode distribution and consequentially preserving part of intra-class difference for better transferring to downstream tasks. We developed efficient implementation of the proposed method that scales well to large datasets. Experimental studies on multiple downstream tasks show that LOOK outperforms other state-of-the-art methods for supervised and self-supervised pre-training.
Domain-adaptative Continual Learning for Low-resource Tasks: Evaluation on Nepali
Continual learning has emerged as an important research direction due to the infeasibility of retraining large language models (LLMs) from scratch in the event of new data availability. Of great interest is the domain-adaptive pre-training (DAPT) paradigm, which focuses on continually training a pre-trained language model to adapt it to a domain it was not originally trained on. In this work, we evaluate the feasibility of DAPT in a low-resource setting, namely the Nepali language. We use synthetic data to continue training Llama 3 8B to adapt it to the Nepali language in a 4-bit QLoRA setting. We evaluate the adapted model on its performance, forgetting, and knowledge acquisition. We compare the base model and the final model on their Nepali generation abilities, their performance on popular benchmarks, and run case-studies to probe their linguistic knowledge in Nepali. We see some unsurprising forgetting in the final model, but also surprisingly find that increasing the number of shots during evaluation yields better percent increases in the final model (as high as 19.29% increase) compared to the base model (4.98%), suggesting latent retention. We also explore layer-head self-attention heatmaps to establish dependency resolution abilities of the final model in Nepali.
Continual Learning for Monolingual End-to-End Automatic Speech Recognition
Adapting Automatic Speech Recognition (ASR) models to new domains results in a deterioration of performance on the original domain(s), a phenomenon called Catastrophic Forgetting (CF). Even monolingual ASR models cannot be extended to new accents, dialects, topics, etc. without suffering from CF, making them unable to be continually enhanced without storing all past data. Fortunately, Continual Learning (CL) methods, which aim to enable continual adaptation while overcoming CF, can be used. In this paper, we implement an extensive number of CL methods for End-to-End ASR and test and compare their ability to extend a monolingual Hybrid CTC-Transformer model across four new tasks. We find that the best performing CL method closes the gap between the fine-tuned model (lower bound) and the model trained jointly on all tasks (upper bound) by more than 40%, while requiring access to only 0.6% of the original data.
The Construction of Instruction-tuned LLMs for Finance without Instruction Data Using Continual Pretraining and Model Merging
This paper proposes a novel method for constructing instruction-tuned large language models (LLMs) for finance without instruction data. Traditionally, developing such domain-specific LLMs has been resource-intensive, requiring a large dataset and significant computational power for continual pretraining and instruction tuning. Our study proposes a simpler approach that combines domain-specific continual pretraining with model merging. Given that general-purpose pretrained LLMs and their instruction-tuned LLMs are often publicly available, they can be leveraged to obtain the necessary instruction task vector. By merging this with a domain-specific pretrained vector, we can effectively create instruction-tuned LLMs for finance without additional instruction data. Our process involves two steps: first, we perform continual pretraining on financial data; second, we merge the instruction-tuned vector with the domain-specific pretrained vector. Our experiments demonstrate the successful construction of instruction-tuned LLMs for finance. One major advantage of our method is that the instruction-tuned and domain-specific pretrained vectors are nearly independent. This independence makes our approach highly effective. The Japanese financial instruction-tuned LLMs we developed in this study are available at https://huggingface.co/pfnet/nekomata-14b-pfn-qfin-inst-merge.
Learning Continually by Spectral Regularization
Loss of plasticity is a phenomenon where neural networks become more difficult to train during the course of learning. Continual learning algorithms seek to mitigate this effect by sustaining good predictive performance while maintaining network trainability. We develop new techniques for improving continual learning by first reconsidering how initialization can ensure trainability during early phases of learning. From this perspective, we derive new regularization strategies for continual learning that ensure beneficial initialization properties are better maintained throughout training. In particular, we investigate two new regularization techniques for continual learning: (i) Wasserstein regularization toward the initial weight distribution, which is less restrictive than regularizing toward initial weights; and (ii) regularizing weight matrix singular values, which directly ensures gradient diversity is maintained throughout training. We present an experimental analysis that shows these alternative regularizers can improve continual learning performance across a range of supervised learning tasks and model architectures. The alternative regularizers prove to be less sensitive to hyperparameters while demonstrating better training in individual tasks, sustaining trainability as new tasks arrive, and achieving better generalization performance.
Incremental Task Learning with Incremental Rank Updates
Incremental Task learning (ITL) is a category of continual learning that seeks to train a single network for multiple tasks (one after another), where training data for each task is only available during the training of that task. Neural networks tend to forget older tasks when they are trained for the newer tasks; this property is often known as catastrophic forgetting. To address this issue, ITL methods use episodic memory, parameter regularization, masking and pruning, or extensible network structures. In this paper, we propose a new incremental task learning framework based on low-rank factorization. In particular, we represent the network weights for each layer as a linear combination of several rank-1 matrices. To update the network for a new task, we learn a rank-1 (or low-rank) matrix and add that to the weights of every layer. We also introduce an additional selector vector that assigns different weights to the low-rank matrices learned for the previous tasks. We show that our approach performs better than the current state-of-the-art methods in terms of accuracy and forgetting. Our method also offers better memory efficiency compared to episodic memory- and mask-based approaches. Our code will be available at https://github.com/CSIPlab/task-increment-rank-update.git
D-CPT Law: Domain-specific Continual Pre-Training Scaling Law for Large Language Models
Continual Pre-Training (CPT) on Large Language Models (LLMs) has been widely used to expand the model's fundamental understanding of specific downstream domains (e.g., math and code). For the CPT on domain-specific LLMs, one important question is how to choose the optimal mixture ratio between the general-corpus (e.g., Dolma, Slim-pajama) and the downstream domain-corpus. Existing methods usually adopt laborious human efforts by grid-searching on a set of mixture ratios, which require high GPU training consumption costs. Besides, we cannot guarantee the selected ratio is optimal for the specific domain. To address the limitations of existing methods, inspired by the Scaling Law for performance prediction, we propose to investigate the Scaling Law of the Domain-specific Continual Pre-Training (D-CPT Law) to decide the optimal mixture ratio with acceptable training costs for LLMs of different sizes. Specifically, by fitting the D-CPT Law, we can easily predict the general and downstream performance of arbitrary mixture ratios, model sizes, and dataset sizes using small-scale training costs on limited experiments. Moreover, we also extend our standard D-CPT Law on cross-domain settings and propose the Cross-Domain D-CPT Law to predict the D-CPT law of target domains, where very small training costs (about 1% of the normal training costs) are needed for the target domains. Comprehensive experimental results on six downstream domains demonstrate the effectiveness and generalizability of our proposed D-CPT Law and Cross-Domain D-CPT Law.
Semantically-Shifted Incremental Adapter-Tuning is A Continual ViTransformer
Class-incremental learning (CIL) aims to enable models to continuously learn new classes while overcoming catastrophic forgetting. The introduction of pre-trained models has brought new tuning paradigms to CIL. In this paper, we revisit different parameter-efficient tuning (PET) methods within the context of continual learning. We observe that adapter tuning demonstrates superiority over prompt-based methods, even without parameter expansion in each learning session. Motivated by this, we propose incrementally tuning the shared adapter without imposing parameter update constraints, enhancing the learning capacity of the backbone. Additionally, we employ feature sampling from stored prototypes to retrain a unified classifier, further improving its performance. We estimate the semantic shift of old prototypes without access to past samples and update stored prototypes session by session. Our proposed method eliminates model expansion and avoids retaining any image samples. It surpasses previous pre-trained model-based CIL methods and demonstrates remarkable continual learning capabilities. Experimental results on five CIL benchmarks validate the effectiveness of our approach, achieving state-of-the-art (SOTA) performance.
Ada-QPacknet -- adaptive pruning with bit width reduction as an efficient continual learning method without forgetting
Continual Learning (CL) is a process in which there is still huge gap between human and deep learning model efficiency. Recently, many CL algorithms were designed. Most of them have many problems with learning in dynamic and complex environments. In this work new architecture based approach Ada-QPacknet is described. It incorporates the pruning for extracting the sub-network for each task. The crucial aspect in architecture based CL methods is theirs capacity. In presented method the size of the model is reduced by efficient linear and nonlinear quantisation approach. The method reduces the bit-width of the weights format. The presented results shows that low bit quantisation achieves similar accuracy as floating-point sub-network on a well-know CL scenarios. To our knowledge it is the first CL strategy which incorporates both compression techniques pruning and quantisation for generating task sub-networks. The presented algorithm was tested on well-known episode combinations and compared with most popular algorithms. Results show that proposed approach outperforms most of the CL strategies in task and class incremental scenarios.
CBA: Improving Online Continual Learning via Continual Bias Adaptor
Online continual learning (CL) aims to learn new knowledge and consolidate previously learned knowledge from non-stationary data streams. Due to the time-varying training setting, the model learned from a changing distribution easily forgets the previously learned knowledge and biases toward the newly received task. To address this problem, we propose a Continual Bias Adaptor (CBA) module to augment the classifier network to adapt to catastrophic distribution change during training, such that the classifier network is able to learn a stable consolidation of previously learned tasks. In the testing stage, CBA can be removed which introduces no additional computation cost and memory overhead. We theoretically reveal the reason why the proposed method can effectively alleviate catastrophic distribution shifts, and empirically demonstrate its effectiveness through extensive experiments based on four rehearsal-based baselines and three public continual learning benchmarks.
Small Languages, Big Models: A Study of Continual Training on Languages of Norway
Training large language models requires vast amounts of data, posing a challenge for less widely spoken languages like Norwegian and even more so for truly low-resource languages like Northern S\'ami. To address this issue, we present a novel three-stage continual training approach that substantially improves the downstream performance together with the inference efficiency for the target languages. Based on our findings, we train, evaluate, and openly release a new generative language model for Norwegian Bokmal, Nynorsk, and Northern S\'ami with 11.4 billion parameters: NorMistral-11B.
Construction of Domain-specified Japanese Large Language Model for Finance through Continual Pre-training
Large language models (LLMs) are now widely used in various fields, including finance. However, Japanese financial-specific LLMs have not been proposed yet. Hence, this study aims to construct a Japanese financial-specific LLM through continual pre-training. Before tuning, we constructed Japanese financial-focused datasets for continual pre-training. As a base model, we employed a Japanese LLM that achieved state-of-the-art performance on Japanese financial benchmarks among the 10-billion-class parameter models. After continual pre-training using the datasets and the base model, the tuned model performed better than the original model on the Japanese financial benchmarks. Moreover, the outputs comparison results reveal that the tuned model's outputs tend to be better than the original model's outputs in terms of the quality and length of the answers. These findings indicate that domain-specific continual pre-training is also effective for LLMs. The tuned model is publicly available on Hugging Face.
Online Continual Learning on Hierarchical Label Expansion
Continual learning (CL) enables models to adapt to new tasks and environments without forgetting previously learned knowledge. While current CL setups have ignored the relationship between labels in the past task and the new task with or without small task overlaps, real-world scenarios often involve hierarchical relationships between old and new tasks, posing another challenge for traditional CL approaches. To address this challenge, we propose a novel multi-level hierarchical class incremental task configuration with an online learning constraint, called hierarchical label expansion (HLE). Our configuration allows a network to first learn coarse-grained classes, with data labels continually expanding to more fine-grained classes in various hierarchy depths. To tackle this new setup, we propose a rehearsal-based method that utilizes hierarchy-aware pseudo-labeling to incorporate hierarchical class information. Additionally, we propose a simple yet effective memory management and sampling strategy that selectively adopts samples of newly encountered classes. Our experiments demonstrate that our proposed method can effectively use hierarchy on our HLE setup to improve classification accuracy across all levels of hierarchies, regardless of depth and class imbalance ratio, outperforming prior state-of-the-art works by significant margins while also outperforming them on the conventional disjoint, blurry and i-Blurry CL setups.
Continual Learning with Strong Experience Replay
Continual Learning (CL) aims at incrementally learning new tasks without forgetting the knowledge acquired from old ones. Experience Replay (ER) is a simple and effective rehearsal-based strategy, which optimizes the model with current training data and a subset of old samples stored in a memory buffer. To further reduce forgetting, recent approaches extend ER with various techniques, such as model regularization and memory sampling. However, the prediction consistency between the new model and the old one on current training data has been seldom explored, resulting in less knowledge preserved when few previous samples are available. To address this issue, we propose a CL method with Strong Experience Replay (SER), which additionally utilizes future experiences mimicked on the current training data, besides distilling past experience from the memory buffer. In our method, the updated model will produce approximate outputs as its original ones, which can effectively preserve the acquired knowledge. Experimental results on multiple image classification datasets show that our SER method surpasses the state-of-the-art methods by a noticeable margin.
Discrete Key-Value Bottleneck
Deep neural networks perform well on classification tasks where data streams are i.i.d. and labeled data is abundant. Challenges emerge with non-stationary training data streams such as continual learning. One powerful approach that has addressed this challenge involves pre-training of large encoders on volumes of readily available data, followed by task-specific tuning. Given a new task, however, updating the weights of these encoders is challenging as a large number of weights needs to be fine-tuned, and as a result, they forget information about the previous tasks. In the present work, we propose a model architecture to address this issue, building upon a discrete bottleneck containing pairs of separate and learnable key-value codes. Our paradigm will be to encode; process the representation via a discrete bottleneck; and decode. Here, the input is fed to the pre-trained encoder, the output of the encoder is used to select the nearest keys, and the corresponding values are fed to the decoder to solve the current task. The model can only fetch and re-use a sparse number of these key-value pairs during inference, enabling localized and context-dependent model updates. We theoretically investigate the ability of the discrete key-value bottleneck to minimize the effect of learning under distribution shifts and show that it reduces the complexity of the hypothesis class. We empirically verify the proposed method under challenging class-incremental learning scenarios and show that the proposed model - without any task boundaries - reduces catastrophic forgetting across a wide variety of pre-trained models, outperforming relevant baselines on this task.
Instruction Pre-Training: Language Models are Supervised Multitask Learners
Unsupervised multitask pre-training has been the critical method behind the recent success of language models (LMs). However, supervised multitask learning still holds significant promise, as scaling it in the post-training stage trends towards better generalization. In this paper, we explore supervised multitask pre-training by proposing Instruction Pre-Training, a framework that scalably augments massive raw corpora with instruction-response pairs to pre-train LMs. The instruction-response pairs are generated by an efficient instruction synthesizer built on open-source models. In our experiments, we synthesize 200M instruction-response pairs covering 40+ task categories to verify the effectiveness of Instruction Pre-Training. In pre-training from scratch, Instruction Pre-Training not only consistently enhances pre-trained base models but also benefits more from further instruction tuning. In continual pre-training, Instruction Pre-Training enables Llama3-8B to be comparable to or even outperform Llama3-70B. Our model, code, and data are available at https://github.com/microsoft/LMOps.
Label-Efficient Online Continual Object Detection in Streaming Video
Humans can watch a continuous video stream and effortlessly perform continual acquisition and transfer of new knowledge with minimal supervision yet retaining previously learnt experiences. In contrast, existing continual learning (CL) methods require fully annotated labels to effectively learn from individual frames in a video stream. Here, we examine a more realistic and challenging problemx2014Label-Efficient Online Continual Object Detection (LEOCOD) in streaming video. We propose a plug-and-play module, Efficient-CLS, that can be easily inserted into and improve existing continual learners for object detection in video streams with reduced data annotation costs and model retraining time. We show that our method has achieved significant improvement with minimal forgetting across all supervision levels on two challenging CL benchmarks for streaming real-world videos. Remarkably, with only 25% annotated video frames, our method still outperforms the base CL learners, which are trained with 100% annotations on all video frames. The data and source code will be publicly available at https://github.com/showlab/Efficient-CLS.
Center Loss Regularization for Continual Learning
The ability to learn different tasks sequentially is essential to the development of artificial intelligence. In general, neural networks lack this capability, the major obstacle being catastrophic forgetting. It occurs when the incrementally available information from non-stationary data distributions is continually acquired, disrupting what the model has already learned. Our approach remembers old tasks by projecting the representations of new tasks close to that of old tasks while keeping the decision boundaries unchanged. We employ the center loss as a regularization penalty that enforces new tasks' features to have the same class centers as old tasks and makes the features highly discriminative. This, in turn, leads to the least forgetting of already learned information. This method is easy to implement, requires minimal computational and memory overhead, and allows the neural network to maintain high performance across many sequentially encountered tasks. We also demonstrate that using the center loss in conjunction with the memory replay outperforms other replay-based strategies. Along with standard MNIST variants for continual learning, we apply our method to continual domain adaptation scenarios with the Digits and PACS datasets. We demonstrate that our approach is scalable, effective, and gives competitive performance compared to state-of-the-art continual learning methods.
Accelerating Batch Active Learning Using Continual Learning Techniques
A major problem with Active Learning (AL) is high training costs since models are typically retrained from scratch after every query round. We start by demonstrating that standard AL on neural networks with warm starting fails, both to accelerate training and to avoid catastrophic forgetting when using fine-tuning over AL query rounds. We then develop a new class of techniques, circumventing this problem, by biasing further training towards previously labeled sets. We accomplish this by employing existing, and developing novel, replay-based Continual Learning (CL) algorithms that are effective at quickly learning the new without forgetting the old, especially when data comes from an evolving distribution. We call this paradigm Continual Active Learning (CAL). We show CAL achieves significant speedups using a plethora of replay schemes that use model distillation and that select diverse, uncertain points from the history. We conduct experiments across many data domains, including natural language, vision, medical imaging, and computational biology, each with different neural architectures and dataset sizes. CAL consistently provides a 3x reduction in training time, while retaining performance.
On the Usage of Continual Learning for Out-of-Distribution Generalization in Pre-trained Language Models of Code
Pre-trained language models (PLMs) have become a prevalent technique in deep learning for code, utilizing a two-stage pre-training and fine-tuning procedure to acquire general knowledge about code and specialize in a variety of downstream tasks. However, the dynamic nature of software codebases poses a challenge to the effectiveness and robustness of PLMs. In particular, world-realistic scenarios potentially lead to significant differences between the distribution of the pre-training and test data, i.e., distribution shift, resulting in a degradation of the PLM's performance on downstream tasks. In this paper, we stress the need for adapting PLMs of code to software data whose distribution changes over time, a crucial problem that has been overlooked in previous works. The motivation of this work is to consider the PLM in a non-stationary environment, where fine-tuning data evolves over time according to a software evolution scenario. Specifically, we design a scenario where the model needs to learn from a stream of programs containing new, unseen APIs over time. We study two widely used PLM architectures, i.e., a GPT2 decoder and a RoBERTa encoder, on two downstream tasks, API call and API usage prediction. We demonstrate that the most commonly used fine-tuning technique from prior work is not robust enough to handle the dynamic nature of APIs, leading to the loss of previously acquired knowledge i.e., catastrophic forgetting. To address these issues, we implement five continual learning approaches, including replay-based and regularization-based methods. Our findings demonstrate that utilizing these straightforward methods effectively mitigates catastrophic forgetting in PLMs across both downstream tasks while achieving comparable or superior performance.
SHARP: Sparsity and Hidden Activation RePlay for Neuro-Inspired Continual Learning
Deep neural networks (DNNs) struggle to learn in dynamic environments since they rely on fixed datasets or stationary environments. Continual learning (CL) aims to address this limitation and enable DNNs to accumulate knowledge incrementally, similar to human learning. Inspired by how our brain consolidates memories, a powerful strategy in CL is replay, which involves training the DNN on a mixture of new and all seen classes. However, existing replay methods overlook two crucial aspects of biological replay: 1) the brain replays processed neural patterns instead of raw input, and 2) it prioritizes the replay of recently learned information rather than revisiting all past experiences. To address these differences, we propose SHARP, an efficient neuro-inspired CL method that leverages sparse dynamic connectivity and activation replay. Unlike other activation replay methods, which assume layers not subjected to replay have been pretrained and fixed, SHARP can continually update all layers. Also, SHARP is unique in that it only needs to replay few recently seen classes instead of all past classes. Our experiments on five datasets demonstrate that SHARP outperforms state-of-the-art replay methods in class incremental learning. Furthermore, we showcase SHARP's flexibility in a novel CL scenario where the boundaries between learning episodes are blurry. The SHARP code is available at https://github.com/BurakGurbuz97/SHARP-Continual-Learning.
UER: A Heuristic Bias Addressing Approach for Online Continual Learning
Online continual learning aims to continuously train neural networks from a continuous data stream with a single pass-through data. As the most effective approach, the rehearsal-based methods replay part of previous data. Commonly used predictors in existing methods tend to generate biased dot-product logits that prefer to the classes of current data, which is known as a bias issue and a phenomenon of forgetting. Many approaches have been proposed to overcome the forgetting problem by correcting the bias; however, they still need to be improved in online fashion. In this paper, we try to address the bias issue by a more straightforward and more efficient method. By decomposing the dot-product logits into an angle factor and a norm factor, we empirically find that the bias problem mainly occurs in the angle factor, which can be used to learn novel knowledge as cosine logits. On the contrary, the norm factor abandoned by existing methods helps remember historical knowledge. Based on this observation, we intuitively propose to leverage the norm factor to balance the new and old knowledge for addressing the bias. To this end, we develop a heuristic approach called unbias experience replay (UER). UER learns current samples only by the angle factor and further replays previous samples by both the norm and angle factors. Extensive experiments on three datasets show that UER achieves superior performance over various state-of-the-art methods. The code is in https://github.com/FelixHuiweiLin/UER.
ZeroPrompt: Scaling Prompt-Based Pretraining to 1,000 Tasks Improves Zero-Shot Generalization
We propose a multitask pretraining approach ZeroPrompt for zero-shot generalization, focusing on task scaling and zero-shot prompting. While previous models are trained on only a few dozen tasks, we scale to 1,000 tasks for the first time using real-world data. This leads to a crucial discovery that task scaling can be an efficient alternative to model scaling; i.e., the model size has little impact on performance with an extremely large number of tasks. Our results show that task scaling can substantially improve training efficiency by 30 times in FLOPs. Moreover, we present a prompting method that incorporates a genetic algorithm to automatically search for the best prompt for unseen tasks, along with a few other improvements. Empirically, ZeroPrompt substantially improves both the efficiency and the performance of zero-shot learning across a variety of academic and production datasets.
Efficient NLP Model Finetuning via Multistage Data Filtering
As model finetuning is central to the modern NLP, we set to maximize its efficiency. Motivated by redundancy in training examples and the sheer sizes of pretrained models, we exploit a key opportunity: training only on important data. To this end, we set to filter training examples in a streaming fashion, in tandem with training the target model. Our key techniques are two: (1) automatically determine a training loss threshold for skipping backward training passes; (2) run a meta predictor for further skipping forward training passes. We integrate the above techniques in a holistic, three-stage training process. On a diverse set of benchmarks, our method reduces the required training examples by up to 5.3times and training time by up to 6.8times, while only seeing minor accuracy degradation. Our method is effective even when training one epoch, where each training example is encountered only once. It is simple to implement and is compatible with the existing finetuning techniques. Code is available at: https://github.com/xo28/efficient- NLP-multistage-training
Task agnostic continual learning with Pairwise layer architecture
Most of the dominant approaches to continual learning are based on either memory replay, parameter isolation, or regularization techniques that require task boundaries to calculate task statistics. We propose a static architecture-based method that doesn't use any of these. We show that we can improve the continual learning performance by replacing the final layer of our networks with our pairwise interaction layer. The pairwise interaction layer uses sparse representations from a Winner-take-all style activation function to find the relevant correlations in the hidden layer representations. The networks using this architecture show competitive performance in MNIST and FashionMNIST-based continual image classification experiments. We demonstrate this in an online streaming continual learning setup where the learning system cannot access task labels or boundaries.
Continual Learning for Large Language Models: A Survey
Large language models (LLMs) are not amenable to frequent re-training, due to high training costs arising from their massive scale. However, updates are necessary to endow LLMs with new skills and keep them up-to-date with rapidly evolving human knowledge. This paper surveys recent works on continual learning for LLMs. Due to the unique nature of LLMs, we catalog continue learning techniques in a novel multi-staged categorization scheme, involving continual pretraining, instruction tuning, and alignment. We contrast continual learning for LLMs with simpler adaptation methods used in smaller models, as well as with other enhancement strategies like retrieval-augmented generation and model editing. Moreover, informed by a discussion of benchmarks and evaluation, we identify several challenges and future work directions for this crucial task.
ERNIE 2.0: A Continual Pre-training Framework for Language Understanding
Recently, pre-trained models have achieved state-of-the-art results in various language understanding tasks, which indicates that pre-training on large-scale corpora may play a crucial role in natural language processing. Current pre-training procedures usually focus on training the model with several simple tasks to grasp the co-occurrence of words or sentences. However, besides co-occurring, there exists other valuable lexical, syntactic and semantic information in training corpora, such as named entity, semantic closeness and discourse relations. In order to extract to the fullest extent, the lexical, syntactic and semantic information from training corpora, we propose a continual pre-training framework named ERNIE 2.0 which builds and learns incrementally pre-training tasks through constant multi-task learning. Experimental results demonstrate that ERNIE 2.0 outperforms BERT and XLNet on 16 tasks including English tasks on GLUE benchmarks and several common tasks in Chinese. The source codes and pre-trained models have been released at https://github.com/PaddlePaddle/ERNIE.
CODA-Prompt: COntinual Decomposed Attention-based Prompting for Rehearsal-Free Continual Learning
Computer vision models suffer from a phenomenon known as catastrophic forgetting when learning novel concepts from continuously shifting training data. Typical solutions for this continual learning problem require extensive rehearsal of previously seen data, which increases memory costs and may violate data privacy. Recently, the emergence of large-scale pre-trained vision transformer models has enabled prompting approaches as an alternative to data-rehearsal. These approaches rely on a key-query mechanism to generate prompts and have been found to be highly resistant to catastrophic forgetting in the well-established rehearsal-free continual learning setting. However, the key mechanism of these methods is not trained end-to-end with the task sequence. Our experiments show that this leads to a reduction in their plasticity, hence sacrificing new task accuracy, and inability to benefit from expanded parameter capacity. We instead propose to learn a set of prompt components which are assembled with input-conditioned weights to produce input-conditioned prompts, resulting in a novel attention-based end-to-end key-query scheme. Our experiments show that we outperform the current SOTA method DualPrompt on established benchmarks by as much as 4.5% in average final accuracy. We also outperform the state of art by as much as 4.4% accuracy on a continual learning benchmark which contains both class-incremental and domain-incremental task shifts, corresponding to many practical settings. Our code is available at https://github.com/GT-RIPL/CODA-Prompt
Effective Long-Context Scaling of Foundation Models
We present a series of long-context LLMs that support effective context windows of up to 32,768 tokens. Our model series are built through continual pretraining from Llama 2 with longer training sequences and on a dataset where long texts are upsampled. We perform extensive evaluation on language modeling, synthetic context probing tasks, and a wide range of research benchmarks. On research benchmarks, our models achieve consistent improvements on most regular tasks and significant improvements on long-context tasks over Llama 2. Notably, with a cost-effective instruction tuning procedure that does not require human-annotated long instruction data, the 70B variant can already surpass gpt-3.5-turbo-16k's overall performance on a suite of long-context tasks. Alongside these results, we provide an in-depth analysis on the individual components of our method. We delve into Llama's position encodings and discuss its limitation in modeling long dependencies. We also examine the impact of various design choices in the pretraining process, including the data mix and the training curriculum of sequence lengths -- our ablation experiments suggest that having abundant long texts in the pretrain dataset is not the key to achieving strong performance, and we empirically verify that long context continual pretraining is more efficient and similarly effective compared to pretraining from scratch with long sequences.
Just Say the Name: Online Continual Learning with Category Names Only via Data Generation
In real-world scenarios, extensive manual annotation for continual learning is impractical due to prohibitive costs. Although prior arts, influenced by large-scale webly supervised training, suggest leveraging web-scraped data in continual learning, this poses challenges such as data imbalance, usage restrictions, and privacy concerns. Addressing the risks of continual webly supervised training, we present an online continual learning framework - Generative Name only Continual Learning (G-NoCL). The proposed G-NoCL uses a set of generators G along with the learner. When encountering new concepts (i.e., classes), G-NoCL employs the novel sample complexity-guided data ensembling technique DIverSity and COmplexity enhancing ensemBlER (DISCOBER) to optimally sample training data from generated data. Through extensive experimentation, we demonstrate superior performance of DISCOBER in G-NoCL online CL benchmarks, covering both In-Distribution (ID) and Out-of-Distribution (OOD) generalization evaluations, compared to naive generator-ensembling, web-supervised, and manually annotated data.
In-context Continual Learning Assisted by an External Continual Learner
Existing continual learning (CL) methods mainly rely on fine-tuning or adapting large language models (LLMs). They still suffer from catastrophic forgetting (CF). Little work has been done to exploit in-context learning (ICL) to leverage the extensive knowledge within LLMs for CL without updating any parameters. However, incrementally learning each new task in ICL necessitates adding training examples from each class of the task to the prompt, which hampers scalability as the prompt length increases. This issue not only leads to excessively long prompts that exceed the input token limit of the underlying LLM but also degrades the model's performance due to the overextended context. To address this, we introduce InCA, a novel approach that integrates an external continual learner (ECL) with ICL to enable scalable CL without CF. The ECL is built incrementally to pre-select a small subset of likely classes for each test instance. By restricting the ICL prompt to only these selected classes, InCA prevents prompt lengths from becoming excessively long, while maintaining high performance. Experimental results demonstrate that InCA significantly outperforms existing CL baselines, achieving substantial performance gains.
PCR: Proxy-based Contrastive Replay for Online Class-Incremental Continual Learning
Online class-incremental continual learning is a specific task of continual learning. It aims to continuously learn new classes from data stream and the samples of data stream are seen only once, which suffers from the catastrophic forgetting issue, i.e., forgetting historical knowledge of old classes. Existing replay-based methods effectively alleviate this issue by saving and replaying part of old data in a proxy-based or contrastive-based replay manner. Although these two replay manners are effective, the former would incline to new classes due to class imbalance issues, and the latter is unstable and hard to converge because of the limited number of samples. In this paper, we conduct a comprehensive analysis of these two replay manners and find that they can be complementary. Inspired by this finding, we propose a novel replay-based method called proxy-based contrastive replay (PCR). The key operation is to replace the contrastive samples of anchors with corresponding proxies in the contrastive-based way. It alleviates the phenomenon of catastrophic forgetting by effectively addressing the imbalance issue, as well as keeps a faster convergence of the model. We conduct extensive experiments on three real-world benchmark datasets, and empirical results consistently demonstrate the superiority of PCR over various state-of-the-art methods.
Meta-Learning to Improve Pre-Training
Pre-training (PT) followed by fine-tuning (FT) is an effective method for training neural networks, and has led to significant performance improvements in many domains. PT can incorporate various design choices such as task and data reweighting strategies, augmentation policies, and noise models, all of which can significantly impact the quality of representations learned. The hyperparameters introduced by these strategies therefore must be tuned appropriately. However, setting the values of these hyperparameters is challenging. Most existing methods either struggle to scale to high dimensions, are too slow and memory-intensive, or cannot be directly applied to the two-stage PT and FT learning process. In this work, we propose an efficient, gradient-based algorithm to meta-learn PT hyperparameters. We formalize the PT hyperparameter optimization problem and propose a novel method to obtain PT hyperparameter gradients by combining implicit differentiation and backpropagation through unrolled optimization. We demonstrate that our method improves predictive performance on two real-world domains. First, we optimize high-dimensional task weighting hyperparameters for multitask pre-training on protein-protein interaction graphs and improve AUROC by up to 3.9%. Second, we optimize a data augmentation neural network for self-supervised PT with SimCLR on electrocardiography data and improve AUROC by up to 1.9%.
Investigating Continual Pretraining in Large Language Models: Insights and Implications
This paper studies the evolving domain of Continual Learning (CL) in large language models (LLMs), with a focus on developing strategies for efficient and sustainable training. Our primary emphasis is on continual domain-adaptive pretraining, a process designed to equip LLMs with the ability to integrate new information from various domains while retaining previously learned knowledge and enhancing cross-domain knowledge transfer without relying on domain-specific identification. Unlike previous studies, which mostly concentrate on a limited selection of tasks or domains and primarily aim to address the issue of forgetting, our research evaluates the adaptability and capabilities of LLMs to changing data landscapes in practical scenarios. To this end, we introduce a new benchmark designed to measure the adaptability of LLMs to these evolving data environments, offering a comprehensive framework for evaluation. We examine the impact of model size on learning efficacy and forgetting, as well as how the progression and similarity of emerging domains affect the knowledge transfer within these models. Our findings uncover several key insights: (i) when the sequence of domains shows semantic similarity, continual pretraining enables LLMs to better specialize in the current domain compared to stand-alone fine-tuning, (ii) training across a diverse range of domains enhances both backward and forward knowledge transfer, and (iii) smaller models are particularly sensitive to continual pretraining, showing the most significant rates of both forgetting and learning. We posit that our research marks a shift towards establishing a more realistic benchmark for investigating CL in LLMs, and has the potential to play a key role in guiding the direction of future research in the field.
Skill-it! A Data-Driven Skills Framework for Understanding and Training Language Models
The quality of training data impacts the performance of pre-trained large language models (LMs). Given a fixed budget of tokens, we study how to best select data that leads to good downstream model performance across tasks. We develop a new framework based on a simple hypothesis: just as humans acquire interdependent skills in a deliberate order, language models also follow a natural order when learning a set of skills from their training data. If such an order exists, it can be utilized for improved understanding of LMs and for data-efficient training. Using this intuition, our framework formalizes the notion of a skill and of an ordered set of skills in terms of the associated data. First, using both synthetic and real data, we demonstrate that these ordered skill sets exist, and that their existence enables more advanced skills to be learned with less data when we train on their prerequisite skills. Second, using our proposed framework, we introduce an online data sampling algorithm, Skill-It, over mixtures of skills for both continual pre-training and fine-tuning regimes, where the objective is to efficiently learn multiple skills in the former and an individual skill in the latter. On the LEGO synthetic in the continual pre-training setting, Skill-It obtains 36.5 points higher accuracy than random sampling. On the Natural Instructions dataset in the fine-tuning setting, Skill-It reduces the validation loss on the target skill by 13.6% versus training on data associated with the target skill itself. We apply our skills framework on the recent RedPajama dataset to continually pre-train a 3B-parameter LM, achieving higher accuracy on the LM Evaluation Harness with 1B tokens than the baseline approach of sampling uniformly over data sources with 3B tokens.
Predictions For Pre-training Language Models
Language model pre-training has proven to be useful in many language understanding tasks. In this paper, we investigate whether it is still helpful to add the self-training method in the pre-training step and the fine-tuning step. Towards this goal, we propose a learning framework that making best use of the unlabel data on the low-resource and high-resource labeled dataset. In industry NLP applications, we have large amounts of data produced by users or customers. Our learning framework is based on this large amounts of unlabel data. First, We use the model fine-tuned on manually labeled dataset to predict pseudo labels for the user-generated unlabeled data. Then we use the pseudo labels to supervise the task-specific training on the large amounts of user-generated data. We consider this task-specific training step on pseudo labels as a pre-training step for the next fine-tuning step. At last, we fine-tune on the manually labeled dataset upon the pre-trained model. In this work, we first empirically show that our method is able to solidly improve the performance by 3.6%, when the manually labeled fine-tuning dataset is relatively small. Then we also show that our method still is able to improve the performance further by 0.2%, when the manually labeled fine-tuning dataset is relatively large enough. We argue that our method make the best use of the unlabel data, which is superior to either pre-training or self-training alone.
Continual Test-Time Domain Adaptation
Test-time domain adaptation aims to adapt a source pre-trained model to a target domain without using any source data. Existing works mainly consider the case where the target domain is static. However, real-world machine perception systems are running in non-stationary and continually changing environments where the target domain distribution can change over time. Existing methods, which are mostly based on self-training and entropy regularization, can suffer from these non-stationary environments. Due to the distribution shift over time in the target domain, pseudo-labels become unreliable. The noisy pseudo-labels can further lead to error accumulation and catastrophic forgetting. To tackle these issues, we propose a continual test-time adaptation approach~(CoTTA) which comprises two parts. Firstly, we propose to reduce the error accumulation by using weight-averaged and augmentation-averaged predictions which are often more accurate. On the other hand, to avoid catastrophic forgetting, we propose to stochastically restore a small part of the neurons to the source pre-trained weights during each iteration to help preserve source knowledge in the long-term. The proposed method enables the long-term adaptation for all parameters in the network. CoTTA is easy to implement and can be readily incorporated in off-the-shelf pre-trained models. We demonstrate the effectiveness of our approach on four classification tasks and a segmentation task for continual test-time adaptation, on which we outperform existing methods. Our code is available at https://qin.ee/cotta.
Single Layer Single Gradient Unlearning
Machine unlearning methods seek to revise pretrained models such that effects of certain training samples can be removed. In addition to effective erasure, low computational cost and general utility retention are also highly desirable. Existing unlearning methods usually involve iterative updates over the model parameters, which incurs a high computational cost. In this work, we propose an efficient method that only requires a one-time gradient computation, with which we modify only a single layer of model parameters. Specifically, we first identify a small number of model layers that lie on the Pareto front of high forget importance and low retain influence as critical layers. Then we search for a suitable step size and take a step along the gradient direction of a single critical layer while keeping other layers frozen. This method is highly modular and can be used to unlearn multiple concepts simultaneously in a controllable manner. We demonstrate the effectiveness and efficiency of this method on various models including CLIP, stable diffusion, and VLMs, surpassing other state-of-the-art methods.
A Comprehensive Empirical Evaluation on Online Continual Learning
Online continual learning aims to get closer to a live learning experience by learning directly on a stream of data with temporally shifting distribution and by storing a minimum amount of data from that stream. In this empirical evaluation, we evaluate various methods from the literature that tackle online continual learning. More specifically, we focus on the class-incremental setting in the context of image classification, where the learner must learn new classes incrementally from a stream of data. We compare these methods on the Split-CIFAR100 and Split-TinyImagenet benchmarks, and measure their average accuracy, forgetting, stability, and quality of the representations, to evaluate various aspects of the algorithm at the end but also during the whole training period. We find that most methods suffer from stability and underfitting issues. However, the learned representations are comparable to i.i.d. training under the same computational budget. No clear winner emerges from the results and basic experience replay, when properly tuned and implemented, is a very strong baseline. We release our modular and extensible codebase at https://github.com/AlbinSou/ocl_survey based on the avalanche framework to reproduce our results and encourage future research.
Online Class Incremental Learning on Stochastic Blurry Task Boundary via Mask and Visual Prompt Tuning
Continual learning aims to learn a model from a continuous stream of data, but it mainly assumes a fixed number of data and tasks with clear task boundaries. However, in real-world scenarios, the number of input data and tasks is constantly changing in a statistical way, not a static way. Although recently introduced incremental learning scenarios having blurry task boundaries somewhat address the above issues, they still do not fully reflect the statistical properties of real-world situations because of the fixed ratio of disjoint and blurry samples. In this paper, we propose a new Stochastic incremental Blurry task boundary scenario, called Si-Blurry, which reflects the stochastic properties of the real-world. We find that there are two major challenges in the Si-Blurry scenario: (1) inter- and intra-task forgettings and (2) class imbalance problem. To alleviate them, we introduce Mask and Visual Prompt tuning (MVP). In MVP, to address the inter- and intra-task forgetting issues, we propose a novel instance-wise logit masking and contrastive visual prompt tuning loss. Both of them help our model discern the classes to be learned in the current batch. It results in consolidating the previous knowledge. In addition, to alleviate the class imbalance problem, we introduce a new gradient similarity-based focal loss and adaptive feature scaling to ease overfitting to the major classes and underfitting to the minor classes. Extensive experiments show that our proposed MVP significantly outperforms the existing state-of-the-art methods in our challenging Si-Blurry scenario.
A Unified and General Framework for Continual Learning
Continual Learning (CL) focuses on learning from dynamic and changing data distributions while retaining previously acquired knowledge. Various methods have been developed to address the challenge of catastrophic forgetting, including regularization-based, Bayesian-based, and memory-replay-based techniques. However, these methods lack a unified framework and common terminology for describing their approaches. This research aims to bridge this gap by introducing a comprehensive and overarching framework that encompasses and reconciles these existing methodologies. Notably, this new framework is capable of encompassing established CL approaches as special instances within a unified and general optimization objective. An intriguing finding is that despite their diverse origins, these methods share common mathematical structures. This observation highlights the compatibility of these seemingly distinct techniques, revealing their interconnectedness through a shared underlying optimization objective. Moreover, the proposed general framework introduces an innovative concept called refresh learning, specifically designed to enhance the CL performance. This novel approach draws inspiration from neuroscience, where the human brain often sheds outdated information to improve the retention of crucial knowledge and facilitate the acquisition of new information. In essence, refresh learning operates by initially unlearning current data and subsequently relearning it. It serves as a versatile plug-in that seamlessly integrates with existing CL methods, offering an adaptable and effective enhancement to the learning process. Extensive experiments on CL benchmarks and theoretical analysis demonstrate the effectiveness of the proposed refresh learning. Code is available at https://github.com/joey-wang123/CL-refresh-learning.
Multi-Stage Knowledge Integration of Vision-Language Models for Continual Learning
Vision Language Models (VLMs), pre-trained on large-scale image-text datasets, enable zero-shot predictions for unseen data but may underperform on specific unseen tasks. Continual learning (CL) can help VLMs effectively adapt to new data distributions without joint training, but faces challenges of catastrophic forgetting and generalization forgetting. Although significant progress has been achieved by distillation-based methods, they exhibit two severe limitations. One is the popularly adopted single-teacher paradigm fails to impart comprehensive knowledge, The other is the existing methods inadequately leverage the multimodal information in the original training dataset, instead they rely on additional data for distillation, which increases computational and storage overhead. To mitigate both limitations, by drawing on Knowledge Integration Theory (KIT), we propose a Multi-Stage Knowledge Integration network (MulKI) to emulate the human learning process in distillation methods. MulKI achieves this through four stages, including Eliciting Ideas, Adding New Ideas, Distinguishing Ideas, and Making Connections. During the four stages, we first leverage prototypes to align across modalities, eliciting cross-modal knowledge, then adding new knowledge by constructing fine-grained intra- and inter-modality relationships with prototypes. After that, knowledge from two teacher models is adaptively distinguished and re-weighted. Finally, we connect between models from intra- and inter-task, integrating preceding and new knowledge. Our method demonstrates significant improvements in maintaining zero-shot capabilities while supporting continual learning across diverse downstream tasks, showcasing its potential in adapting VLMs to evolving data distributions.
Progressive Learning without Forgetting
Learning from changing tasks and sequential experience without forgetting the obtained knowledge is a challenging problem for artificial neural networks. In this work, we focus on two challenging problems in the paradigm of Continual Learning (CL) without involving any old data: (i) the accumulation of catastrophic forgetting caused by the gradually fading knowledge space from which the model learns the previous knowledge; (ii) the uncontrolled tug-of-war dynamics to balance the stability and plasticity during the learning of new tasks. In order to tackle these problems, we present Progressive Learning without Forgetting (PLwF) and a credit assignment regime in the optimizer. PLwF densely introduces model functions from previous tasks to construct a knowledge space such that it contains the most reliable knowledge on each task and the distribution information of different tasks, while credit assignment controls the tug-of-war dynamics by removing gradient conflict through projection. Extensive ablative experiments demonstrate the effectiveness of PLwF and credit assignment. In comparison with other CL methods, we report notably better results even without relying on any raw data.
Mix-CPT: A Domain Adaptation Framework via Decoupling Knowledge Learning and Format Alignment
Adapting general large language models (LLMs) to specialized domains presents great challenges due to varied data distributions. This adaptation typically requires continual pre-training on massive domain-specific corpora to facilitate knowledge memorization, followed by training to apply this knowledge following human instructions and preferences. However, this method may result in inefficient knowledge memorization due to a lack of awareness of knowledge utilization and imposes substantial demands on LLMs to simultaneously learn knowledge utilization and format alignment with limited training samples. To facilitate the domain adaptation of LLM, we revise this process and propose a new domain adaptation framework including domain knowledge learning and general format alignment, called Mix-CPT. Specifically, we first conduct a knowledge mixture continual pre-training that concurrently focuses on knowledge memorization and utilization, allowing for mutual reinforcement. To avoid catastrophic forgetting during the continual pre-training process, we further incorporate a logit swap self-distillation constraint. Subsequently, leveraging the knowledge and capabilities acquired during continual pre-training, we efficiently perform instruction tuning and alignment with a few general training samples to achieve format alignment. Extensive experiments demonstrate that our proposed Mix-CPT framework can simultaneously improve the task-solving capabilities of LLMs on the target and general domains compared to the traditional adaptation methods.
A soft nearest-neighbor framework for continual semi-supervised learning
Despite significant advances, the performance of state-of-the-art continual learning approaches hinges on the unrealistic scenario of fully labeled data. In this paper, we tackle this challenge and propose an approach for continual semi-supervised learning--a setting where not all the data samples are labeled. A primary issue in this scenario is the model forgetting representations of unlabeled data and overfitting the labeled samples. We leverage the power of nearest-neighbor classifiers to nonlinearly partition the feature space and flexibly model the underlying data distribution thanks to its non-parametric nature. This enables the model to learn a strong representation for the current task, and distill relevant information from previous tasks. We perform a thorough experimental evaluation and show that our method outperforms all the existing approaches by large margins, setting a solid state of the art on the continual semi-supervised learning paradigm. For example, on CIFAR-100 we surpass several others even when using at least 30 times less supervision (0.8% vs. 25% of annotations). Finally, our method works well on both low and high resolution images and scales seamlessly to more complex datasets such as ImageNet-100. The code is publicly available on https://github.com/kangzhiq/NNCSL
GFM: Building Geospatial Foundation Models via Continual Pretraining
Geospatial technologies are becoming increasingly essential in our world for a wide range of applications, including agriculture, urban planning, and disaster response. To help improve the applicability and performance of deep learning models on these geospatial tasks, various works have begun investigating foundation models for this domain. Researchers have explored two prominent approaches for introducing such models in geospatial applications, but both have drawbacks in terms of limited performance benefit or prohibitive training cost. Therefore, in this work, we propose a novel paradigm for building highly effective geospatial foundation models with minimal resource cost and carbon impact. We first construct a compact yet diverse dataset from multiple sources to promote feature diversity, which we term GeoPile. Then, we investigate the potential of continual pretraining from large-scale ImageNet-22k models and propose a multi-objective continual pretraining paradigm, which leverages the strong representations of ImageNet while simultaneously providing the freedom to learn valuable in-domain features. Our approach outperforms previous state-of-the-art geospatial pretraining methods in an extensive evaluation on seven downstream datasets covering various tasks such as change detection, classification, multi-label classification, semantic segmentation, and super-resolution.
Muppet: Massive Multi-task Representations with Pre-Finetuning
We propose pre-finetuning, an additional large-scale learning stage between language model pre-training and fine-tuning. Pre-finetuning is massively multi-task learning (around 50 datasets, over 4.8 million total labeled examples), and is designed to encourage learning of representations that generalize better to many different tasks. We show that pre-finetuning consistently improves performance for pretrained discriminators (e.g.~RoBERTa) and generation models (e.g.~BART) on a wide range of tasks (sentence prediction, commonsense reasoning, MRC, etc.), while also significantly improving sample efficiency during fine-tuning. We also show that large-scale multi-tasking is crucial; pre-finetuning can hurt performance when few tasks are used up until a critical point (usually above 15) after which performance improves linearly in the number of tasks.
Beyond Not-Forgetting: Continual Learning with Backward Knowledge Transfer
By learning a sequence of tasks continually, an agent in continual learning (CL) can improve the learning performance of both a new task and `old' tasks by leveraging the forward knowledge transfer and the backward knowledge transfer, respectively. However, most existing CL methods focus on addressing catastrophic forgetting in neural networks by minimizing the modification of the learnt model for old tasks. This inevitably limits the backward knowledge transfer from the new task to the old tasks, because judicious model updates could possibly improve the learning performance of the old tasks as well. To tackle this problem, we first theoretically analyze the conditions under which updating the learnt model of old tasks could be beneficial for CL and also lead to backward knowledge transfer, based on the gradient projection onto the input subspaces of old tasks. Building on the theoretical analysis, we next develop a ContinUal learning method with Backward knowlEdge tRansfer (CUBER), for a fixed capacity neural network without data replay. In particular, CUBER first characterizes the task correlation to identify the positively correlated old tasks in a layer-wise manner, and then selectively modifies the learnt model of the old tasks when learning the new task. Experimental studies show that CUBER can even achieve positive backward knowledge transfer on several existing CL benchmarks for the first time without data replay, where the related baselines still suffer from catastrophic forgetting (negative backward knowledge transfer). The superior performance of CUBER on the backward knowledge transfer also leads to higher accuracy accordingly.
Learn it or Leave it: Module Composition and Pruning for Continual Learning
In real-world environments, continual learning is essential for machine learning models, as they need to acquire new knowledge incrementally without forgetting what they have already learned. While pretrained language models have shown impressive capabilities on various static tasks, applying them to continual learning poses significant challenges, including avoiding catastrophic forgetting, facilitating knowledge transfer, and maintaining parameter efficiency. In this paper, we introduce MoCL-P, a novel lightweight continual learning method that addresses these challenges simultaneously. Unlike traditional approaches that continuously expand parameters for newly arriving tasks, MoCL-P integrates task representation-guided module composition with adaptive pruning, effectively balancing knowledge integration and computational overhead. Our evaluation across three continual learning benchmarks with up to 176 tasks shows that MoCL-P achieves state-of-the-art performance and improves parameter efficiency by up to three times, demonstrating its potential for practical applications where resource requirements are constrained.
UL2: Unifying Language Learning Paradigms
Existing pre-trained models are generally geared towards a particular class of problems. To date, there seems to be still no consensus on what the right architecture and pre-training setup should be. This paper presents a unified framework for pre-training models that are universally effective across datasets and setups. We begin by disentangling architectural archetypes with pre-training objectives -- two concepts that are commonly conflated. Next, we present a generalized & unified perspective for self-supervision in NLP and show how different pre-training objectives can be cast as one another and how interpolating between different objectives can be effective. We then propose Mixture-of-Denoisers (MoD), a pre-training objective that combines diverse pre-training paradigms together. We furthermore introduce a notion of mode switching, wherein downstream fine-tuning is associated with specific pre-training schemes. We conduct extensive ablative experiments to compare multiple pre-training objectives and find that our method pushes the Pareto-frontier by outperforming T5 & GPT-like models across multiple diverse setups. By scaling our model up to 20B parameters, we achieve SOTA performance on 50 well-established supervised finetuning based NLP tasks. Our model also achieve strong results at in-context learning, outperforming 175B GPT-3 on zero-shot SuperGLUE and tripling the performance of T5-XXL on one-shot summarization. On 0-shot MMLU, UL2 20B outperforms T0 and T5 models. UL2 20B also works well with chain-of-thought prompting and reasoning, making it an appealing choice for research into reasoning at a small to medium scale of 20B parameters. Finally, we apply FLAN instruction tuning to the UL2 20B model, achieving MMLU and Big-Bench scores competitive to FLAN-PaLM 62B. We release Flax-based T5X checkpoints for the UL2 20B & Flan-UL2 20B.
Fine-tuned Language Models are Continual Learners
Recent work on large language models relies on the intuition that most natural language processing tasks can be described via natural language instructions. Language models trained on these instructions show strong zero-shot performance on several standard datasets. However, these models even though impressive still perform poorly on a wide range of tasks outside of their respective training and evaluation sets. To address this limitation, we argue that a model should be able to keep extending its knowledge and abilities, without forgetting previous skills. In spite of the limited success of Continual Learning we show that Language Models can be continual learners. We empirically investigate the reason for this success and conclude that Continual Learning emerges from self-supervision pre-training. Our resulting model Continual-T0 (CT0) is able to learn diverse new tasks, while still maintaining good performance on previous tasks, spanning remarkably through 70 datasets in total. Finally, we show that CT0 is able to combine instructions in ways it was never trained for, demonstrating some compositionality.
UER: An Open-Source Toolkit for Pre-training Models
Existing works, including ELMO and BERT, have revealed the importance of pre-training for NLP tasks. While there does not exist a single pre-training model that works best in all cases, it is of necessity to develop a framework that is able to deploy various pre-training models efficiently. For this purpose, we propose an assemble-on-demand pre-training toolkit, namely Universal Encoder Representations (UER). UER is loosely coupled, and encapsulated with rich modules. By assembling modules on demand, users can either reproduce a state-of-the-art pre-training model or develop a pre-training model that remains unexplored. With UER, we have built a model zoo, which contains pre-trained models based on different corpora, encoders, and targets (objectives). With proper pre-trained models, we could achieve new state-of-the-art results on a range of downstream datasets.
Unlocking Continual Learning Abilities in Language Models
Language models (LMs) exhibit impressive performance and generalization capabilities. However, LMs struggle with the persistent challenge of catastrophic forgetting, which undermines their long-term sustainability in continual learning (CL). Existing approaches usually address the issue by incorporating old task data or task-wise inductive bias into LMs. However, old data and accurate task information are often unavailable or costly to collect, hindering the availability of current CL approaches for LMs. To address this limitation, we introduce MIGU (MagnItude-based Gradient Updating for continual learning), a rehearsal-free and task-label-free method that only updates the model parameters with large magnitudes of output in LMs' linear layers. MIGU is based on our observation that the L1-normalized magnitude distribution of the output in LMs' linear layers is different when the LM models deal with different task data. By imposing this simple constraint on the gradient update process, we can leverage the inherent behaviors of LMs, thereby unlocking their innate CL abilities. Our experiments demonstrate that MIGU is universally applicable to all three LM architectures (T5, RoBERTa, and Llama2), delivering state-of-the-art or on-par performance across continual finetuning and continual pre-training settings on four CL benchmarks. For example, MIGU brings a 15.2% average accuracy improvement over conventional parameter-efficient finetuning baselines in a 15-task CL benchmark. MIGU can also seamlessly integrate with all three existing CL types to further enhance performance. Code is available at https://github.com/wenyudu/MIGU{this https URL}.
Continual Learning in Neural Networks
Artificial neural networks have exceeded human-level performance in accomplishing several individual tasks (e.g. voice recognition, object recognition, and video games). However, such success remains modest compared to human intelligence that can learn and perform an unlimited number of tasks. Humans' ability of learning and accumulating knowledge over their lifetime is an essential aspect of their intelligence. Continual machine learning aims at a higher level of machine intelligence through providing the artificial agents with the ability to learn online from a non-stationary and never-ending stream of data. A key component of such a never-ending learning process is to overcome the catastrophic forgetting of previously seen data, a problem that neural networks are well known to suffer from. The work described in this thesis has been dedicated to the investigation of continual learning and solutions to mitigate the forgetting phenomena in neural networks. To approach the continual learning problem, we first assume a task incremental setting where tasks are received one at a time and data from previous tasks are not stored. Since the task incremental setting can't be assumed in all continual learning scenarios, we also study the more general online continual setting. We consider an infinite stream of data drawn from a non-stationary distribution with a supervisory or self-supervisory training signal. The proposed methods in this thesis have tackled important aspects of continual learning. They were evaluated on different benchmarks and over various learning sequences. Advances in the state of the art of continual learning have been shown and challenges for bringing continual learning into application were critically identified.
Neural Architecture for Online Ensemble Continual Learning
Continual learning with an increasing number of classes is a challenging task. The difficulty rises when each example is presented exactly once, which requires the model to learn online. Recent methods with classic parameter optimization procedures have been shown to struggle in such setups or have limitations like non-differentiable components or memory buffers. For this reason, we present the fully differentiable ensemble method that allows us to efficiently train an ensemble of neural networks in the end-to-end regime. The proposed technique achieves SOTA results without a memory buffer and clearly outperforms the reference methods. The conducted experiments have also shown a significant increase in the performance for small ensembles, which demonstrates the capability of obtaining relatively high classification accuracy with a reduced number of classifiers.
Scalable Language Model with Generalized Continual Learning
Continual learning has gained increasing importance as it facilitates the acquisition and refinement of scalable knowledge and skills in language models. However, existing methods typically encounter strict limitations and challenges in real-world scenarios, such as reliance on experience replay, optimization constraints, and inference task-ID. In this study, we introduce the Scalable Language Model (SLM) to overcome these limitations within a more challenging and generalized setting, representing a significant advancement toward practical applications for continual learning. Specifically, we propose the Joint Adaptive Re-Parameterization (JARe), integrated with Dynamic Task-related Knowledge Retrieval (DTKR), to enable adaptive adjustment of language models based on specific downstream tasks. This approach leverages the task distribution within the vector space, aiming to achieve a smooth and effortless continual learning process. Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting. Moreover, while prior research primarily focused on a single task type such as classification, our study goes beyond, with the large language model, i.e., LLaMA-2, to explore the effects across diverse domains and task types, such that a single language model can be decently scaled to broader applications.
SPARC: Subspace-Aware Prompt Adaptation for Robust Continual Learning in LLMs
We propose SPARC, a lightweight continual learning framework for large language models (LLMs) that enables efficient task adaptation through prompt tuning in a lower-dimensional space. By leveraging principal component analysis (PCA), we identify a compact subspace of the training data. Optimizing prompts in this lower-dimensional space enhances training efficiency, as it focuses updates on the most relevant features while reducing computational overhead. Furthermore, since the model's internal structure remains unaltered, the extensive knowledge gained from pretraining is fully preserved, ensuring that previously learned information is not compromised during adaptation. Our method achieves high knowledge retention in both task-incremental and domain-incremental continual learning setups while fine-tuning only 0.04% of the model's parameters. Additionally, by integrating LoRA, we enhance adaptability to computational constraints, allowing for a tradeoff between accuracy and training cost. Experiments on the SuperGLUE benchmark demonstrate that our PCA-based prompt tuning combined with LoRA maintains full knowledge retention while improving accuracy, utilizing only 1% of the model's parameters. These results establish our approach as a scalable and resource-efficient solution for continual learning in LLMs.
TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities
Recently, the success of pre-training in text domain has been fully extended to vision, audio, and cross-modal scenarios. The proposed pre-training models of different modalities are showing a rising trend of homogeneity in their model structures, which brings the opportunity to implement different pre-training models within a uniform framework. In this paper, we present TencentPretrain, a toolkit supporting pre-training models of different modalities. The core feature of TencentPretrain is the modular design. The toolkit uniformly divides pre-training models into 5 components: embedding, encoder, target embedding, decoder, and target. As almost all of common modules are provided in each component, users can choose the desired modules from different components to build a complete pre-training model. The modular design enables users to efficiently reproduce existing pre-training models or build brand-new one. We test the toolkit on text, vision, and audio benchmarks and show that it can match the performance of the original implementations.
FeTrIL: Feature Translation for Exemplar-Free Class-Incremental Learning
Exemplar-free class-incremental learning is very challenging due to the negative effect of catastrophic forgetting. A balance between stability and plasticity of the incremental process is needed in order to obtain good accuracy for past as well as new classes. Existing exemplar-free class-incremental methods focus either on successive fine tuning of the model, thus favoring plasticity, or on using a feature extractor fixed after the initial incremental state, thus favoring stability. We introduce a method which combines a fixed feature extractor and a pseudo-features generator to improve the stability-plasticity balance. The generator uses a simple yet effective geometric translation of new class features to create representations of past classes, made of pseudo-features. The translation of features only requires the storage of the centroid representations of past classes to produce their pseudo-features. Actual features of new classes and pseudo-features of past classes are fed into a linear classifier which is trained incrementally to discriminate between all classes. The incremental process is much faster with the proposed method compared to mainstream ones which update the entire deep model. Experiments are performed with three challenging datasets, and different incremental settings. A comparison with ten existing methods shows that our method outperforms the others in most cases.
Self-Distillation for Further Pre-training of Transformers
Pre-training a large transformer model on a massive amount of unlabeled data and fine-tuning it on labeled datasets for diverse downstream tasks has proven to be a successful strategy, for a variety of vision and natural language processing tasks. However, direct fine-tuning of the pre-trained model may be suboptimal if there exist large discrepancies across data domains for pre-training and fine-tuning. To tackle this issue, several previous studies have proposed further pre-training strategies, where we continue to pre-train the model on the target unlabeled dataset before fine-tuning. However, all of them solely focus on language models and we empirically find that a Vision Transformer is vulnerable to overfitting as we continue to pretrain the model on target unlabeled data. In order to tackle this limitation, we propose self-distillation as a regularization for a further pre-training stage. Specifically, we first further pre-train the initial pre-trained model on the target unlabeled data and then consider it as a teacher for self-distillation. Then we take the same initial pre-trained model as a student and enforce its hidden representations to be close to those of the teacher while optimizing the student with a masked auto-encoding objective. We empirically validate the efficacy of self-distillation on a variety of benchmark datasets for image and text classification tasks. Experimentally, we show that our proposed method outperforms all the relevant baselines. Theoretically, we analyze the proposed method with a simplified model to understand how self-distillation for further pre-training can potentially help improve the performance of the downstream tasks.
Learning without Forgetting for Vision-Language Models
Class-Incremental Learning (CIL) or continual learning is a desired capability in the real world, which requires a learning system to adapt to new tasks without forgetting former ones. While traditional CIL methods focus on visual information to grasp core features, recent advances in Vision-Language Models (VLM) have shown promising capabilities in learning generalizable representations with the aid of textual information. However, when continually trained with new classes, VLMs often suffer from catastrophic forgetting of former knowledge. Applying VLMs to CIL poses two major challenges: 1) how to adapt the model without forgetting; and 2) how to make full use of the multi-modal information. To this end, we propose PROjectiOn Fusion (PROOF) that enables VLMs to learn without forgetting. To handle the first challenge, we propose training task-specific projections based on the frozen image/text encoders. When facing new tasks, new projections are expanded and former projections are fixed, alleviating the forgetting of old concepts. For the second challenge, we propose the fusion module to better utilize the cross-modality information. By jointly adjusting visual and textual features, the model can capture semantic information with stronger representation ability. Extensive experiments on nine benchmark datasets validate PROOF achieves state-of-the-art performance.
Continual Zero-Shot Learning through Semantically Guided Generative Random Walks
Learning novel concepts, remembering previous knowledge, and adapting it to future tasks occur simultaneously throughout a human's lifetime. To model such comprehensive abilities, continual zero-shot learning (CZSL) has recently been introduced. However, most existing methods overused unseen semantic information that may not be continually accessible in realistic settings. In this paper, we address the challenge of continual zero-shot learning where unseen information is not provided during training, by leveraging generative modeling. The heart of the generative-based methods is to learn quality representations from seen classes to improve the generative understanding of the unseen visual space. Motivated by this, we introduce generalization-bound tools and provide the first theoretical explanation for the benefits of generative modeling to CZSL tasks. Guided by the theoretical analysis, we then propose our learning algorithm that employs a novel semantically guided Generative Random Walk (GRW) loss. The GRW loss augments the training by continually encouraging the model to generate realistic and characterized samples to represent the unseen space. Our algorithm achieves state-of-the-art performance on AWA1, AWA2, CUB, and SUN datasets, surpassing existing CZSL methods by 3-7\%. The code has been made available here https://github.com/wx-zhang/IGCZSL
Exclusive Supermask Subnetwork Training for Continual Learning
Continual Learning (CL) methods focus on accumulating knowledge over time while avoiding catastrophic forgetting. Recently, Wortsman et al. (2020) proposed a CL method, SupSup, which uses a randomly initialized, fixed base network (model) and finds a supermask for each new task that selectively keeps or removes each weight to produce a subnetwork. They prevent forgetting as the network weights are not being updated. Although there is no forgetting, the performance of SupSup is sub-optimal because fixed weights restrict its representational power. Furthermore, there is no accumulation or transfer of knowledge inside the model when new tasks are learned. Hence, we propose ExSSNeT (Exclusive Supermask SubNEtwork Training), that performs exclusive and non-overlapping subnetwork weight training. This avoids conflicting updates to the shared weights by subsequent tasks to improve performance while still preventing forgetting. Furthermore, we propose a novel KNN-based Knowledge Transfer (KKT) module that utilizes previously acquired knowledge to learn new tasks better and faster. We demonstrate that ExSSNeT outperforms strong previous methods on both NLP and Vision domains while preventing forgetting. Moreover, ExSSNeT is particularly advantageous for sparse masks that activate 2-10% of the model parameters, resulting in an average improvement of 8.3% over SupSup. Furthermore, ExSSNeT scales to a large number of tasks (100). Our code is available at https://github.com/prateeky2806/exessnet.
Theory on Forgetting and Generalization of Continual Learning
Continual learning (CL), which aims to learn a sequence of tasks, has attracted significant recent attention. However, most work has focused on the experimental performance of CL, and theoretical studies of CL are still limited. In particular, there is a lack of understanding on what factors are important and how they affect "catastrophic forgetting" and generalization performance. To fill this gap, our theoretical analysis, under overparameterized linear models, provides the first-known explicit form of the expected forgetting and generalization error. Further analysis of such a key result yields a number of theoretical explanations about how overparameterization, task similarity, and task ordering affect both forgetting and generalization error of CL. More interestingly, by conducting experiments on real datasets using deep neural networks (DNNs), we show that some of these insights even go beyond the linear models and can be carried over to practical setups. In particular, we use concrete examples to show that our results not only explain some interesting empirical observations in recent studies, but also motivate better practical algorithm designs of CL.
Class-Incremental Learning with CLIP: Adaptive Representation Adjustment and Parameter Fusion
Class-incremental learning is a challenging problem, where the goal is to train a model that can classify data from an increasing number of classes over time. With the advancement of vision-language pre-trained models such as CLIP, they demonstrate good generalization ability that allows them to excel in class-incremental learning with completely frozen parameters. However, further adaptation to downstream tasks by simply fine-tuning the model leads to severe forgetting. Most existing works with pre-trained models assume that the forgetting of old classes is uniform when the model acquires new knowledge. In this paper, we propose a method named Adaptive Representation Adjustment and Parameter Fusion (RAPF). During training for new data, we measure the influence of new classes on old ones and adjust the representations, using textual features. After training, we employ a decomposed parameter fusion to further mitigate forgetting during adapter module fine-tuning. Experiments on several conventional benchmarks show that our method achieves state-of-the-art results. Our code is available at https://github.com/linlany/RAPF.
2x Faster Language Model Pre-training via Masked Structural Growth
Acceleration of large language model pre-training is a critical issue in present NLP research. In this paper, we focus on speeding up pre-training by progressively growing from a small Transformer structure to a large one. There are two main research problems related to progressive growth: growth schedule and growth operator. For growth schedule, existing work has explored multi-stage expansion of depth and feedforward layers. However, the impact of each dimension on the schedule's efficiency is still an open question. For growth operator, existing work relies on the initialization of new weights to inherit knowledge, and achieve only non-strict function preservation, limiting further optimization of training dynamics. To address these issues, we propose Masked Structural Growth (MSG), including growth schedules involving all possible dimensions and strictly function-preserving growth operators that is independent of the initialization of new weights. Experiments show that MSG is significantly faster than related work: we achieve a speed-up of 80% for Bert-base and 120% for Bert-large pre-training. Moreover, MSG is able to improve fine-tuning performances at the same time.
Multi-Stage Multi-Modal Pre-Training for Automatic Speech Recognition
Recent advances in machine learning have demonstrated that multi-modal pre-training can improve automatic speech recognition (ASR) performance compared to randomly initialized models, even when models are fine-tuned on uni-modal tasks. Existing multi-modal pre-training methods for the ASR task have primarily focused on single-stage pre-training where a single unsupervised task is used for pre-training followed by fine-tuning on the downstream task. In this work, we introduce a novel method combining multi-modal and multi-task unsupervised pre-training with a translation-based supervised mid-training approach. We empirically demonstrate that such a multi-stage approach leads to relative word error rate (WER) improvements of up to 38.45% over baselines on both Librispeech and SUPERB. Additionally, we share several important findings for choosing pre-training methods and datasets.
Class-Incremental Grouping Network for Continual Audio-Visual Learning
Continual learning is a challenging problem in which models need to be trained on non-stationary data across sequential tasks for class-incremental learning. While previous methods have focused on using either regularization or rehearsal-based frameworks to alleviate catastrophic forgetting in image classification, they are limited to a single modality and cannot learn compact class-aware cross-modal representations for continual audio-visual learning. To address this gap, we propose a novel class-incremental grouping network (CIGN) that can learn category-wise semantic features to achieve continual audio-visual learning. Our CIGN leverages learnable audio-visual class tokens and audio-visual grouping to continually aggregate class-aware features. Additionally, it utilizes class tokens distillation and continual grouping to prevent forgetting parameters learned from previous tasks, thereby improving the model's ability to capture discriminative audio-visual categories. We conduct extensive experiments on VGGSound-Instruments, VGGSound-100, and VGG-Sound Sources benchmarks. Our experimental results demonstrate that the CIGN achieves state-of-the-art audio-visual class-incremental learning performance. Code is available at https://github.com/stoneMo/CIGN.
Continual Learning with Dependency Preserving Hypernetworks
Humans learn continually throughout their lifespan by accumulating diverse knowledge and fine-tuning it for future tasks. When presented with a similar goal, neural networks suffer from catastrophic forgetting if data distributions across sequential tasks are not stationary over the course of learning. An effective approach to address such continual learning (CL) problems is to use hypernetworks which generate task dependent weights for a target network. However, the continual learning performance of existing hypernetwork based approaches are affected by the assumption of independence of the weights across the layers in order to maintain parameter efficiency. To address this limitation, we propose a novel approach that uses a dependency preserving hypernetwork to generate weights for the target network while also maintaining the parameter efficiency. We propose to use recurrent neural network (RNN) based hypernetwork that can generate layer weights efficiently while allowing for dependencies across them. In addition, we propose novel regularisation and network growth techniques for the RNN based hypernetwork to further improve the continual learning performance. To demonstrate the effectiveness of the proposed methods, we conducted experiments on several image classification continual learning tasks and settings. We found that the proposed methods based on the RNN hypernetworks outperformed the baselines in all these CL settings and tasks.
Challenging Common Assumptions about Catastrophic Forgetting
Building learning agents that can progressively learn and accumulate knowledge is the core goal of the continual learning (CL) research field. Unfortunately, training a model on new data usually compromises the performance on past data. In the CL literature, this effect is referred to as catastrophic forgetting (CF). CF has been largely studied, and a plethora of methods have been proposed to address it on short sequences of non-overlapping tasks. In such setups, CF always leads to a quick and significant drop in performance in past tasks. Nevertheless, despite CF, recent work showed that SGD training on linear models accumulates knowledge in a CL regression setup. This phenomenon becomes especially visible when tasks reoccur. We might then wonder if DNNs trained with SGD or any standard gradient-based optimization accumulate knowledge in such a way. Such phenomena would have interesting consequences for applying DNNs to real continual scenarios. Indeed, standard gradient-based optimization methods are significantly less computationally expensive than existing CL algorithms. In this paper, we study the progressive knowledge accumulation (KA) in DNNs trained with gradient-based algorithms in long sequences of tasks with data re-occurrence. We propose a new framework, SCoLe (Scaling Continual Learning), to investigate KA and discover that catastrophic forgetting has a limited effect on DNNs trained with SGD. When trained on long sequences with data sparsely re-occurring, the overall accuracy improves, which might be counter-intuitive given the CF phenomenon. We empirically investigate KA in DNNs under various data occurrence frequencies and propose simple and scalable strategies to increase knowledge accumulation in DNNs.
POA: Pre-training Once for Models of All Sizes
Large-scale self-supervised pre-training has paved the way for one foundation model to handle many different vision tasks. Most pre-training methodologies train a single model of a certain size at one time. Nevertheless, various computation or storage constraints in real-world scenarios require substantial efforts to develop a series of models with different sizes to deploy. Thus, in this study, we propose a novel tri-branch self-supervised training framework, termed as POA (Pre-training Once for All), to tackle this aforementioned issue. Our approach introduces an innovative elastic student branch into a modern self-distillation paradigm. At each pre-training step, we randomly sample a sub-network from the original student to form the elastic student and train all branches in a self-distilling fashion. Once pre-trained, POA allows the extraction of pre-trained models of diverse sizes for downstream tasks. Remarkably, the elastic student facilitates the simultaneous pre-training of multiple models with different sizes, which also acts as an additional ensemble of models of various sizes to enhance representation learning. Extensive experiments, including k-nearest neighbors, linear probing evaluation and assessments on multiple downstream tasks demonstrate the effectiveness and advantages of our POA. It achieves state-of-the-art performance using ViT, Swin Transformer and ResNet backbones, producing around a hundred models with different sizes through a single pre-training session. The code is available at: https://github.com/Qichuzyy/POA.
Multimodal Parameter-Efficient Few-Shot Class Incremental Learning
Few-Shot Class Incremental Learning (FSCIL) is a challenging continual learning task, where limited training examples are available during several learning sessions. To succeed in this task, it is necessary to avoid over-fitting new classes caused by biased distributions in the few-shot training sets. The general approach to address this issue involves enhancing the representational capability of a pre-defined backbone architecture by adding special modules for backward compatibility with older classes. However, this approach has not yet solved the dilemma of ensuring high classification accuracy over time while reducing the gap between the performance obtained on larger training sets and the smaller ones. In this work, we propose an alternative approach called Continual Parameter-Efficient CLIP (CPE-CLIP) to reduce the loss of information between different learning sessions. Instead of adapting additional modules to address information loss, we leverage the vast knowledge acquired by CLIP in large-scale pre-training and its effectiveness in generalizing to new concepts. Our approach is multimodal and parameter-efficient, relying on learnable prompts for both the language and vision encoders to enable transfer learning across sessions. We also introduce prompt regularization to improve performance and prevent forgetting. Our experimental results demonstrate that CPE-CLIP significantly improves FSCIL performance compared to state-of-the-art proposals while also drastically reducing the number of learnable parameters and training costs.
CLR: Channel-wise Lightweight Reprogramming for Continual Learning
Continual learning aims to emulate the human ability to continually accumulate knowledge over sequential tasks. The main challenge is to maintain performance on previously learned tasks after learning new tasks, i.e., to avoid catastrophic forgetting. We propose a Channel-wise Lightweight Reprogramming (CLR) approach that helps convolutional neural networks (CNNs) overcome catastrophic forgetting during continual learning. We show that a CNN model trained on an old task (or self-supervised proxy task) could be ``reprogrammed" to solve a new task by using our proposed lightweight (very cheap) reprogramming parameter. With the help of CLR, we have a better stability-plasticity trade-off to solve continual learning problems: To maintain stability and retain previous task ability, we use a common task-agnostic immutable part as the shared ``anchor" parameter set. We then add task-specific lightweight reprogramming parameters to reinterpret the outputs of the immutable parts, to enable plasticity and integrate new knowledge. To learn sequential tasks, we only train the lightweight reprogramming parameters to learn each new task. Reprogramming parameters are task-specific and exclusive to each task, which makes our method immune to catastrophic forgetting. To minimize the parameter requirement of reprogramming to learn new tasks, we make reprogramming lightweight by only adjusting essential kernels and learning channel-wise linear mappings from anchor parameters to task-specific domain knowledge. We show that, for general CNNs, the CLR parameter increase is less than 0.6\% for any new task. Our method outperforms 13 state-of-the-art continual learning baselines on a new challenging sequence of 53 image classification datasets. Code and data are available at https://github.com/gyhandy/Channel-wise-Lightweight-Reprogramming
Cross-Lingual Supervision improves Large Language Models Pre-training
The recent rapid progress in pre-training Large Language Models has relied on using self-supervised language modeling objectives like next token prediction or span corruption. On the other hand, Machine Translation Systems are mostly trained using cross-lingual supervision that requires aligned data between source and target languages. We demonstrate that pre-training Large Language Models on a mixture of a self-supervised Language Modeling objective and the supervised Machine Translation objective, therefore including cross-lingual parallel data during pre-training, yields models with better in-context learning abilities. As pre-training is a very resource-intensive process and a grid search on the best mixing ratio between the two objectives is prohibitively expensive, we propose a simple yet effective strategy to learn it during pre-training.
HPCR: Holistic Proxy-based Contrastive Replay for Online Continual Learning
Online continual learning (OCL) aims to continuously learn new data from a single pass over the online data stream. It generally suffers from the catastrophic forgetting issue. Existing replay-based methods effectively alleviate this issue by replaying part of old data in a proxy-based or contrastive-based replay manner. In this paper, we conduct a comprehensive analysis of these two replay manners and find they can be complementary. Inspired by this finding, we propose a novel replay-based method called proxy-based contrastive replay (PCR), which replaces anchor-to-sample pairs with anchor-to-proxy pairs in the contrastive-based loss to alleviate the phenomenon of forgetting. Based on PCR, we further develop a more advanced method named holistic proxy-based contrastive replay (HPCR), which consists of three components. The contrastive component conditionally incorporates anchor-to-sample pairs to PCR, learning more fine-grained semantic information with a large training batch. The second is a temperature component that decouples the temperature coefficient into two parts based on their impacts on the gradient and sets different values for them to learn more novel knowledge. The third is a distillation component that constrains the learning process to keep more historical knowledge. Experiments on four datasets consistently demonstrate the superiority of HPCR over various state-of-the-art methods.
Online Continual Learning Without the Storage Constraint
Online continual learning (OCL) research has primarily focused on mitigating catastrophic forgetting with fixed and limited storage allocation throughout the agent's lifetime. However, the growing affordability of data storage highlights a broad range of applications that do not adhere to these assumptions. In these cases, the primary concern lies in managing computational expenditures rather than storage. In this paper, we target such settings, investigating the online continual learning problem by relaxing storage constraints and emphasizing fixed, limited economical budget. We provide a simple algorithm that can compactly store and utilize the entirety of the incoming data stream under tiny computational budgets using a kNN classifier and universal pre-trained feature extractors. Our algorithm provides a consistency property attractive to continual learning: It will never forget past seen data. We set a new state of the art on two large-scale OCL datasets: Continual LOCalization (CLOC), which has 39M images over 712 classes, and Continual Google Landmarks V2 (CGLM), which has 580K images over 10,788 classes -- beating methods under far higher computational budgets than ours in terms of both reducing catastrophic forgetting of past data and quickly adapting to rapidly changing data streams. We provide code to reproduce our results at https://github.com/drimpossible/ACM.
An Empirical Analysis of Forgetting in Pre-trained Models with Incremental Low-Rank Updates
Broad, open source availability of large pretrained foundation models on the internet through platforms such as HuggingFace has taken the world of practical deep learning by storm. A classical pipeline for neural network training now typically consists of finetuning these pretrained network on a small target dataset instead of training from scratch. In the case of large models this can be done even on modest hardware using a low rank training technique known as Low-Rank Adaptation (LoRA). While Low Rank training has already been studied in the continual learning setting, existing works often consider storing the learned adapter along with the existing model but rarely attempt to modify the weights of the pretrained model by merging the LoRA with the existing weights after finishing the training of each task. In this article we investigate this setting and study the impact of LoRA rank on the forgetting of the pretraining foundation task and on the plasticity and forgetting of subsequent ones. We observe that this rank has an important impact on forgetting of both the pretraining and downstream tasks. We also observe that vision transformers finetuned in that way exhibit a sort of ``contextual'' forgetting, a behaviour that we do not observe for residual networks and that we believe has not been observed yet in previous continual learning works.
DualHSIC: HSIC-Bottleneck and Alignment for Continual Learning
Rehearsal-based approaches are a mainstay of continual learning (CL). They mitigate the catastrophic forgetting problem by maintaining a small fixed-size buffer with a subset of data from past tasks. While most rehearsal-based approaches study how to effectively exploit the knowledge from the buffered past data, little attention is paid to the inter-task relationships with the critical task-specific and task-invariant knowledge. By appropriately leveraging inter-task relationships, we propose a novel CL method named DualHSIC to boost the performance of existing rehearsal-based methods in a simple yet effective way. DualHSIC consists of two complementary components that stem from the so-called Hilbert Schmidt independence criterion (HSIC): HSIC-Bottleneck for Rehearsal (HBR) lessens the inter-task interference and HSIC Alignment (HA) promotes task-invariant knowledge sharing. Extensive experiments show that DualHSIC can be seamlessly plugged into existing rehearsal-based methods for consistent performance improvements, and also outperforms recent state-of-the-art regularization-enhanced rehearsal methods. Source code will be released.
HyperInterval: Hypernetwork approach to training weight interval regions in continual learning
Recently, a new Continual Learning (CL) paradigm was presented to control catastrophic forgetting, called Interval Continual Learning (InterContiNet), which relies on enforcing interval constraints on the neural network parameter space. Unfortunately, InterContiNet training is challenging due to the high dimensionality of the weight space, making intervals difficult to manage. To address this issue, we introduce HyperInterval, a technique that employs interval arithmetic within the embedding space and utilizes a hypernetwork to map these intervals to the target network parameter space. We train interval embeddings for consecutive tasks and train a hypernetwork to transform these embeddings into weights of the target network. An embedding for a given task is trained along with the hypernetwork, preserving the response of the target network for the previous task embeddings. Interval arithmetic works with a more manageable, lower-dimensional embedding space rather than directly preparing intervals in a high-dimensional weight space. Our model allows faster and more efficient training. Furthermore, HyperInterval maintains the guarantee of not forgetting. At the end of training, we can choose one universal embedding to produce a single network dedicated to all tasks. In such a framework, hypernetwork is used only for training and can be seen as a meta-trainer. HyperInterval obtains significantly better results than InterContiNet and gives SOTA results on several benchmarks.
Energy-Based Models for Continual Learning
We motivate Energy-Based Models (EBMs) as a promising model class for continual learning problems. Instead of tackling continual learning via the use of external memory, growing models, or regularization, EBMs change the underlying training objective to cause less interference with previously learned information. Our proposed version of EBMs for continual learning is simple, efficient, and outperforms baseline methods by a large margin on several benchmarks. Moreover, our proposed contrastive divergence-based training objective can be combined with other continual learning methods, resulting in substantial boosts in their performance. We further show that EBMs are adaptable to a more general continual learning setting where the data distribution changes without the notion of explicitly delineated tasks. These observations point towards EBMs as a useful building block for future continual learning methods.
How Efficient Are Today's Continual Learning Algorithms?
Supervised Continual learning involves updating a deep neural network (DNN) from an ever-growing stream of labeled data. While most work has focused on overcoming catastrophic forgetting, one of the major motivations behind continual learning is being able to efficiently update a network with new information, rather than retraining from scratch on the training dataset as it grows over time. Despite recent continual learning methods largely solving the catastrophic forgetting problem, there has been little attention paid to the efficiency of these algorithms. Here, we study recent methods for incremental class learning and illustrate that many are highly inefficient in terms of compute, memory, and storage. Some methods even require more compute than training from scratch! We argue that for continual learning to have real-world applicability, the research community cannot ignore the resources used by these algorithms. There is more to continual learning than mitigating catastrophic forgetting.
Simple and Scalable Strategies to Continually Pre-train Large Language Models
Large language models (LLMs) are routinely pre-trained on billions of tokens, only to start the process over again once new data becomes available. A much more efficient solution is to continually pre-train these models, saving significant compute compared to re-training. However, the distribution shift induced by new data typically results in degraded performance on previous data or poor adaptation to the new data. In this work, we show that a simple and scalable combination of learning rate (LR) re-warming, LR re-decaying, and replay of previous data is sufficient to match the performance of fully re-training from scratch on all available data, as measured by final loss and language model (LM) evaluation benchmarks. Specifically, we show this for a weak but realistic distribution shift between two commonly used LLM pre-training datasets (EnglishrightarrowEnglish) and a stronger distribution shift (EnglishrightarrowGerman) at the 405M parameter model scale with large dataset sizes (hundreds of billions of tokens). Selecting the weak but realistic shift for larger-scale experiments, we also find that our continual learning strategies match the re-training baseline for a 10B parameter LLM. Our results demonstrate that LLMs can be successfully updated via simple and scalable continual learning strategies, matching the re-training baseline using only a fraction of the compute. Finally, inspired by previous work, we propose alternatives to the cosine learning rate schedule that help circumvent forgetting induced by LR re-warming and that are not bound to a fixed token budget.
Linguistic Entity Masking to Improve Cross-Lingual Representation of Multilingual Language Models for Low-Resource Languages
Multilingual Pre-trained Language models (multiPLMs), trained on the Masked Language Modelling (MLM) objective are commonly being used for cross-lingual tasks such as bitext mining. However, the performance of these models is still suboptimal for low-resource languages (LRLs). To improve the language representation of a given multiPLM, it is possible to further pre-train it. This is known as continual pre-training. Previous research has shown that continual pre-training with MLM and subsequently with Translation Language Modelling (TLM) improves the cross-lingual representation of multiPLMs. However, during masking, both MLM and TLM give equal weight to all tokens in the input sequence, irrespective of the linguistic properties of the tokens. In this paper, we introduce a novel masking strategy, Linguistic Entity Masking (LEM) to be used in the continual pre-training step to further improve the cross-lingual representations of existing multiPLMs. In contrast to MLM and TLM, LEM limits masking to the linguistic entity types nouns, verbs and named entities, which hold a higher prominence in a sentence. Secondly, we limit masking to a single token within the linguistic entity span thus keeping more context, whereas, in MLM and TLM, tokens are masked randomly. We evaluate the effectiveness of LEM using three downstream tasks, namely bitext mining, parallel data curation and code-mixed sentiment analysis using three low-resource language pairs English-Sinhala, English-Tamil, and Sinhala-Tamil. Experiment results show that continually pre-training a multiPLM with LEM outperforms a multiPLM continually pre-trained with MLM+TLM for all three tasks.
Lifelong Language Pretraining with Distribution-Specialized Experts
Pretraining on a large-scale corpus has become a standard method to build general language models (LMs). Adapting a model to new data distributions targeting different downstream tasks poses significant challenges. Naive fine-tuning may incur catastrophic forgetting when the over-parameterized LMs overfit the new data but fail to preserve the pretrained features. Lifelong learning (LLL) aims to enable information systems to learn from a continuous data stream across time. However, most prior work modifies the training recipe assuming a static fixed network architecture. We find that additional model capacity and proper regularization are key elements to achieving strong LLL performance. Thus, we propose Lifelong-MoE, an extensible MoE (Mixture-of-Experts) architecture that dynamically adds model capacity via adding experts with regularized pretraining. Our results show that by only introducing a limited number of extra experts while keeping the computation cost constant, our model can steadily adapt to data distribution shifts while preserving the previous knowledge. Compared to existing lifelong learning approaches, Lifelong-MoE achieves better few-shot performance on 19 downstream NLP tasks.
On the Effectiveness of Incremental Training of Large Language Models
Training large language models is a computationally intensive process that often requires substantial resources to achieve state-of-the-art results. Incremental layer-wise training has been proposed as a potential strategy to optimize the training process by progressively introducing layers, with the expectation that this approach would lead to faster convergence and more efficient use of computational resources. In this paper, we investigate the effectiveness of incremental training for LLMs, dividing the training process into multiple stages where layers are added progressively. Our experimental results indicate that while the incremental approach initially demonstrates some computational efficiency, it ultimately requires greater overall computational costs to reach comparable performance to traditional full-scale training. Although the incremental training process can eventually close the performance gap with the baseline, it does so only after significantly extended continual training. These findings suggest that incremental layer-wise training may not be a viable alternative for training large language models, highlighting its limitations and providing valuable insights into the inefficiencies of this approach.
FOSTER: Feature Boosting and Compression for Class-Incremental Learning
The ability to learn new concepts continually is necessary in this ever-changing world. However, deep neural networks suffer from catastrophic forgetting when learning new categories. Many works have been proposed to alleviate this phenomenon, whereas most of them either fall into the stability-plasticity dilemma or take too much computation or storage overhead. Inspired by the gradient boosting algorithm to gradually fit the residuals between the target model and the previous ensemble model, we propose a novel two-stage learning paradigm FOSTER, empowering the model to learn new categories adaptively. Specifically, we first dynamically expand new modules to fit the residuals between the target and the output of the original model. Next, we remove redundant parameters and feature dimensions through an effective distillation strategy to maintain the single backbone model. We validate our method FOSTER on CIFAR-100 and ImageNet-100/1000 under different settings. Experimental results show that our method achieves state-of-the-art performance. Code is available at: https://github.com/G-U-N/ECCV22-FOSTER.
Educating LLMs like Human Students: Structure-aware Injection of Domain Knowledge
This paper presents a pioneering methodology, termed StructTuning, to efficiently transform foundation Large Language Models (LLMs) into domain specialists. It significantly minimizes the training corpus requirement to a mere 0.3% while achieving an impressive 50% of traditional knowledge injection performance. Our method is inspired by the educational processes for human students, particularly how structured domain knowledge from textbooks is absorbed and then applied to tackle real-world challenges through specific exercises. Based on this, we propose a novel two-stage knowledge injection strategy: Structure-aware Continual Pre-Training (SCPT) and Structure-aware Supervised Fine-Tuning (SSFT). In the SCPT phase, we organize the training data into an auto-generated taxonomy of domain knowledge, enabling LLMs to effectively memorize textual segments linked to specific expertise within the taxonomy's architecture. Subsequently, in the SSFT phase, we explicitly prompt models to reveal the underlying knowledge structure in their outputs, leveraging this structured domain insight to address practical problems adeptly. Our ultimate method has undergone extensive evaluations across model architectures and scales, using closed-book question-answering tasks on LongBench and MMedBench datasets. Remarkably, our method matches 50% of the improvement displayed by the state-of-the-art MMedLM2 on MMedBench, but with only 0.3% quantity of the training corpus. This breakthrough showcases the potential to scale up our StructTuning for stronger domain-specific LLMs. Code will be made public soon.
Loss of Plasticity in Deep Continual Learning
Modern deep-learning systems are specialized to problem settings in which training occurs once and then never again, as opposed to continual-learning settings in which training occurs continually. If deep-learning systems are applied in a continual learning setting, then it is well known that they may fail to remember earlier examples. More fundamental, but less well known, is that they may also lose their ability to learn on new examples, a phenomenon called loss of plasticity. We provide direct demonstrations of loss of plasticity using the MNIST and ImageNet datasets repurposed for continual learning as sequences of tasks. In ImageNet, binary classification performance dropped from 89\% accuracy on an early task down to 77\%, about the level of a linear network, on the 2000th task. Loss of plasticity occurred with a wide range of deep network architectures, optimizers, activation functions, batch normalization, dropout, but was substantially eased by L^2-regularization, particularly when combined with weight perturbation. Further, we introduce a new algorithm -- continual backpropagation -- which slightly modifies conventional backpropagation to reinitialize a small fraction of less-used units after each example and appears to maintain plasticity indefinitely.
Robust Mean Teacher for Continual and Gradual Test-Time Adaptation
Since experiencing domain shifts during test-time is inevitable in practice, test-time adaption (TTA) continues to adapt the model after deployment. Recently, the area of continual and gradual test-time adaptation (TTA) emerged. In contrast to standard TTA, continual TTA considers not only a single domain shift, but a sequence of shifts. Gradual TTA further exploits the property that some shifts evolve gradually over time. Since in both settings long test sequences are present, error accumulation needs to be addressed for methods relying on self-training. In this work, we propose and show that in the setting of TTA, the symmetric cross-entropy is better suited as a consistency loss for mean teachers compared to the commonly used cross-entropy. This is justified by our analysis with respect to the (symmetric) cross-entropy's gradient properties. To pull the test feature space closer to the source domain, where the pre-trained model is well posed, contrastive learning is leveraged. Since applications differ in their requirements, we address several settings, including having source data available and the more challenging source-free setting. We demonstrate the effectiveness of our proposed method 'robust mean teacher' (RMT) on the continual and gradual corruption benchmarks CIFAR10C, CIFAR100C, and Imagenet-C. We further consider ImageNet-R and propose a new continual DomainNet-126 benchmark. State-of-the-art results are achieved on all benchmarks.
Low-Rank Continual Personalization of Diffusion Models
Recent personalization methods for diffusion models, such as Dreambooth, allow fine-tuning pre-trained models to generate new concepts. However, applying these techniques across multiple tasks in order to include, e.g., several new objects or styles, leads to mutual interference between their adapters. While recent studies attempt to mitigate this issue by combining trained adapters across tasks after fine-tuning, we adopt a more rigorous regime and investigate the personalization of large diffusion models under a continual learning scenario, where such interference leads to catastrophic forgetting of previous knowledge. To that end, we evaluate the na\"ive continual fine-tuning of customized models and compare this approach with three methods for consecutive adapters' training: sequentially merging new adapters, merging orthogonally initialized adapters, and updating only relevant parameters according to the task. In our experiments, we show that the proposed approaches mitigate forgetting when compared to the na\"ive approach.
TiC-CLIP: Continual Training of CLIP Models
Keeping large foundation models up to date on latest data is inherently expensive. To avoid the prohibitive costs of constantly retraining, it is imperative to continually train these models. This problem is exacerbated by the lack of any large scale continual learning benchmarks or baselines. We introduce the first set of web-scale Time-Continual (TiC) benchmarks for training vision-language models: TiC-DataCompt, TiC-YFCC, and TiC-RedCaps with over 12.7B timestamped image-text pairs spanning 9 years (2014--2022). We first use our benchmarks to curate various dynamic evaluations to measure temporal robustness of existing models. We show OpenAI's CLIP (trained on data up to 2020) loses approx 8% zero-shot accuracy on our curated retrieval task from 2021--2022 compared with more recently trained models in OpenCLIP repository. We then study how to efficiently train models on time-continuous data. We demonstrate that a simple rehearsal-based approach that continues training from the last checkpoint and replays old data reduces compute by 2.5times when compared to the standard practice of retraining from scratch.
Model Zoo: A Growing "Brain" That Learns Continually
This paper argues that continual learning methods can benefit by splitting the capacity of the learner across multiple models. We use statistical learning theory and experimental analysis to show how multiple tasks can interact with each other in a non-trivial fashion when a single model is trained on them. The generalization error on a particular task can improve when it is trained with synergistic tasks, but can also deteriorate when trained with competing tasks. This theory motivates our method named Model Zoo which, inspired from the boosting literature, grows an ensemble of small models, each of which is trained during one episode of continual learning. We demonstrate that Model Zoo obtains large gains in accuracy on a variety of continual learning benchmark problems. Code is available at https://github.com/grasp-lyrl/modelzoo_continual.
Q-Tuning: Queue-based Prompt Tuning for Lifelong Few-shot Language Learning
This paper introduces Q-tuning, a novel approach for continual prompt tuning that enables the lifelong learning of a pre-trained language model. When learning a new task, Q-tuning trains a task-specific prompt by adding it to a prompt queue consisting of the prompts from older tasks. To better transfer the knowledge of old tasks, we design an adaptive knowledge aggregation technique that reweighs previous prompts in the queue with a learnable low-rank matrix. Once the prompt queue reaches its maximum capacity, we leverage a PCA-based eviction rule to reduce the queue's size, allowing the newly trained prompt to be added while preserving the primary knowledge of old tasks. In order to mitigate the accumulation of information loss caused by the eviction, we additionally propose a globally shared prefix prompt and a memory retention regularization based on information theory. Extensive experiments demonstrate that our approach outperforms the state-of-the-art methods substantially on continual prompt tuning benchmarks. Moreover, our approach enables lifelong learning on linearly growing task sequences while requiring constant complexity for training and inference.
Architecture Matters in Continual Learning
A large body of research in continual learning is devoted to overcoming the catastrophic forgetting of neural networks by designing new algorithms that are robust to the distribution shifts. However, the majority of these works are strictly focused on the "algorithmic" part of continual learning for a "fixed neural network architecture", and the implications of using different architectures are mostly neglected. Even the few existing continual learning methods that modify the model assume a fixed architecture and aim to develop an algorithm that efficiently uses the model throughout the learning experience. However, in this work, we show that the choice of architecture can significantly impact the continual learning performance, and different architectures lead to different trade-offs between the ability to remember previous tasks and learning new ones. Moreover, we study the impact of various architectural decisions, and our findings entail best practices and recommendations that can improve the continual learning performance.
Fusing finetuned models for better pretraining
Pretrained models are the standard starting point for training. This approach consistently outperforms the use of a random initialization. However, pretraining is a costly endeavour that few can undertake. In this paper, we create better base models at hardly any cost, by fusing multiple existing fine tuned models into one. Specifically, we fuse by averaging the weights of these models. We show that the fused model results surpass the pretrained model ones. We also show that fusing is often better than intertraining. We find that fusing is less dependent on the target task. Furthermore, weight decay nullifies intertraining effects but not those of fusing.
ConPET: Continual Parameter-Efficient Tuning for Large Language Models
Continual learning necessitates the continual adaptation of models to newly emerging tasks while minimizing the catastrophic forgetting of old ones. This is extremely challenging for large language models (LLMs) with vanilla full-parameter tuning due to high computation costs, memory consumption, and forgetting issue. Inspired by the success of parameter-efficient tuning (PET), we propose Continual Parameter-Efficient Tuning (ConPET), a generalizable paradigm for continual task adaptation of LLMs with task-number-independent training complexity. ConPET includes two versions with different application scenarios. First, Static ConPET can adapt former continual learning methods originally designed for relatively smaller models to LLMs through PET and a dynamic replay strategy, which largely reduces the tuning costs and alleviates the over-fitting and forgetting issue. Furthermore, to maintain scalability, Dynamic ConPET adopts separate PET modules for different tasks and a PET module selector for dynamic optimal selection. In our extensive experiments, the adaptation of Static ConPET helps multiple former methods reduce the scale of tunable parameters by over 3,000 times and surpass the PET-only baseline by at least 5 points on five smaller benchmarks, while Dynamic ConPET gains its advantage on the largest dataset. The codes and datasets are available at https://github.com/Raincleared-Song/ConPET.
Exemplar-free Continual Learning of Vision Transformers via Gated Class-Attention and Cascaded Feature Drift Compensation
We propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for many applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Importantly, gated class-attention does not require the task-ID during inference, which distinguishes it from other parameter isolation methods. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our exemplar-free method obtains competitive results when compared to rehearsal based ViT methods.
Improving Language Plasticity via Pretraining with Active Forgetting
Pretrained language models (PLMs) are today the primary model for natural language processing. Despite their impressive downstream performance, it can be difficult to apply PLMs to new languages, a barrier to making their capabilities universally accessible. While prior work has shown it possible to address this issue by learning a new embedding layer for the new language, doing so is both data and compute inefficient. We propose to use an active forgetting mechanism during pretraining, as a simple way of creating PLMs that can quickly adapt to new languages. Concretely, by resetting the embedding layer every K updates during pretraining, we encourage the PLM to improve its ability of learning new embeddings within a limited number of updates, similar to a meta-learning effect. Experiments with RoBERTa show that models pretrained with our forgetting mechanism not only demonstrate faster convergence during language adaptation but also outperform standard ones in a low-data regime, particularly for languages that are distant from English.
AstroMLab 2: AstroLLaMA-2-70B Model and Benchmarking Specialised LLMs for Astronomy
Continual pretraining of large language models on domain-specific data has been proposed to enhance performance on downstream tasks. In astronomy, the previous absence of astronomy-focused benchmarks has hindered objective evaluation of these specialized LLM models. Leveraging a recent initiative to curate high-quality astronomical MCQs, this study aims to quantitatively assess specialized LLMs in astronomy. We find that the previously released AstroLLaMA series, based on LLaMA-2-7B, underperforms compared to the base model. We demonstrate that this performance degradation can be partially mitigated by utilizing high-quality data for continual pretraining, such as summarized text from arXiv. Despite the observed catastrophic forgetting in smaller models, our results indicate that continual pretraining on the 70B model can yield significant improvements. However, the current supervised fine-tuning dataset still constrains the performance of instruct models. In conjunction with this study, we introduce a new set of models, AstroLLaMA-3-8B and AstroLLaMA-2-70B, building upon the previous AstroLLaMA series.
ICICLE: Interpretable Class Incremental Continual Learning
Continual learning enables incremental learning of new tasks without forgetting those previously learned, resulting in positive knowledge transfer that can enhance performance on both new and old tasks. However, continual learning poses new challenges for interpretability, as the rationale behind model predictions may change over time, leading to interpretability concept drift. We address this problem by proposing Interpretable Class-InCremental LEarning (ICICLE), an exemplar-free approach that adopts a prototypical part-based approach. It consists of three crucial novelties: interpretability regularization that distills previously learned concepts while preserving user-friendly positive reasoning; proximity-based prototype initialization strategy dedicated to the fine-grained setting; and task-recency bias compensation devoted to prototypical parts. Our experimental results demonstrate that ICICLE reduces the interpretability concept drift and outperforms the existing exemplar-free methods of common class-incremental learning when applied to concept-based models.
Fictitious Synthetic Data Can Improve LLM Factuality via Prerequisite Learning
Recent studies have identified one aggravating factor of LLM hallucinations as the knowledge inconsistency between pre-training and fine-tuning, where unfamiliar fine-tuning data mislead the LLM to fabricate plausible but wrong outputs. In this paper, we propose a novel fine-tuning strategy called Prereq-Tune to address this knowledge inconsistency and reduce hallucinations. Fundamentally, Prereq-Tune disentangles the learning of skills and knowledge, so the model learns only the task skills without being impacted by the knowledge inconsistency. To achieve this, Prereq-Tune introduces an additional prerequisite learning stage to learn the necessary knowledge for SFT, allowing subsequent SFT to focus only on task skills. Prereq-Tune can also be combined with fictitious synthetic data to enhance the grounding of LLM outputs to their internal knowledge. Experiments show that Prereq-Tune outperforms existing baselines in improving LLM's factuality across short QA and long-form generation tasks. It also opens new possibilities for knowledge-controlled generation in LLMs. Our code is available at https://github.com/UCSB-NLP-Chang/Prereq_tune.git.
Data Engineering for Scaling Language Models to 128K Context
We study the continual pretraining recipe for scaling language models' context lengths to 128K, with a focus on data engineering. We hypothesize that long context modeling, in particular the ability to utilize information at arbitrary input locations, is a capability that is mostly already acquired through large-scale pretraining, and that this capability can be readily extended to contexts substantially longer than seen during training~(e.g., 4K to 128K) through lightweight continual pretraining on appropriate data mixture. We investigate the quantity and quality of the data for continual pretraining: (1) for quantity, we show that 500 million to 5 billion tokens are enough to enable the model to retrieve information anywhere within the 128K context; (2) for quality, our results equally emphasize domain balance and length upsampling. Concretely, we find that naively upsampling longer data on certain domains like books, a common practice of existing work, gives suboptimal performance, and that a balanced domain mixture is important. We demonstrate that continual pretraining of the full model on 1B-5B tokens of such data is an effective and affordable strategy for scaling the context length of language models to 128K. Our recipe outperforms strong open-source long-context models and closes the gap to frontier models like GPT-4 128K.
Selfie: Self-supervised Pretraining for Image Embedding
We introduce a pretraining technique called Selfie, which stands for SELFie supervised Image Embedding. Selfie generalizes the concept of masked language modeling of BERT (Devlin et al., 2019) to continuous data, such as images, by making use of the Contrastive Predictive Coding loss (Oord et al., 2018). Given masked-out patches in an input image, our method learns to select the correct patch, among other "distractor" patches sampled from the same image, to fill in the masked location. This classification objective sidesteps the need for predicting exact pixel values of the target patches. The pretraining architecture of Selfie includes a network of convolutional blocks to process patches followed by an attention pooling network to summarize the content of unmasked patches before predicting masked ones. During finetuning, we reuse the convolutional weights found by pretraining. We evaluate Selfie on three benchmarks (CIFAR-10, ImageNet 32 x 32, and ImageNet 224 x 224) with varying amounts of labeled data, from 5% to 100% of the training sets. Our pretraining method provides consistent improvements to ResNet-50 across all settings compared to the standard supervised training of the same network. Notably, on ImageNet 224 x 224 with 60 examples per class (5%), our method improves the mean accuracy of ResNet-50 from 35.6% to 46.7%, an improvement of 11.1 points in absolute accuracy. Our pretraining method also improves ResNet-50 training stability, especially on low data regime, by significantly lowering the standard deviation of test accuracies across different runs.
MagMax: Leveraging Model Merging for Seamless Continual Learning
This paper introduces a continual learning approach named MagMax, which utilizes model merging to enable large pre-trained models to continuously learn from new data without forgetting previously acquired knowledge. Distinct from traditional continual learning methods that aim to reduce forgetting during task training, MagMax combines sequential fine-tuning with a maximum magnitude weight selection for effective knowledge integration across tasks. Our initial contribution is an extensive examination of model merging techniques, revealing that simple approaches like weight averaging and random weight selection surprisingly hold up well in various continual learning contexts. More importantly, we present MagMax, a novel model-merging strategy that enables continual learning of large pre-trained models for successive tasks. Our thorough evaluation demonstrates the superiority of MagMax in various scenarios, including class- and domain-incremental learning settings.
An Investigation of the Combination of Rehearsal and Knowledge Distillation in Continual Learning for Spoken Language Understanding
Continual learning refers to a dynamical framework in which a model receives a stream of non-stationary data over time and must adapt to new data while preserving previously acquired knowledge. Unluckily, neural networks fail to meet these two desiderata, incurring the so-called catastrophic forgetting phenomenon. Whereas a vast array of strategies have been proposed to attenuate forgetting in the computer vision domain, for speech-related tasks, on the other hand, there is a dearth of works. In this paper, we consider the joint use of rehearsal and knowledge distillation (KD) approaches for spoken language understanding under a class-incremental learning scenario. We report on multiple KD combinations at different levels in the network, showing that combining feature-level and predictions-level KDs leads to the best results. Finally, we provide an ablation study on the effect of the size of the rehearsal memory that corroborates the efficacy of our approach for low-resource devices.
UFT: Unifying Fine-Tuning of SFT and RLHF/DPO/UNA through a Generalized Implicit Reward Function
By pretraining on trillions of tokens, an LLM gains the capability of text generation. However, to enhance its utility and reduce potential harm, SFT and alignment are applied sequentially to the pretrained model. Due to the differing nature and objective functions of SFT and alignment, catastrophic forgetting has become a significant issue. To address this, we introduce Unified Fine-Tuning (UFT), which integrates SFT and alignment into a single training stage using the same objective and loss functions through an implicit reward function. Our experimental results demonstrate that UFT outperforms SFT on instruction-tuning data alone. Moreover, when combining instruction-tuning data with alignment data, UFT effectively prevents catastrophic forgetting across these two stages and shows a clear advantage over sequentially applying SFT and alignment. This is evident in the significant improvements observed in the ifeval task for instruction-following and the truthful-qa task for factuality. The proposed general fine-tuning framework UFT establishes an effective and efficient pretraining-UFT paradigm for LLM training.
Learning from Future: A Novel Self-Training Framework for Semantic Segmentation
Self-training has shown great potential in semi-supervised learning. Its core idea is to use the model learned on labeled data to generate pseudo-labels for unlabeled samples, and in turn teach itself. To obtain valid supervision, active attempts typically employ a momentum teacher for pseudo-label prediction yet observe the confirmation bias issue, where the incorrect predictions may provide wrong supervision signals and get accumulated in the training process. The primary cause of such a drawback is that the prevailing self-training framework acts as guiding the current state with previous knowledge, because the teacher is updated with the past student only. To alleviate this problem, we propose a novel self-training strategy, which allows the model to learn from the future. Concretely, at each training step, we first virtually optimize the student (i.e., caching the gradients without applying them to the model weights), then update the teacher with the virtual future student, and finally ask the teacher to produce pseudo-labels for the current student as the guidance. In this way, we manage to improve the quality of pseudo-labels and thus boost the performance. We also develop two variants of our future-self-training (FST) framework through peeping at the future both deeply (FST-D) and widely (FST-W). Taking the tasks of unsupervised domain adaptive semantic segmentation and semi-supervised semantic segmentation as the instances, we experimentally demonstrate the effectiveness and superiority of our approach under a wide range of settings. Code will be made publicly available.
Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese
The tremendous success of CLIP (Radford et al., 2021) has promoted the research and application of contrastive learning for vision-language pretraining. In this work, we construct a large-scale dataset of image-text pairs in Chinese, where most data are retrieved from publicly available datasets, and we pretrain Chinese CLIP models on the new dataset. We develop 5 Chinese CLIP models of multiple sizes, spanning from 77 to 958 million parameters. Furthermore, we propose a two-stage pretraining method, where the model is first trained with the image encoder frozen and then trained with all parameters being optimized, to achieve enhanced model performance. Our comprehensive experiments demonstrate that Chinese CLIP can achieve the state-of-the-art performance on MUGE, Flickr30K-CN, and COCO-CN in the setups of zero-shot learning and finetuning, and it is able to achieve competitive performance in zero-shot image classification based on the evaluation on the ELEVATER benchmark (Li et al., 2022). We have released our codes, models, and demos in https://github.com/OFA-Sys/Chinese-CLIP
SeiT: Storage-Efficient Vision Training with Tokens Using 1% of Pixel Storage
We need billion-scale images to achieve more generalizable and ground-breaking vision models, as well as massive dataset storage to ship the images (e.g., the LAION-4B dataset needs 240TB storage space). However, it has become challenging to deal with unlimited dataset storage with limited storage infrastructure. A number of storage-efficient training methods have been proposed to tackle the problem, but they are rarely scalable or suffer from severe damage to performance. In this paper, we propose a storage-efficient training strategy for vision classifiers for large-scale datasets (e.g., ImageNet) that only uses 1024 tokens per instance without using the raw level pixels; our token storage only needs <1% of the original JPEG-compressed raw pixels. We also propose token augmentations and a Stem-adaptor module to make our approach able to use the same architecture as pixel-based approaches with only minimal modifications on the stem layer and the carefully tuned optimization settings. Our experimental results on ImageNet-1k show that our method significantly outperforms other storage-efficient training methods with a large gap. We further show the effectiveness of our method in other practical scenarios, storage-efficient pre-training, and continual learning. Code is available at https://github.com/naver-ai/seit
BBTv2: Towards a Gradient-Free Future with Large Language Models
Most downstream adaptation methods tune all or part of the parameters of pre-trained models (PTMs) through gradient descent, where the tuning cost increases linearly with the growth of the model size. By contrast, gradient-free methods only require the forward computation of the PTM to tune the prompt, retaining the benefits of efficient tuning and deployment. Though, past work on gradient-free tuning often introduces gradient descent to seek a good initialization of prompt and lacks versatility across tasks and PTMs. In this paper, we present BBTv2, an improved version of Black-Box Tuning, to drive PTMs for few-shot learning. We prepend continuous prompts to every layer of the PTM and propose a divide-and-conquer gradient-free algorithm to optimize the prompts at different layers alternately. Extensive experiments across various tasks and PTMs show that BBTv2 can achieve comparable performance to full model tuning and state-of-the-art parameter-efficient methods (e.g., Adapter, LoRA, BitFit, etc.) under few-shot settings while maintaining much fewer tunable parameters.
Continual Object Detection: A review of definitions, strategies, and challenges
The field of Continual Learning investigates the ability to learn consecutive tasks without losing performance on those previously learned. Its focus has been mainly on incremental classification tasks. We believe that research in continual object detection deserves even more attention due to its vast range of applications in robotics and autonomous vehicles. This scenario is more complex than conventional classification given the occurrence of instances of classes that are unknown at the time, but can appear in subsequent tasks as a new class to be learned, resulting in missing annotations and conflicts with the background label. In this review, we analyze the current strategies proposed to tackle the problem of class-incremental object detection. Our main contributions are: (1) a short and systematic review of the methods that propose solutions to traditional incremental object detection scenarios; (2) A comprehensive evaluation of the existing approaches using a new metric to quantify the stability and plasticity of each technique in a standard way; (3) an overview of the current trends within continual object detection and a discussion of possible future research directions.
Amuro & Char: Analyzing the Relationship between Pre-Training and Fine-Tuning of Large Language Models
The development of large language models leads to the formation of a pre-train-then-align paradigm, in which the model is typically pre-trained on a large text corpus and undergoes a tuning stage to align the model with human preference or downstream tasks. In this work, we investigate the relationship between pre-training and fine-tuning by fine-tuning multiple intermediate pre-trained model checkpoints. Our results on 18 datasets suggest that i) continual pre-training improves the model in a latent way that unveils after fine-tuning; ii) with extra fine-tuning, the datasets that the model does not demonstrate capability gain much more than those that the model performs well during the pre-training stage; iii) although model benefits significantly through supervised fine-tuning, it may forget previously known domain knowledge and the tasks that are not seen during fine-tuning; iv) the model resembles high sensitivity to evaluation prompts after supervised fine-tuning, but this sensitivity can be alleviated by more pre-training.