Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAgentOhana: Design Unified Data and Training Pipeline for Effective Agent Learning
Autonomous agents powered by large language models (LLMs) have garnered significant research attention. However, fully harnessing the potential of LLMs for agent-based tasks presents inherent challenges due to the heterogeneous nature of diverse data sources featuring multi-turn trajectories. In this paper, we introduce AgentOhana as a comprehensive solution to address these challenges. AgentOhana aggregates agent trajectories from distinct environments, spanning a wide array of scenarios. It meticulously standardizes and unifies these trajectories into a consistent format, streamlining the creation of a generic data loader optimized for agent training. Leveraging the data unification, our training pipeline maintains equilibrium across different data sources and preserves independent randomness across devices during dataset partitioning and model training. Additionally, we present xLAM-v0.1, a large action model tailored for AI agents, which demonstrates exceptional performance across various benchmarks.
On Domain-Specific Post-Training for Multimodal Large Language Models
Recent years have witnessed the rapid development of general multimodal large language models (MLLMs). However, adapting general MLLMs to specific domains, such as scientific fields and industrial applications, remains less explored. This paper systematically investigates domain adaptation of MLLMs through post-training, focusing on data synthesis, training pipelines, and task evaluation. (1) Data Synthesis: Using open-source models, we develop a visual instruction synthesizer that effectively generates diverse visual instruction tasks from domain-specific image-caption pairs. Our synthetic tasks surpass those generated by manual rules, GPT-4, and GPT-4V in enhancing the domain-specific performance of MLLMs. (2) Training Pipeline: While the two-stage training--initially on image-caption pairs followed by visual instruction tasks--is commonly adopted for developing general MLLMs, we apply a single-stage training pipeline to enhance task diversity for domain-specific post-training. (3) Task Evaluation: We conduct experiments in two domains, biomedicine and food, by post-training MLLMs of different sources and scales (e.g., Qwen2-VL-2B, LLaVA-v1.6-8B, Llama-3.2-11B), and then evaluating MLLM performance on various domain-specific tasks. To support further research in MLLM domain adaptation, we will open-source our implementations.
Dealing with training and test segmentation mismatch: FBK@IWSLT2021
This paper describes FBK's system submission to the IWSLT 2021 Offline Speech Translation task. We participated with a direct model, which is a Transformer-based architecture trained to translate English speech audio data into German texts. The training pipeline is characterized by knowledge distillation and a two-step fine-tuning procedure. Both knowledge distillation and the first fine-tuning step are carried out on manually segmented real and synthetic data, the latter being generated with an MT system trained on the available corpora. Differently, the second fine-tuning step is carried out on a random segmentation of the MuST-C v2 En-De dataset. Its main goal is to reduce the performance drops occurring when a speech translation model trained on manually segmented data (i.e. an ideal, sentence-like segmentation) is evaluated on automatically segmented audio (i.e. actual, more realistic testing conditions). For the same purpose, a custom hybrid segmentation procedure that accounts for both audio content (pauses) and for the length of the produced segments is applied to the test data before passing them to the system. At inference time, we compared this procedure with a baseline segmentation method based on Voice Activity Detection (VAD). Our results indicate the effectiveness of the proposed hybrid approach, shown by a reduction of the gap with manual segmentation from 8.3 to 1.4 BLEU points.
Stretching Each Dollar: Diffusion Training from Scratch on a Micro-Budget
As scaling laws in generative AI push performance, they also simultaneously concentrate the development of these models among actors with large computational resources. With a focus on text-to-image (T2I) generative models, we aim to address this bottleneck by demonstrating very low-cost training of large-scale T2I diffusion transformer models. As the computational cost of transformers increases with the number of patches in each image, we propose to randomly mask up to 75% of the image patches during training. We propose a deferred masking strategy that preprocesses all patches using a patch-mixer before masking, thus significantly reducing the performance degradation with masking, making it superior to model downscaling in reducing computational cost. We also incorporate the latest improvements in transformer architecture, such as the use of mixture-of-experts layers, to improve performance and further identify the critical benefit of using synthetic images in micro-budget training. Finally, using only 37M publicly available real and synthetic images, we train a 1.16 billion parameter sparse transformer with only \1,890 economical cost and achieve a 12.7 FID in zero-shot generation on the COCO dataset. Notably, our model achieves competitive FID and high-quality generations while incurring 118\times lower cost than stable diffusion models and 14\times lower cost than the current state-of-the-art approach that costs 28,400. We aim to release our end-to-end training pipeline to further democratize the training of large-scale diffusion models on micro-budgets.
PAFT: A Parallel Training Paradigm for Effective LLM Fine-Tuning
Large language models (LLMs) have shown remarkable abilities in diverse natural language processing (NLP) tasks. The LLMs generally undergo supervised fine-tuning (SFT) followed by preference alignment to be usable in downstream applications. However, this sequential training pipeline leads to alignment tax that degrades the LLM performance. This paper introduces PAFT, a new PArallel training paradigm for effective LLM Fine-Tuning, which independently performs SFT and preference alignment (e.g., DPO and ORPO, etc.) with the same pre-trained model on respective datasets. The model produced by SFT and the model from preference alignment are then merged into a final model by parameter fusing for use in downstream applications. This work reveals important findings that preference alignment like DPO naturally results in a sparse model while SFT leads to a natural dense model which needs to be sparsified for effective model merging. This paper introduces an effective interference resolution which reduces the redundancy by sparsifying the delta parameters. The LLM resulted from the new training paradigm achieved Rank #1 on the HuggingFace Open LLM Leaderboard. Comprehensive evaluation shows the effectiveness of the parallel training paradigm.
DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation
We present a large, tunable neural conversational response generation model, DialoGPT (dialogue generative pre-trained transformer). Trained on 147M conversation-like exchanges extracted from Reddit comment chains over a period spanning from 2005 through 2017, DialoGPT extends the Hugging Face PyTorch transformer to attain a performance close to human both in terms of automatic and human evaluation in single-turn dialogue settings. We show that conversational systems that leverage DialoGPT generate more relevant, contentful and context-consistent responses than strong baseline systems. The pre-trained model and training pipeline are publicly released to facilitate research into neural response generation and the development of more intelligent open-domain dialogue systems.
Semi-Supervised Semantic Segmentation using Redesigned Self-Training for White Blood Cells
Artificial Intelligence (AI) in healthcare, especially in white blood cell cancer diagnosis, is hindered by two primary challenges: the lack of large-scale labeled datasets for white blood cell (WBC) segmentation and outdated segmentation methods. These challenges inhibit the development of more accurate and modern techniques to diagnose cancer relating to white blood cells. To address the first challenge, a semi-supervised learning framework should be devised to efficiently capitalize on the scarcity of the dataset available. In this work, we address this issue by proposing a novel self-training pipeline with the incorporation of FixMatch. Self-training is a technique that utilizes the model trained on labeled data to generate pseudo-labels for the unlabeled data and then re-train on both of them. FixMatch is a consistency-regularization algorithm to enforce the model's robustness against variations in the input image. We discover that by incorporating FixMatch in the self-training pipeline, the performance improves in the majority of cases. Our performance achieved the best performance with the self-training scheme with consistency on DeepLab-V3 architecture and ResNet-50, reaching 90.69%, 87.37%, and 76.49% on Zheng 1, Zheng 2, and LISC datasets, respectively.
Towards Large-Scale Training of Pathology Foundation Models
Driven by the recent advances in deep learning methods and, in particular, by the development of modern self-supervised learning algorithms, increased interest and efforts have been devoted to build foundation models (FMs) for medical images. In this work, we present our scalable training pipeline for large pathology imaging data, and a comprehensive analysis of various hyperparameter choices and training techniques for building pathology FMs. We release and make publicly available the first batch of our pathology FMs (https://github.com/kaiko-ai/towards_large_pathology_fms) trained on open-access TCGA whole slide images, a commonly used collection of pathology images. The experimental evaluation shows that our models reach state-of-the-art performance on various patch-level downstream tasks, ranging from breast cancer subtyping to colorectal nuclear segmentation. Finally, to unify the evaluation approaches used in the field and to simplify future comparisons of different FMs, we present an open-source framework (https://github.com/kaiko-ai/eva) designed for the consistent evaluation of pathology FMs across various downstream tasks.
Training Sparse Mixture Of Experts Text Embedding Models
Transformer-based text embedding models have improved their performance on benchmarks like MIRACL and BEIR by increasing their parameter counts. However, this scaling approach introduces significant deployment challenges, including increased inference latency and memory usage. These challenges are particularly severe in retrieval-augmented generation (RAG) applications, where large models' increased memory requirements constrain dataset ingestion capacity, and their higher latency directly impacts query-time performance. While causal language models have addressed similar efficiency challenges using Mixture of Experts (MoE) architectures, this approach hasn't been successfully adapted to the general text embedding setting. In this paper, we introduce Nomic Embed v2, the first general purpose MoE text embedding model. Our model outperforms models in the same parameter class on both monolingual and multilingual benchmarks while also maintaining competitive performance with models twice its size. We open-source all code, models, and evaluation data to ensure full reproducibility of our training pipeline.
Training Data Attribution via Approximate Unrolled Differentiation
Many training data attribution (TDA) methods aim to estimate how a model's behavior would change if one or more data points were removed from the training set. Methods based on implicit differentiation, such as influence functions, can be made computationally efficient, but fail to account for underspecification, the implicit bias of the optimization algorithm, or multi-stage training pipelines. By contrast, methods based on unrolling address these issues but face scalability challenges. In this work, we connect the implicit-differentiation-based and unrolling-based approaches and combine their benefits by introducing Source, an approximate unrolling-based TDA method that is computed using an influence-function-like formula. While being computationally efficient compared to unrolling-based approaches, Source is suitable in cases where implicit-differentiation-based approaches struggle, such as in non-converged models and multi-stage training pipelines. Empirically, Source outperforms existing TDA techniques in counterfactual prediction, especially in settings where implicit-differentiation-based approaches fall short.
Unified Pre-training with Pseudo Texts for Text-To-Image Person Re-identification
The pre-training task is indispensable for the text-to-image person re-identification (T2I-ReID) task. However, there are two underlying inconsistencies between these two tasks that may impact the performance; i) Data inconsistency. A large domain gap exists between the generic images/texts used in public pre-trained models and the specific person data in the T2I-ReID task. This gap is especially severe for texts, as general textual data are usually unable to describe specific people in fine-grained detail. ii) Training inconsistency. The processes of pre-training of images and texts are independent, despite cross-modality learning being critical to T2I-ReID. To address the above issues, we present a new unified pre-training pipeline (UniPT) designed specifically for the T2I-ReID task. We first build a large-scale text-labeled person dataset "LUPerson-T", in which pseudo-textual descriptions of images are automatically generated by the CLIP paradigm using a divide-conquer-combine strategy. Benefiting from this dataset, we then utilize a simple vision-and-language pre-training framework to explicitly align the feature space of the image and text modalities during pre-training. In this way, the pre-training task and the T2I-ReID task are made consistent with each other on both data and training levels. Without the need for any bells and whistles, our UniPT achieves competitive Rank-1 accuracy of, ie, 68.50%, 60.09%, and 51.85% on CUHK-PEDES, ICFG-PEDES and RSTPReid, respectively. Both the LUPerson-T dataset and code are available at https;//github.com/ZhiyinShao-H/UniPT.
iBOT: Image BERT Pre-Training with Online Tokenizer
The success of language Transformers is primarily attributed to the pretext task of masked language modeling (MLM), where texts are first tokenized into semantically meaningful pieces. In this work, we study masked image modeling (MIM) and indicate the advantages and challenges of using a semantically meaningful visual tokenizer. We present a self-supervised framework iBOT that can perform masked prediction with an online tokenizer. Specifically, we perform self-distillation on masked patch tokens and take the teacher network as the online tokenizer, along with self-distillation on the class token to acquire visual semantics. The online tokenizer is jointly learnable with the MIM objective and dispenses with a multi-stage training pipeline where the tokenizer needs to be pre-trained beforehand. We show the prominence of iBOT by achieving an 82.3% linear probing accuracy and an 87.8% fine-tuning accuracy evaluated on ImageNet-1K. Beyond the state-of-the-art image classification results, we underline emerging local semantic patterns, which helps the models to obtain strong robustness against common corruptions and achieve leading results on dense downstream tasks, eg., object detection, instance segmentation, and semantic segmentation.
SnakModel: Lessons Learned from Training an Open Danish Large Language Model
We present SnakModel, a Danish large language model (LLM) based on Llama2-7B, which we continuously pre-train on 13.6B Danish words, and further tune on 3.7M Danish instructions. As best practices for creating LLMs for smaller language communities have yet to be established, we examine the effects of early modeling and training decisions on downstream performance throughout the entire training pipeline, including (1) the creation of a strictly curated corpus of Danish text from diverse sources; (2) the language modeling and instruction-tuning training process itself, including the analysis of intermediate training dynamics, and ablations across different hyperparameters; (3) an evaluation on eight language and culturally-specific tasks. Across these experiments SnakModel achieves the highest overall performance, outperforming multiple contemporary Llama2-7B-based models. By making SnakModel, the majority of our pre-training corpus, and the associated code available under open licenses, we hope to foster further research and development in Danish Natural Language Processing, and establish training guidelines for languages with similar resource constraints.
How Do Training Methods Influence the Utilization of Vision Models?
Not all learnable parameters (e.g., weights) contribute equally to a neural network's decision function. In fact, entire layers' parameters can sometimes be reset to random values with little to no impact on the model's decisions. We revisit earlier studies that examined how architecture and task complexity influence this phenomenon and ask: is this phenomenon also affected by how we train the model? We conducted experimental evaluations on a diverse set of ImageNet-1k classification models to explore this, keeping the architecture and training data constant but varying the training pipeline. Our findings reveal that the training method strongly influences which layers become critical to the decision function for a given task. For example, improved training regimes and self-supervised training increase the importance of early layers while significantly under-utilizing deeper layers. In contrast, methods such as adversarial training display an opposite trend. Our preliminary results extend previous findings, offering a more nuanced understanding of the inner mechanics of neural networks. Code: https://github.com/paulgavrikov/layer_criticality
Pruning Large Language Models with Semi-Structural Adaptive Sparse Training
Transformer-based Large Language Models (LLMs) have demonstrated remarkable success across various challenging tasks. However, the deployment of LLMs is hindered by their substantial parameter count and memory consumption. Recently, numerous studies have attempted to compress LLMs by pruning them using training-free methods. However, these pruned models often experience significant performance degradation on complex tasks. To address this issue, we propose a novel training pipeline for semi-structured sparse models, named Adaptive Sparse Trainer (AST). By distilling the knowledge stored in its dense counterpart, we prevent the sparse model from overfitting and ensure a stable training process. Moreover, AST allows the model to adaptively select better lottery tickets (e.g., masks) during training. Additionally, we discovered that adding extra well-initialized parameters can further enhance model performance with only a small increase in memory footprint. Our method significantly narrows the performance gap between dense and sparse models while maintaining limited computational cost. Furthermore, when combined with existing quantization methods, AST can compress language models by up to 16x compared to dense FP32 precision models with minimal performance loss. AST outperforms previous state-of-the-art methods by reducing the zero-shot accuracy gap between dense and semi-structured sparse models to 1.12% across multiple zero-shot tasks on Llama2-7B, using less than 0.4% of the pretraining tokens.
Describe-then-Reason: Improving Multimodal Mathematical Reasoning through Visual Comprehension Training
Open-source multimodal large language models (MLLMs) excel in various tasks involving textual and visual inputs but still struggle with complex multimodal mathematical reasoning, lagging behind proprietary models like GPT-4V(ision) and Gemini-Pro. Although fine-tuning with intermediate steps (i.e., rationales) elicits some mathematical reasoning skills, the resulting models still fall short in visual comprehension due to inadequate visual-centric supervision, which leads to inaccurate interpretation of math figures. To address this issue, we propose a two-step training pipeline VCAR, which emphasizes the Visual Comprehension training in Addition to mathematical Reasoning learning. It first improves the visual comprehension ability of MLLMs through the visual description generation task, followed by another training step on generating rationales with the assistance of descriptions. Experimental results on two popular benchmarks demonstrate that VCAR substantially outperforms baseline methods solely relying on rationale supervision, especially on problems with high visual demands.
Filtering, Distillation, and Hard Negatives for Vision-Language Pre-Training
Vision-language models trained with contrastive learning on large-scale noisy data are becoming increasingly popular for zero-shot recognition problems. In this paper we improve the following three aspects of the contrastive pre-training pipeline: dataset noise, model initialization and the training objective. First, we propose a straightforward filtering strategy titled Complexity, Action, and Text-spotting (CAT) that significantly reduces dataset size, while achieving improved performance across zero-shot vision-language tasks. Next, we propose an approach titled Concept Distillation to leverage strong unimodal representations for contrastive training that does not increase training complexity while outperforming prior work. Finally, we modify the traditional contrastive alignment objective, and propose an importance-sampling approach to up-sample the importance of hard-negatives without adding additional complexity. On an extensive zero-shot benchmark of 29 tasks, our Distilled and Hard-negative Training (DiHT) approach improves on 20 tasks compared to the baseline. Furthermore, for few-shot linear probing, we propose a novel approach that bridges the gap between zero-shot and few-shot performance, substantially improving over prior work. Models are available at https://github.com/facebookresearch/diht.
Efficient Tabular Data Preprocessing of ML Pipelines
Data preprocessing pipelines, which includes data decoding, cleaning, and transforming, are a crucial component of Machine Learning (ML) training. Thy are computationally intensive and often become a major bottleneck, due to the increasing performance gap between the CPUs used for preprocessing and the GPUs used for model training. Recent studies show that a significant number of CPUs across several machines are required to achieve sufficient throughput to saturate the GPUs, leading to increased resource and energy consumption. When the pipeline involves vocabulary generation, the preprocessing performance scales poorly due to significant row-wise synchronization overhead between different CPU cores and servers. To address this limitation, in this paper we present the design of Piper, a hardware accelerator for tabular data preprocessing, prototype it on FPGAs, and demonstrate its potential for training pipelines of commercial recommender systems. Piper achieves 4.7 sim 71.3times speedup in latency over a 128-core CPU server and outperforms a data-center GPU by 4.8sim 20.3times when using binary input. The impressive performance showcases Piper's potential to increase the efficiency of data preprocessing pipelines and significantly reduce their resource consumption.
One Forward is Enough for Neural Network Training via Likelihood Ratio Method
While backpropagation (BP) is the mainstream approach for gradient computation in neural network training, its heavy reliance on the chain rule of differentiation constrains the designing flexibility of network architecture and training pipelines. We avoid the recursive computation in BP and develop a unified likelihood ratio (ULR) method for gradient estimation with just one forward propagation. Not only can ULR be extended to train a wide variety of neural network architectures, but the computation flow in BP can also be rearranged by ULR for better device adaptation. Moreover, we propose several variance reduction techniques to further accelerate the training process. Our experiments offer numerical results across diverse aspects, including various neural network training scenarios, computation flow rearrangement, and fine-tuning of pre-trained models. All findings demonstrate that ULR effectively enhances the flexibility of neural network training by permitting localized module training without compromising the global objective and significantly boosts the network robustness.
DeepSpeed-Chat: Easy, Fast and Affordable RLHF Training of ChatGPT-like Models at All Scales
ChatGPT-like models have revolutionized various applications in artificial intelligence, from summarization and coding to translation, matching or even surpassing human performance. However, the current landscape lacks an accessible, efficient, and cost-effective end-to-end RLHF (Reinforcement Learning with Human Feedback) training pipeline for these powerful models, particularly when training at the scale of billions of parameters. This paper introduces DeepSpeed-Chat, a novel system that democratizes RLHF training, making it accessible to the AI community. DeepSpeed-Chat offers three key capabilities: an easy-to-use training and inference experience for ChatGPT-like models, a DeepSpeed-RLHF pipeline that replicates the training pipeline from InstructGPT, and a robust DeepSpeed-RLHF system that combines various optimizations for training and inference in a unified way. The system delivers unparalleled efficiency and scalability, enabling training of models with hundreds of billions of parameters in record time and at a fraction of the cost. With this development, DeepSpeed-Chat paves the way for broader access to advanced RLHF training, even for data scientists with limited resources, thereby fostering innovation and further development in the field of AI.
CLAPSpeech: Learning Prosody from Text Context with Contrastive Language-Audio Pre-training
Improving text representation has attracted much attention to achieve expressive text-to-speech (TTS). However, existing works only implicitly learn the prosody with masked token reconstruction tasks, which leads to low training efficiency and difficulty in prosody modeling. We propose CLAPSpeech, a cross-modal contrastive pre-training framework that explicitly learns the prosody variance of the same text token under different contexts. Specifically, 1) We encourage the model to connect the text context with its corresponding prosody pattern in the joint multi-modal space with the elaborate design of the encoder inputs and contrastive loss; 2) We introduce a multi-scale pre-training pipeline to capture prosody patterns in multiple levels. We show how to incorporate CLAPSpeech into existing TTS models for better prosody. Experiments on three datasets not only show that CLAPSpeech could improve the prosody prediction for existing TTS methods, but also demonstrate its generalization ability to adapt to multiple languages and multi-speaker TTS. We also deeply analyze the principle behind the performance of CLAPSpeech. Ablation studies demonstrate the necessity of each component in our method. Source code and audio samples are available at https://clapspeech.github.io.
NerfBridge: Bringing Real-time, Online Neural Radiance Field Training to Robotics
This work was presented at the IEEE International Conference on Robotics and Automation 2023 Workshop on Unconventional Spatial Representations. Neural radiance fields (NeRFs) are a class of implicit scene representations that model 3D environments from color images. NeRFs are expressive, and can model the complex and multi-scale geometry of real world environments, which potentially makes them a powerful tool for robotics applications. Modern NeRF training libraries can generate a photo-realistic NeRF from a static data set in just a few seconds, but are designed for offline use and require a slow pose optimization pre-computation step. In this work we propose NerfBridge, an open-source bridge between the Robot Operating System (ROS) and the popular Nerfstudio library for real-time, online training of NeRFs from a stream of images. NerfBridge enables rapid development of research on applications of NeRFs in robotics by providing an extensible interface to the efficient training pipelines and model libraries provided by Nerfstudio. As an example use case we outline a hardware setup that can be used NerfBridge to train a NeRF from images captured by a camera mounted to a quadrotor in both indoor and outdoor environments. For accompanying video https://youtu.be/EH0SLn-RcDg and code https://github.com/javieryu/nerf_bridge.
Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment
Recent advances in large language models, particularly following GPT-4o, have sparked increasing interest in developing omni-modal models capable of understanding more modalities. While some open-source alternatives have emerged, there is still a notable lag behind specialized single-modality models in performance. In this paper, we present Ola, an Omni-modal language model that achieves competitive performance across image, video, and audio understanding compared to specialized counterparts. The core design of Ola lies in its progressive modality alignment strategy that extends the supporting modality of the language model progressively. Our training pipeline begins with the most distinct modalities: image and text, then gradually expands the skill sets of the model using speech data that connects language and audio knowledge, and video data that connects all modalities. The progressive learning pipeline also enables us to maintain a relatively small size of the cross-modal alignment data, making developing omni-modal from existing vision-language models easy and less costly. Moreover, to unlock an advanced interactive experience like GPT-4o, we further design a sentence-wise decoding solution for streaming speech generation. Extensive experiments demonstrate that Ola surpasses existing open omni-modal LLMs across all modalities while achieving highly competitive performance compared to state-of-the-art specialized models of similar sizes. We aim to make Ola a fully open omni-modal understanding solution to advance future research in this emerging field. Model weights, code, and data are open-sourced at https://github.com/Ola-Omni/Ola.
Universal Embedding Function for Traffic Classification via QUIC Domain Recognition Pretraining: A Transfer Learning Success
Encrypted traffic classification (TC) methods must adapt to new protocols and extensions as well as to advancements in other machine learning fields. In this paper, we follow a transfer learning setup best known from computer vision. We first pretrain an embedding model on a complex task with a large number of classes and then transfer it to five well-known TC datasets. The pretraining task is recognition of SNI domains in encrypted QUIC traffic, which in itself is a problem for network monitoring due to the growing adoption of TLS Encrypted Client Hello. Our training pipeline -- featuring a disjoint class setup, ArcFace loss function, and a modern deep learning architecture -- aims to produce universal embeddings applicable across tasks. The proposed solution, based on nearest neighbors search in the embedding space, surpasses SOTA performance on four of the five TC datasets. A comparison with a baseline method utilizing raw packet sequences revealed unexpected findings with potential implications for the broader TC field. We published the model architecture, trained weights, and transfer learning experiments.
Depth Anywhere: Enhancing 360 Monocular Depth Estimation via Perspective Distillation and Unlabeled Data Augmentation
Accurately estimating depth in 360-degree imagery is crucial for virtual reality, autonomous navigation, and immersive media applications. Existing depth estimation methods designed for perspective-view imagery fail when applied to 360-degree images due to different camera projections and distortions, whereas 360-degree methods perform inferior due to the lack of labeled data pairs. We propose a new depth estimation framework that utilizes unlabeled 360-degree data effectively. Our approach uses state-of-the-art perspective depth estimation models as teacher models to generate pseudo labels through a six-face cube projection technique, enabling efficient labeling of depth in 360-degree images. This method leverages the increasing availability of large datasets. Our approach includes two main stages: offline mask generation for invalid regions and an online semi-supervised joint training regime. We tested our approach on benchmark datasets such as Matterport3D and Stanford2D3D, showing significant improvements in depth estimation accuracy, particularly in zero-shot scenarios. Our proposed training pipeline can enhance any 360 monocular depth estimator and demonstrates effective knowledge transfer across different camera projections and data types. See our project page for results: https://albert100121.github.io/Depth-Anywhere/
FuseChat-3.0: Preference Optimization Meets Heterogeneous Model Fusion
We introduce FuseChat-3.0, a suite of large language models (LLMs) developed by integrating the strengths of heterogeneous source LLMs into more compact target LLMs. Our source models include the powerful Gemma-2-27B-it, Mistral-Large-Instruct-2407, Qwen-2.5-72B-Instruct, and Llama-3.1-70B-Instruct. For target models, we focus on three widely-used smaller variants-Llama-3.1-8B-Instruct, Gemma-2-9B-it, and Qwen-2.5-7B-Instruct-along with two ultra-compact options, Llama-3.2-3B-Instruct and Llama-3.2-1B-Instruct. To leverage the diverse capabilities of these source models, we develop a specialized data construction protocol tailored to various tasks and domains. The FuseChat-3.0 training pipeline consists of two key stages: (1) supervised fine-tuning (SFT) to align the target and source model distributions, and (2) Direct Preference Optimization (DPO) to apply preferences from multiple source LLMs to fine-tune the target model. The resulting FuseChat-3.0 models exhibit significant performance gains across tasks such as instruction following, general knowledge, mathematics, and coding. As illustrated in Figure 1, using Llama-3.1-8B-Instruct as the target model, our fusion approach achieves an average improvement of 6.8 points across 14 benchmarks. Moreover, it demonstrates remarkable gains of 37.1 points and 30.1 points on the instruction-following benchmarks AlpacaEval-2 and Arena-Hard, respectively. Our code, models, and datasets are available at https://github.com/SLIT-AI/FuseChat-3.0.
InfiR : Crafting Effective Small Language Models and Multimodal Small Language Models in Reasoning
Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have made significant advancements in reasoning capabilities. However, they still face challenges such as high computational demands and privacy concerns. This paper focuses on developing efficient Small Language Models (SLMs) and Multimodal Small Language Models (MSLMs) that retain competitive reasoning abilities. We introduce a novel training pipeline that enhances reasoning capabilities and facilitates deployment on edge devices, achieving state-of-the-art performance while minimizing development costs. \InfR~ aims to advance AI systems by improving reasoning, reducing adoption barriers, and addressing privacy concerns through smaller model sizes. Resources are available at https://github. com/Reallm-Labs/InfiR.
CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval
Despite the success of text retrieval in many NLP tasks, code retrieval remains a largely underexplored area. Most text retrieval systems are tailored for natural language queries, often neglecting the specific challenges of retrieving code. This gap leaves existing models unable to effectively capture the diversity of programming languages and tasks across different domains, highlighting the need for more focused research in code retrieval. To address this, we introduce CodeXEmbed, a family of large-scale code embedding models ranging from 400M to 7B parameters. Our novel training pipeline unifies multiple programming languages and transforms various code-related tasks into a common retrieval framework, enhancing model generalizability and retrieval performance. Our 7B model sets a new state-of-the-art (SOTA) in code retrieval, outperforming the previous leading model, Voyage-Code, by over 20% on CoIR benchmark. In addition to excelling in code retrieval, our models demonstrate competitive performance on the widely adopted BeIR text retrieval benchmark, offering versatility across domains. Experimental results demonstrate that improving retrieval performance significantly enhances end-to-end Retrieval-Augmented Generation (RAG) performance for code-related tasks.
OmniVLM: A Token-Compressed, Sub-Billion-Parameter Vision-Language Model for Efficient On-Device Inference
We present OmniVLM, a sub-billion-parameter vision-language model for efficient on-device inference. OmniVLM introduces a token compression mechanism that reduces visual token sequence length from 729 to 81 tokens, significantly reducing computational overhead while preserving visual-semantic fidelity. Through a multi-stage training pipeline of pretraining, supervised fine-tuning, and minimal-edit Direct Preference Optimization (DPO), OmniVLM matches the performance of larger models. On multiple benchmarks including ScienceQA, POPE, and MMMU, OmniVLM outperforms existing baselines like nanoLLAVA within a 968M-parameter footprint. Empirical results on the same laptop demonstrate 9.1x faster time-to-first-token (0.75s vs 6.82s) and 1.5x higher decoding speed (29.41 vs 19.20 tokens/s) compared to nanoLLAVA, enabling efficient deployment on edge devices. The model weights can be accessed on huggingface: https://huggingface.co/NexaAIDev/OmniVLM-968M, and the inference examples can be find in Appendix B.
Collaborative decoding of critical tokens for boosting factuality of large language models
The most common training pipeline for large language models includes pretraining, finetuning and aligning phases, with their respective resulting models, such as the pretrained model and the finetuned model. Finetuned and aligned models show improved abilities of instruction following and safe generation, however their abilities to stay factual about the world are impacted by the finetuning process. Furthermore, the common practice of using sampling during generation also increases chances of hallucination. In this work, we introduce a collaborative decoding framework to harness the high factuality within pretrained models through the concept of critical tokens. We first design a critical token classifier to decide which model to use for the next token, and subsequently generates the next token using different decoding strategies. Experiments with different models and datasets show that our decoding framework is able to reduce model hallucination significantly, showcasing the importance of the collaborative decoding framework.
CAPIVARA: Cost-Efficient Approach for Improving Multilingual CLIP Performance on Low-Resource Languages
This work introduces CAPIVARA, a cost-efficient framework designed to enhance the performance of multilingual CLIP models in low-resource languages. While CLIP has excelled in zero-shot vision-language tasks, the resource-intensive nature of model training remains challenging. Many datasets lack linguistic diversity, featuring solely English descriptions for images. CAPIVARA addresses this by augmenting text data using image captioning and machine translation to generate multiple synthetic captions in low-resource languages. We optimize the training pipeline with LiT, LoRA, and gradient checkpointing to alleviate the computational cost. Through extensive experiments, CAPIVARA emerges as state of the art in zero-shot tasks involving images and Portuguese texts. We show the potential for significant improvements in other low-resource languages, achieved by fine-tuning the pre-trained multilingual CLIP using CAPIVARA on a single GPU for 2 hours. Our model and code is available at https://github.com/hiaac-nlp/CAPIVARA.
Gen2Sim: Scaling up Robot Learning in Simulation with Generative Models
Generalist robot manipulators need to learn a wide variety of manipulation skills across diverse environments. Current robot training pipelines rely on humans to provide kinesthetic demonstrations or to program simulation environments and to code up reward functions for reinforcement learning. Such human involvement is an important bottleneck towards scaling up robot learning across diverse tasks and environments. We propose Generation to Simulation (Gen2Sim), a method for scaling up robot skill learning in simulation by automating generation of 3D assets, task descriptions, task decompositions and reward functions using large pre-trained generative models of language and vision. We generate 3D assets for simulation by lifting open-world 2D object-centric images to 3D using image diffusion models and querying LLMs to determine plausible physics parameters. Given URDF files of generated and human-developed assets, we chain-of-thought prompt LLMs to map these to relevant task descriptions, temporal decompositions, and corresponding python reward functions for reinforcement learning. We show Gen2Sim succeeds in learning policies for diverse long horizon tasks, where reinforcement learning with non temporally decomposed reward functions fails. Gen2Sim provides a viable path for scaling up reinforcement learning for robot manipulators in simulation, both by diversifying and expanding task and environment development, and by facilitating the discovery of reinforcement-learned behaviors through temporal task decomposition in RL. Our work contributes hundreds of simulated assets, tasks and demonstrations, taking a step towards fully autonomous robotic manipulation skill acquisition in simulation.
OpenFL: An open-source framework for Federated Learning
Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) projects without sharing sensitive data, such as, patient records, financial data, or classified secrets. Open Federated Learning (OpenFL https://github.com/intel/openfl) is an open-source framework for training ML algorithms using the data-private collaborative learning paradigm of FL. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and deep learning frameworks. Here, we summarize the motivation and development characteristics of OpenFL, with the intention of facilitating its application to existing ML model training in a production environment. Finally, we describe the first use of the OpenFL framework to train consensus ML models in a consortium of international healthcare organizations, as well as how it facilitates the first computational competition on FL.
The Devil is in the Details: StyleFeatureEditor for Detail-Rich StyleGAN Inversion and High Quality Image Editing
The task of manipulating real image attributes through StyleGAN inversion has been extensively researched. This process involves searching latent variables from a well-trained StyleGAN generator that can synthesize a real image, modifying these latent variables, and then synthesizing an image with the desired edits. A balance must be struck between the quality of the reconstruction and the ability to edit. Earlier studies utilized the low-dimensional W-space for latent search, which facilitated effective editing but struggled with reconstructing intricate details. More recent research has turned to the high-dimensional feature space F, which successfully inverses the input image but loses much of the detail during editing. In this paper, we introduce StyleFeatureEditor -- a novel method that enables editing in both w-latents and F-latents. This technique not only allows for the reconstruction of finer image details but also ensures their preservation during editing. We also present a new training pipeline specifically designed to train our model to accurately edit F-latents. Our method is compared with state-of-the-art encoding approaches, demonstrating that our model excels in terms of reconstruction quality and is capable of editing even challenging out-of-domain examples. Code is available at https://github.com/AIRI-Institute/StyleFeatureEditor.
Efficient-vDiT: Efficient Video Diffusion Transformers With Attention Tile
Despite the promise of synthesizing high-fidelity videos, Diffusion Transformers (DiTs) with 3D full attention suffer from expensive inference due to the complexity of attention computation and numerous sampling steps. For example, the popular Open-Sora-Plan model consumes more than 9 minutes for generating a single video of 29 frames. This paper addresses the inefficiency issue from two aspects: 1) Prune the 3D full attention based on the redundancy within video data; We identify a prevalent tile-style repetitive pattern in the 3D attention maps for video data, and advocate a new family of sparse 3D attention that holds a linear complexity w.r.t. the number of video frames. 2) Shorten the sampling process by adopting existing multi-step consistency distillation; We split the entire sampling trajectory into several segments and perform consistency distillation within each one to activate few-step generation capacities. We further devise a three-stage training pipeline to conjoin the low-complexity attention and few-step generation capacities. Notably, with 0.1% pretraining data, we turn the Open-Sora-Plan-1.2 model into an efficient one that is 7.4x -7.8x faster for 29 and 93 frames 720p video generation with a marginal performance trade-off in VBench. In addition, we demonstrate that our approach is amenable to distributed inference, achieving an additional 3.91x speedup when running on 4 GPUs with sequence parallelism.
ST-LLM: Large Language Models Are Effective Temporal Learners
Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation, prompting research efforts towards video LLMs to facilitate human-AI interaction at the video level. However, how to effectively encode and understand videos in video-based dialogue systems remains to be solved. In this paper, we investigate a straightforward yet unexplored question: Can we feed all spatial-temporal tokens into the LLM, thus delegating the task of video sequence modeling to the LLMs? Surprisingly, this simple approach yields significant improvements in video understanding. Based upon this, we propose ST-LLM, an effective video-LLM baseline with Spatial-Temporal sequence modeling inside LLM. Furthermore, to address the overhead and stability issues introduced by uncompressed video tokens within LLMs, we develop a dynamic masking strategy with tailor-made training objectives. For particularly long videos, we have also designed a global-local input module to balance efficiency and effectiveness. Consequently, we harness LLM for proficient spatial-temporal modeling, while upholding efficiency and stability. Extensive experimental results attest to the effectiveness of our method. Through a more concise model and training pipeline, ST-LLM establishes a new state-of-the-art result on VideoChatGPT-Bench and MVBench. Codes have been available at https://github.com/TencentARC/ST-LLM.
OMCAT: Omni Context Aware Transformer
Large Language Models (LLMs) have made significant strides in text generation and comprehension, with recent advancements extending into multimodal LLMs that integrate visual and audio inputs. However, these models continue to struggle with fine-grained, cross-modal temporal understanding, particularly when correlating events across audio and video streams. We address these challenges with two key contributions: a new dataset and model, called OCTAV and OMCAT respectively. OCTAV (Omni Context and Temporal Audio Video) is a novel dataset designed to capture event transitions across audio and video. Second, OMCAT (Omni Context Aware Transformer) is a powerful model that leverages RoTE (Rotary Time Embeddings), an innovative extension of RoPE, to enhance temporal grounding and computational efficiency in time-anchored tasks. Through a robust three-stage training pipeline-feature alignment, instruction tuning, and OCTAV-specific training-OMCAT excels in cross-modal temporal understanding. Our model demonstrates state-of-the-art performance on Audio-Visual Question Answering (AVQA) tasks and the OCTAV benchmark, showcasing significant gains in temporal reasoning and cross-modal alignment, as validated through comprehensive experiments and ablation studies. Our dataset and code will be made publicly available. The link to our demo page is https://om-cat.github.io.
Domain-Adaptive Full-Face Gaze Estimation via Novel-View-Synthesis and Feature Disentanglement
Along with the recent development of deep neural networks, appearance-based gaze estimation has succeeded considerably when training and testing within the same domain. Compared to the within-domain task, the variance of different domains makes the cross-domain performance drop severely, preventing gaze estimation deployment in real-world applications. Among all the factors, ranges of head pose and gaze are believed to play a significant role in the final performance of gaze estimation, while collecting large ranges of data is expensive. This work proposes an effective model training pipeline consisting of a training data synthesis and a gaze estimation model for unsupervised domain adaptation. The proposed data synthesis leverages the single-image 3D reconstruction to expand the range of the head poses from the source domain without requiring a 3D facial shape dataset. To bridge the inevitable gap between synthetic and real images, we further propose an unsupervised domain adaptation method suitable for synthetic full-face data. We propose a disentangling autoencoder network to separate gaze-related features and introduce background augmentation consistency loss to utilize the characteristics of the synthetic source domain. Through comprehensive experiments, we show that the model only using monocular-reconstructed synthetic training data can perform comparably to real data with a large label range. Our proposed domain adaptation approach further improves the performance on multiple target domains. The code and data will be available at https://github.com/ut-vision/AdaptiveGaze.
Fine-Tuning and Evaluating Open-Source Large Language Models for the Army Domain
In recent years, the widespread adoption of Large Language Models (LLMs) has sparked interest in their potential for application within the military domain. However, the current generation of LLMs demonstrate sub-optimal performance on Army use cases, due to the prevalence of domain-specific vocabulary and jargon. In order to fully leverage LLMs in-domain, many organizations have turned to fine-tuning to circumvent the prohibitive costs involved in training new LLMs from scratch. In light of this trend, we explore the viability of adapting open-source LLMs for usage in the Army domain in order to address their existing lack of domain-specificity. Our investigations have resulted in the creation of three distinct generations of TRACLM, a family of LLMs fine-tuned by The Research and Analysis Center (TRAC), Army Futures Command (AFC). Through continuous refinement of our training pipeline, each successive iteration of TRACLM displayed improved capabilities when applied to Army tasks and use cases. Furthermore, throughout our fine-tuning experiments, we recognized the need for an evaluation framework that objectively quantifies the Army domain-specific knowledge of LLMs. To address this, we developed MilBench, an extensible software framework that efficiently evaluates the Army knowledge of a given LLM using tasks derived from doctrine and assessments. We share preliminary results, models, methods, and recommendations on the creation of TRACLM and MilBench. Our work significantly informs the development of LLM technology across the DoD and augments senior leader decisions with respect to artificial intelligence integration.
A Survey on Mixup Augmentations and Beyond
As Deep Neural Networks have achieved thrilling breakthroughs in the past decade, data augmentations have garnered increasing attention as regularization techniques when massive labeled data are unavailable. Among existing augmentations, Mixup and relevant data-mixing methods that convexly combine selected samples and the corresponding labels are widely adopted because they yield high performances by generating data-dependent virtual data while easily migrating to various domains. This survey presents a comprehensive review of foundational mixup methods and their applications. We first elaborate on the training pipeline with mixup augmentations as a unified framework containing modules. A reformulated framework could contain various mixup methods and give intuitive operational procedures. Then, we systematically investigate the applications of mixup augmentations on vision downstream tasks, various data modalities, and some analysis \& theorems of mixup. Meanwhile, we conclude the current status and limitations of mixup research and point out further work for effective and efficient mixup augmentations. This survey can provide researchers with the current state of the art in mixup methods and provide some insights and guidance roles in the mixup arena. An online project with this survey is available at https://github.com/Westlake-AI/Awesome-Mixup.
Less Peaky and More Accurate CTC Forced Alignment by Label Priors
Connectionist temporal classification (CTC) models are known to have peaky output distributions. Such behavior is not a problem for automatic speech recognition (ASR), but it can cause inaccurate forced alignments (FA), especially at finer granularity, e.g., phoneme level. This paper aims at alleviating the peaky behavior for CTC and improve its suitability for forced alignment generation, by leveraging label priors, so that the scores of alignment paths containing fewer blanks are boosted and maximized during training. As a result, our CTC model produces less peaky posteriors and is able to more accurately predict the offset of the tokens besides their onset. It outperforms the standard CTC model and a heuristics-based approach for obtaining CTC's token offset timestamps by 12-40% in phoneme and word boundary errors (PBE and WBE) measured on the Buckeye and TIMIT data. Compared with the most widely used FA toolkit Montreal Forced Aligner (MFA), our method performs similarly on PBE/WBE on Buckeye, yet falls behind MFA on TIMIT. Nevertheless, our method has a much simpler training pipeline and better runtime efficiency. Our training recipe and pretrained model are released in TorchAudio.
Mastering Robot Manipulation with Multimodal Prompts through Pretraining and Multi-task Fine-tuning
Prompt-based learning has been demonstrated as a compelling paradigm contributing to large language models' tremendous success (LLMs). Inspired by their success in language tasks, existing research has leveraged LLMs in embodied instruction following and task planning. However, not much attention has been paid to embodied tasks with multimodal prompts, combining vision signals with text descriptions. This type of task poses a major challenge to robots' capability to understand the interconnection and complementarity between vision and language signals. In this work, we introduce an effective framework that learns a policy to perform robot manipulation with multimodal prompts from multi-task expert trajectories. Our methods consist of a two-stage training pipeline that performs inverse dynamics pretraining and multi-task finetuning. To facilitate multimodal understanding, we design our multimodal prompt encoder by augmenting a pretrained LM with a residual connection to the visual input and model the dependencies among action dimensions. Empirically, we evaluate the efficacy of our method on the VIMA-BENCH and establish a new state-of-the-art (10% improvement in success rate). Moreover, we demonstrate that our model exhibits remarkable in-context learning ability.
OCTraN: 3D Occupancy Convolutional Transformer Network in Unstructured Traffic Scenarios
Modern approaches for vision-centric environment perception for autonomous navigation make extensive use of self-supervised monocular depth estimation algorithms that output disparity maps. However, when this disparity map is projected onto 3D space, the errors in disparity are magnified, resulting in a depth estimation error that increases quadratically as the distance from the camera increases. Though Light Detection and Ranging (LiDAR) can solve this issue, it is expensive and not feasible for many applications. To address the challenge of accurate ranging with low-cost sensors, we propose, OCTraN, a transformer architecture that uses iterative-attention to convert 2D image features into 3D occupancy features and makes use of convolution and transpose convolution to efficiently operate on spatial information. We also develop a self-supervised training pipeline to generalize the model to any scene by eliminating the need for LiDAR ground truth by substituting it with pseudo-ground truth labels obtained from boosted monocular depth estimation.
Sample4Geo: Hard Negative Sampling For Cross-View Geo-Localisation
Cross-View Geo-Localisation is still a challenging task where additional modules, specific pre-processing or zooming strategies are necessary to determine accurate positions of images. Since different views have different geometries, pre-processing like polar transformation helps to merge them. However, this results in distorted images which then have to be rectified. Adding hard negatives to the training batch could improve the overall performance but with the default loss functions in geo-localisation it is difficult to include them. In this article, we present a simplified but effective architecture based on contrastive learning with symmetric InfoNCE loss that outperforms current state-of-the-art results. Our framework consists of a narrow training pipeline that eliminates the need of using aggregation modules, avoids further pre-processing steps and even increases the generalisation capability of the model to unknown regions. We introduce two types of sampling strategies for hard negatives. The first explicitly exploits geographically neighboring locations to provide a good starting point. The second leverages the visual similarity between the image embeddings in order to mine hard negative samples. Our work shows excellent performance on common cross-view datasets like CVUSA, CVACT, University-1652 and VIGOR. A comparison between cross-area and same-area settings demonstrate the good generalisation capability of our model.
Composable Function-preserving Expansions for Transformer Architectures
Training state-of-the-art neural networks requires a high cost in terms of compute and time. Model scale is recognized to be a critical factor to achieve and improve the state-of-the-art. Increasing the scale of a neural network normally requires restarting from scratch by randomly initializing all the parameters of the model, as this implies a change of architecture's parameters that does not allow for a straightforward transfer of knowledge from smaller size models. In this work, we propose six composable transformations to incrementally increase the size of transformer-based neural networks while preserving functionality, allowing to expand the capacity of the model as needed. We provide proof of exact function preservation under minimal initialization constraints for each transformation. The proposed methods may enable efficient training pipelines for larger and more powerful models by progressively expanding the architecture throughout training.
Frame Flexible Network
Existing video recognition algorithms always conduct different training pipelines for inputs with different frame numbers, which requires repetitive training operations and multiplying storage costs. If we evaluate the model using other frames which are not used in training, we observe the performance will drop significantly (see Fig.1), which is summarized as Temporal Frequency Deviation phenomenon. To fix this issue, we propose a general framework, named Frame Flexible Network (FFN), which not only enables the model to be evaluated at different frames to adjust its computation, but also reduces the memory costs of storing multiple models significantly. Concretely, FFN integrates several sets of training sequences, involves Multi-Frequency Alignment (MFAL) to learn temporal frequency invariant representations, and leverages Multi-Frequency Adaptation (MFAD) to further strengthen the representation abilities. Comprehensive empirical validations using various architectures and popular benchmarks solidly demonstrate the effectiveness and generalization of FFN (e.g., 7.08/5.15/2.17% performance gain at Frame 4/8/16 on Something-Something V1 dataset over Uniformer). Code is available at https://github.com/BeSpontaneous/FFN.
A Simple Recipe for Multilingual Grammatical Error Correction
This paper presents a simple recipe to train state-of-the-art multilingual Grammatical Error Correction (GEC) models. We achieve this by first proposing a language-agnostic method to generate a large number of synthetic examples. The second ingredient is to use large-scale multilingual language models (up to 11B parameters). Once fine-tuned on language-specific supervised sets we surpass the previous state-of-the-art results on GEC benchmarks in four languages: English, Czech, German and Russian. Having established a new set of baselines for GEC, we make our results easily reproducible and accessible by releasing a cLang-8 dataset. It is produced by using our best model, which we call gT5, to clean the targets of a widely used yet noisy lang-8 dataset. cLang-8 greatly simplifies typical GEC training pipelines composed of multiple fine-tuning stages -- we demonstrate that performing a single fine-tuning step on cLang-8 with the off-the-shelf language models yields further accuracy improvements over an already top-performing gT5 model for English.
InfiMM-HD: A Leap Forward in High-Resolution Multimodal Understanding
Multimodal Large Language Models (MLLMs) have experienced significant advancements recently. Nevertheless, challenges persist in the accurate recognition and comprehension of intricate details within high-resolution images. Despite being indispensable for the development of robust MLLMs, this area remains underinvestigated. To tackle this challenge, our work introduces InfiMM-HD, a novel architecture specifically designed for processing images of different resolutions with low computational overhead. This innovation facilitates the enlargement of MLLMs to higher-resolution capabilities. InfiMM-HD incorporates a cross-attention module and visual windows to reduce computation costs. By integrating this architectural design with a four-stage training pipeline, our model attains improved visual perception efficiently and cost-effectively. Empirical study underscores the robustness and effectiveness of InfiMM-HD, opening new avenues for exploration in related areas. Codes and models can be found at https://huggingface.co/Infi-MM/infimm-hd
TokenCompose: Grounding Diffusion with Token-level Supervision
We present TokenCompose, a Latent Diffusion Model for text-to-image generation that achieves enhanced consistency between user-specified text prompts and model-generated images. Despite its tremendous success, the standard denoising process in the Latent Diffusion Model takes text prompts as conditions only, absent explicit constraint for the consistency between the text prompts and the image contents, leading to unsatisfactory results for composing multiple object categories. TokenCompose aims to improve multi-category instance composition by introducing the token-wise consistency terms between the image content and object segmentation maps in the finetuning stage. TokenCompose can be applied directly to the existing training pipeline of text-conditioned diffusion models without extra human labeling information. By finetuning Stable Diffusion, the model exhibits significant improvements in multi-category instance composition and enhanced photorealism for its generated images.
How to Evaluate Reward Models for RLHF
We introduce a new benchmark for reward models that quantifies their ability to produce strong language models through RLHF (Reinforcement Learning from Human Feedback). The gold-standard approach is to run a full RLHF training pipeline and directly probe downstream LLM performance. However, this process is prohibitively expensive. To address this, we build a predictive model of downstream LLM performance by evaluating the reward model on proxy tasks. These proxy tasks consist of a large-scale human preference and a verifiable correctness preference dataset, in which we measure 12 metrics across 12 domains. To investigate which reward model metrics are most correlated to gold-standard RLHF outcomes, we launch an end-to-end RLHF experiment on a large-scale crowdsourced human preference platform to view real reward model downstream performance as ground truth. Ultimately, we compile our data and findings into Preference Proxy Evaluations (PPE), the first reward model benchmark explicitly linked to post-RLHF real-world human preference performance, which we open-source for public use and further development. Our code and evaluations can be found at https://github.com/lmarena/PPE .
Residual Mixture of Experts
Mixture of Experts (MoE) is able to scale up vision transformers effectively. However, it requires prohibiting computation resources to train a large MoE transformer. In this paper, we propose Residual Mixture of Experts (RMoE), an efficient training pipeline for MoE vision transformers on downstream tasks, such as segmentation and detection. RMoE achieves comparable results with the upper-bound MoE training, while only introducing minor additional training cost than the lower-bound non-MoE training pipelines. The efficiency is supported by our key observation: the weights of an MoE transformer can be factored into an input-independent core and an input-dependent residual. Compared with the weight core, the weight residual can be efficiently trained with much less computation resource, e.g., finetuning on the downstream data. We show that, compared with the current MoE training pipeline, we get comparable results while saving over 30% training cost. When compared with state-of-the-art non- MoE transformers, such as Swin-T / CvT-13 / Swin-L, we get +1.1 / 0.9 / 1.0 mIoU gain on ADE20K segmentation and +1.4 / 1.6 / 0.6 AP gain on MS-COCO object detection task with less than 3% additional training cost.
Text4Seg: Reimagining Image Segmentation as Text Generation
Multimodal Large Language Models (MLLMs) have shown exceptional capabilities in vision-language tasks; however, effectively integrating image segmentation into these models remains a significant challenge. In this paper, we introduce Text4Seg, a novel text-as-mask paradigm that casts image segmentation as a text generation problem, eliminating the need for additional decoders and significantly simplifying the segmentation process. Our key innovation is semantic descriptors, a new textual representation of segmentation masks where each image patch is mapped to its corresponding text label. This unified representation allows seamless integration into the auto-regressive training pipeline of MLLMs for easier optimization. We demonstrate that representing an image with 16times16 semantic descriptors yields competitive segmentation performance. To enhance efficiency, we introduce the Row-wise Run-Length Encoding (R-RLE), which compresses redundant text sequences, reducing the length of semantic descriptors by 74% and accelerating inference by 3times, without compromising performance. Extensive experiments across various vision tasks, such as referring expression segmentation and comprehension, show that Text4Seg achieves state-of-the-art performance on multiple datasets by fine-tuning different MLLM backbones. Our approach provides an efficient, scalable solution for vision-centric tasks within the MLLM framework.
MCUBench: A Benchmark of Tiny Object Detectors on MCUs
We introduce MCUBench, a benchmark featuring over 100 YOLO-based object detection models evaluated on the VOC dataset across seven different MCUs. This benchmark provides detailed data on average precision, latency, RAM, and Flash usage for various input resolutions and YOLO-based one-stage detectors. By conducting a controlled comparison with a fixed training pipeline, we collect comprehensive performance metrics. Our Pareto-optimal analysis shows that integrating modern detection heads and training techniques allows various YOLO architectures, including legacy models like YOLOv3, to achieve a highly efficient tradeoff between mean Average Precision (mAP) and latency. MCUBench serves as a valuable tool for benchmarking the MCU performance of contemporary object detectors and aids in model selection based on specific constraints.
LIONs: An Empirically Optimized Approach to Align Language Models
Alignment is a crucial step to enhance the instruction-following and conversational abilities of language models. Despite many recent work proposing new algorithms, datasets, and training pipelines, there is a lack of comprehensive studies measuring the impact of various design choices throughout the whole training process. We first conduct a rigorous analysis over a three-stage training pipeline consisting of supervised fine-tuning, offline preference learning, and online preference learning. We have found that using techniques like sequence packing, loss masking in SFT, increasing the preference dataset size in DPO, and online DPO training can significantly improve the performance of language models. We then train from Gemma-2b-base and LLama-3-8b-base, and find that our best models exceed the performance of the official instruct models tuned with closed-source data and algorithms. Our code and models can be found at https://github.com/Columbia-NLP-Lab/LionAlignment.
Customize-A-Video: One-Shot Motion Customization of Text-to-Video Diffusion Models
Image customization has been extensively studied in text-to-image (T2I) diffusion models, leading to impressive outcomes and applications. With the emergence of text-to-video (T2V) diffusion models, its temporal counterpart, motion customization, has not yet been well investigated. To address the challenge of one-shot motion customization, we propose Customize-A-Video that models the motion from a single reference video and adapting it to new subjects and scenes with both spatial and temporal varieties. It leverages low-rank adaptation (LoRA) on temporal attention layers to tailor the pre-trained T2V diffusion model for specific motion modeling from the reference videos. To disentangle the spatial and temporal information during the training pipeline, we introduce a novel concept of appearance absorbers that detach the original appearance from the single reference video prior to motion learning. Our proposed method can be easily extended to various downstream tasks, including custom video generation and editing, video appearance customization, and multiple motion combination, in a plug-and-play fashion. Our project page can be found at https://anonymous-314.github.io.
Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement
When enhancing low-light images, many deep learning algorithms are based on the Retinex theory. However, the Retinex model does not consider the corruptions hidden in the dark or introduced by the light-up process. Besides, these methods usually require a tedious multi-stage training pipeline and rely on convolutional neural networks, showing limitations in capturing long-range dependencies. In this paper, we formulate a simple yet principled One-stage Retinex-based Framework (ORF). ORF first estimates the illumination information to light up the low-light image and then restores the corruption to produce the enhanced image. We design an Illumination-Guided Transformer (IGT) that utilizes illumination representations to direct the modeling of non-local interactions of regions with different lighting conditions. By plugging IGT into ORF, we obtain our algorithm, Retinexformer. Comprehensive quantitative and qualitative experiments demonstrate that our Retinexformer significantly outperforms state-of-the-art methods on thirteen benchmarks. The user study and application on low-light object detection also reveal the latent practical values of our method. Code, models, and results are available at https://github.com/caiyuanhao1998/Retinexformer
StyleRes: Transforming the Residuals for Real Image Editing with StyleGAN
We present a novel image inversion framework and a training pipeline to achieve high-fidelity image inversion with high-quality attribute editing. Inverting real images into StyleGAN's latent space is an extensively studied problem, yet the trade-off between the image reconstruction fidelity and image editing quality remains an open challenge. The low-rate latent spaces are limited in their expressiveness power for high-fidelity reconstruction. On the other hand, high-rate latent spaces result in degradation in editing quality. In this work, to achieve high-fidelity inversion, we learn residual features in higher latent codes that lower latent codes were not able to encode. This enables preserving image details in reconstruction. To achieve high-quality editing, we learn how to transform the residual features for adapting to manipulations in latent codes. We train the framework to extract residual features and transform them via a novel architecture pipeline and cycle consistency losses. We run extensive experiments and compare our method with state-of-the-art inversion methods. Qualitative metrics and visual comparisons show significant improvements. Code: https://github.com/hamzapehlivan/StyleRes
MULLER: Multilayer Laplacian Resizer for Vision
Image resizing operation is a fundamental preprocessing module in modern computer vision. Throughout the deep learning revolution, researchers have overlooked the potential of alternative resizing methods beyond the commonly used resizers that are readily available, such as nearest-neighbors, bilinear, and bicubic. The key question of our interest is whether the front-end resizer affects the performance of deep vision models? In this paper, we present an extremely lightweight multilayer Laplacian resizer with only a handful of trainable parameters, dubbed MULLER resizer. MULLER has a bandpass nature in that it learns to boost details in certain frequency subbands that benefit the downstream recognition models. We show that MULLER can be easily plugged into various training pipelines, and it effectively boosts the performance of the underlying vision task with little to no extra cost. Specifically, we select a state-of-the-art vision Transformer, MaxViT, as the baseline, and show that, if trained with MULLER, MaxViT gains up to 0.6% top-1 accuracy, and meanwhile enjoys 36% inference cost saving to achieve similar top-1 accuracy on ImageNet-1k, as compared to the standard training scheme. Notably, MULLER's performance also scales with model size and training data size such as ImageNet-21k and JFT, and it is widely applicable to multiple vision tasks, including image classification, object detection and segmentation, as well as image quality assessment.
Animate Your Motion: Turning Still Images into Dynamic Videos
In recent years, diffusion models have made remarkable strides in text-to-video generation, sparking a quest for enhanced control over video outputs to more accurately reflect user intentions. Traditional efforts predominantly focus on employing either semantic cues, like images or depth maps, or motion-based conditions, like moving sketches or object bounding boxes. Semantic inputs offer a rich scene context but lack detailed motion specificity; conversely, motion inputs provide precise trajectory information but miss the broader semantic narrative. For the first time, we integrate both semantic and motion cues within a diffusion model for video generation, as demonstrated in Fig 1. To this end, we introduce the Scene and Motion Conditional Diffusion (SMCD), a novel methodology for managing multimodal inputs. It incorporates a recognized motion conditioning module and investigates various approaches to integrate scene conditions, promoting synergy between different modalities. For model training, we separate the conditions for the two modalities, introducing a two-stage training pipeline. Experimental results demonstrate that our design significantly enhances video quality, motion precision, and semantic coherence.
SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities
Understanding and reasoning about spatial relationships is a fundamental capability for Visual Question Answering (VQA) and robotics. While Vision Language Models (VLM) have demonstrated remarkable performance in certain VQA benchmarks, they still lack capabilities in 3D spatial reasoning, such as recognizing quantitative relationships of physical objects like distances or size differences. We hypothesize that VLMs' limited spatial reasoning capability is due to the lack of 3D spatial knowledge in training data and aim to solve this problem by training VLMs with Internet-scale spatial reasoning data. To this end, we present a system to facilitate this approach. We first develop an automatic 3D spatial VQA data generation framework that scales up to 2 billion VQA examples on 10 million real-world images. We then investigate various factors in the training recipe, including data quality, training pipeline, and VLM architecture. Our work features the first internet-scale 3D spatial reasoning dataset in metric space. By training a VLM on such data, we significantly enhance its ability on both qualitative and quantitative spatial VQA. Finally, we demonstrate that this VLM unlocks novel downstream applications in chain-of-thought spatial reasoning and robotics due to its quantitative estimation capability. Project website: https://spatial-vlm.github.io/
Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors
Diffusion-based image super-resolution (SR) methods have achieved remarkable success by leveraging large pre-trained text-to-image diffusion models as priors. However, these methods still face two challenges: the requirement for dozens of sampling steps to achieve satisfactory results, which limits efficiency in real scenarios, and the neglect of degradation models, which are critical auxiliary information in solving the SR problem. In this work, we introduced a novel one-step SR model, which significantly addresses the efficiency issue of diffusion-based SR methods. Unlike existing fine-tuning strategies, we designed a degradation-guided Low-Rank Adaptation (LoRA) module specifically for SR, which corrects the model parameters based on the pre-estimated degradation information from low-resolution images. This module not only facilitates a powerful data-dependent or degradation-dependent SR model but also preserves the generative prior of the pre-trained diffusion model as much as possible. Furthermore, we tailor a novel training pipeline by introducing an online negative sample generation strategy. Combined with the classifier-free guidance strategy during inference, it largely improves the perceptual quality of the super-resolution results. Extensive experiments have demonstrated the superior efficiency and effectiveness of the proposed model compared to recent state-of-the-art methods.
An Emulator for Fine-Tuning Large Language Models using Small Language Models
Widely used language models (LMs) are typically built by scaling up a two-stage training pipeline: a pre-training stage that uses a very large, diverse dataset of text and a fine-tuning (sometimes, 'alignment') stage that uses targeted examples or other specifications of desired behaviors. While it has been hypothesized that knowledge and skills come from pre-training, and fine-tuning mostly filters this knowledge and skillset, this intuition has not been extensively tested. To aid in doing so, we introduce a novel technique for decoupling the knowledge and skills gained in these two stages, enabling a direct answer to the question, "What would happen if we combined the knowledge learned by a large model during pre-training with the knowledge learned by a small model during fine-tuning (or vice versa)?" Using an RL-based framework derived from recent developments in learning from human preferences, we introduce emulated fine-tuning (EFT), a principled and practical method for sampling from a distribution that approximates (or 'emulates') the result of pre-training and fine-tuning at different scales. Our experiments with EFT show that scaling up fine-tuning tends to improve helpfulness, while scaling up pre-training tends to improve factuality. Beyond decoupling scale, we show that EFT enables test-time adjustment of competing behavioral traits like helpfulness and harmlessness without additional training. Finally, a special case of emulated fine-tuning, which we call LM up-scaling, avoids resource-intensive fine-tuning of large pre-trained models by ensembling them with small fine-tuned models, essentially emulating the result of fine-tuning the large pre-trained model. Up-scaling consistently improves helpfulness and factuality of instruction-following models in the Llama, Llama-2, and Falcon families, without additional hyperparameters or training.
QLIP: Text-Aligned Visual Tokenization Unifies Auto-Regressive Multimodal Understanding and Generation
We introduce Quantized Language-Image Pretraining (QLIP), a visual tokenization method that combines state-of-the-art reconstruction quality with state-of-the-art zero-shot image understanding. QLIP trains a binary-spherical-quantization-based autoencoder with reconstruction and language-image alignment objectives. We are the first to show that the two objectives do not need to be at odds. We balance the two loss terms dynamically during training and show that a two-stage training pipeline effectively mixes the large-batch requirements of image-language pre-training with the memory bottleneck imposed by the reconstruction objective. We validate the effectiveness of QLIP for multimodal understanding and text-conditioned image generation with a single model. Specifically, QLIP serves as a drop-in replacement for the visual encoder for LLaVA and the image tokenizer for LlamaGen with comparable or even better performance. Finally, we demonstrate that QLIP enables a unified mixed-modality auto-regressive model for understanding and generation.
CrossOver: 3D Scene Cross-Modal Alignment
Multi-modal 3D object understanding has gained significant attention, yet current approaches often assume complete data availability and rigid alignment across all modalities. We present CrossOver, a novel framework for cross-modal 3D scene understanding via flexible, scene-level modality alignment. Unlike traditional methods that require aligned modality data for every object instance, CrossOver learns a unified, modality-agnostic embedding space for scenes by aligning modalities - RGB images, point clouds, CAD models, floorplans, and text descriptions - with relaxed constraints and without explicit object semantics. Leveraging dimensionality-specific encoders, a multi-stage training pipeline, and emergent cross-modal behaviors, CrossOver supports robust scene retrieval and object localization, even with missing modalities. Evaluations on ScanNet and 3RScan datasets show its superior performance across diverse metrics, highlighting adaptability for real-world applications in 3D scene understanding.
Derm-T2IM: Harnessing Synthetic Skin Lesion Data via Stable Diffusion Models for Enhanced Skin Disease Classification using ViT and CNN
This study explores the utilization of Dermatoscopic synthetic data generated through stable diffusion models as a strategy for enhancing the robustness of machine learning model training. Synthetic data generation plays a pivotal role in mitigating challenges associated with limited labeled datasets, thereby facilitating more effective model training. In this context, we aim to incorporate enhanced data transformation techniques by extending the recent success of few-shot learning and a small amount of data representation in text-to-image latent diffusion models. The optimally tuned model is further used for rendering high-quality skin lesion synthetic data with diverse and realistic characteristics, providing a valuable supplement and diversity to the existing training data. We investigate the impact of incorporating newly generated synthetic data into the training pipeline of state-of-art machine learning models, assessing its effectiveness in enhancing model performance and generalization to unseen real-world data. Our experimental results demonstrate the efficacy of the synthetic data generated through stable diffusion models helps in improving the robustness and adaptability of end-to-end CNN and vision transformer models on two different real-world skin lesion datasets.
LLaVA-ST: A Multimodal Large Language Model for Fine-Grained Spatial-Temporal Understanding
Recent advancements in multimodal large language models (MLLMs) have shown promising results, yet existing approaches struggle to effectively handle both temporal and spatial localization simultaneously. This challenge stems from two key issues: first, incorporating spatial-temporal localization introduces a vast number of coordinate combinations, complicating the alignment of linguistic and visual coordinate representations; second, encoding fine-grained temporal and spatial information during video feature compression is inherently difficult. To address these issues, we propose LLaVA-ST, a MLLM for fine-grained spatial-temporal multimodal understanding. In LLaVA-ST, we propose Language-Aligned Positional Embedding, which embeds the textual coordinate special token into the visual space, simplifying the alignment of fine-grained spatial-temporal correspondences. Additionally, we design the Spatial-Temporal Packer, which decouples the feature compression of temporal and spatial resolutions into two distinct point-to-region attention processing streams. Furthermore, we propose ST-Align dataset with 4.3M training samples for fine-grained spatial-temporal multimodal understanding. With ST-align, we present a progressive training pipeline that aligns the visual and textual feature through sequential coarse-to-fine stages.Additionally, we introduce an ST-Align benchmark to evaluate spatial-temporal interleaved fine-grained understanding tasks, which include Spatial-Temporal Video Grounding (STVG) , Event Localization and Captioning (ELC) and Spatial Video Grounding (SVG). LLaVA-ST achieves outstanding performance on 11 benchmarks requiring fine-grained temporal, spatial, or spatial-temporal interleaving multimodal understanding. Our code, data and benchmark will be released at Our code, data and benchmark will be released at https://github.com/appletea233/LLaVA-ST .
Biology Instructions: A Dataset and Benchmark for Multi-Omics Sequence Understanding Capability of Large Language Models
Large language models have already demonstrated their formidable capabilities in general domains, ushering in a revolutionary transformation. However, exploring and exploiting the extensive knowledge of these models to comprehend multi-omics biology remains underexplored. To fill this research gap, we first introduce Biology-Instructions, the first large-scale multi-omics biological sequences-related instruction-tuning dataset including DNA, RNA, proteins, and multi-molecules, designed to bridge the gap between large language models (LLMs) and complex biological sequences-related tasks. This dataset can enhance the versatility of LLMs by integrating diverse biological sequenced-based prediction tasks with advanced reasoning capabilities, while maintaining conversational fluency. Additionally, we reveal significant performance limitations in even state-of-the-art LLMs on biological sequence-related multi-omics tasks without specialized pre-training and instruction-tuning. We further develop a strong baseline called ChatMultiOmics with a novel three-stage training pipeline, demonstrating the powerful ability to understand biology by using Biology-Instructions. Biology-Instructions and ChatMultiOmics are publicly available and crucial resources for enabling more effective integration of LLMs with multi-omics sequence analysis.
SSR: Alignment-Aware Modality Connector for Speech Language Models
Fusing speech into pre-trained language model (SpeechLM) usually suffers from inefficient encoding of long-form speech and catastrophic forgetting of pre-trained text modality. We propose SSR-Connector (Segmented Speech Representation Connector) for better modality fusion. Leveraging speech-text alignments, our approach segments and compresses speech features to match the granularity of text embeddings. Additionally, we introduce a two-stage training pipeline that includes the distillation and fine-tuning phases to mitigate catastrophic forgetting. SSR-Connector outperforms existing mechanism for speech-text modality fusion, consistently achieving better speech understanding (e.g., +10 accuracy on StoryCloze and +20 on Speech-MMLU) while preserving pre-trained text ability.
LM-PUB-QUIZ: A Comprehensive Framework for Zero-Shot Evaluation of Relational Knowledge in Language Models
Knowledge probing evaluates the extent to which a language model (LM) has acquired relational knowledge during its pre-training phase. It provides a cost-effective means of comparing LMs of different sizes and training setups and is useful for monitoring knowledge gained or lost during continual learning (CL). In prior work, we presented an improved knowledge probe called BEAR (Wiland et al., 2024), which enables the comparison of LMs trained with different pre-training objectives (causal and masked LMs) and addresses issues of skewed distributions in previous probes to deliver a more unbiased reading of LM knowledge. With this paper, we present LM-PUB- QUIZ, a Python framework and leaderboard built around the BEAR probing mechanism that enables researchers and practitioners to apply it in their work. It provides options for standalone evaluation and direct integration into the widely-used training pipeline of the Hugging Face TRANSFORMERS library. Further, it provides a fine-grained analysis of different knowledge types to assist users in better understanding the knowledge in each evaluated LM. We publicly release LM-PUB-QUIZ as an open-source project.
Kangaroo: A Powerful Video-Language Model Supporting Long-context Video Input
Rapid advancements have been made in extending Large Language Models (LLMs) to Large Multi-modal Models (LMMs). However, extending input modality of LLMs to video data remains a challenging endeavor, especially for long videos. Due to insufficient access to large-scale high-quality video data and the excessive compression of visual features, current methods exhibit limitations in effectively processing long videos. In this paper, we introduce Kangaroo, a powerful Video LMM aimed at addressing these challenges. Confronted with issue of inadequate training data, we develop a data curation system to build a large-scale dataset with high-quality annotations for vision-language pre-training and instruction tuning. In addition, we design a curriculum training pipeline with gradually increasing resolution and number of input frames to accommodate long videos. Evaluation results demonstrate that, with 8B parameters, Kangaroo achieves state-of-the-art performance across a variety of video understanding benchmarks while exhibiting competitive results on others. Particularly, on benchmarks specialized for long videos, Kangaroo excels some larger models with over 10B parameters and proprietary models.
BackdoorLLM: A Comprehensive Benchmark for Backdoor Attacks on Large Language Models
Generative Large Language Models (LLMs) have made significant strides across various tasks, but they remain vulnerable to backdoor attacks, where specific triggers in the prompt cause the LLM to generate adversary-desired responses. While most backdoor research has focused on vision or text classification tasks, backdoor attacks in text generation have been largely overlooked. In this work, we introduce BackdoorLLM, the first comprehensive benchmark for studying backdoor attacks on LLMs. BackdoorLLM features: 1) a repository of backdoor benchmarks with a standardized training pipeline, 2) diverse attack strategies, including data poisoning, weight poisoning, hidden state attacks, and chain-of-thought attacks, 3) extensive evaluations with over 200 experiments on 8 attacks across 7 scenarios and 6 model architectures, and 4) key insights into the effectiveness and limitations of backdoors in LLMs. We hope BackdoorLLM will raise awareness of backdoor threats and contribute to advancing AI safety. The code is available at https://github.com/bboylyg/BackdoorLLM.
Face2Diffusion for Fast and Editable Face Personalization
Face personalization aims to insert specific faces, taken from images, into pretrained text-to-image diffusion models. However, it is still challenging for previous methods to preserve both the identity similarity and editability due to overfitting to training samples. In this paper, we propose Face2Diffusion (F2D) for high-editability face personalization. The core idea behind F2D is that removing identity-irrelevant information from the training pipeline prevents the overfitting problem and improves editability of encoded faces. F2D consists of the following three novel components: 1) Multi-scale identity encoder provides well-disentangled identity features while keeping the benefits of multi-scale information, which improves the diversity of camera poses. 2) Expression guidance disentangles face expressions from identities and improves the controllability of face expressions. 3) Class-guided denoising regularization encourages models to learn how faces should be denoised, which boosts the text-alignment of backgrounds. Extensive experiments on the FaceForensics++ dataset and diverse prompts demonstrate our method greatly improves the trade-off between the identity- and text-fidelity compared to previous state-of-the-art methods.
Advancing Large Language Models to Capture Varied Speaking Styles and Respond Properly in Spoken Conversations
In spoken dialogue, even if two current turns are the same sentence, their responses might still differ when they are spoken in different styles. The spoken styles, containing paralinguistic and prosodic information, mark the most significant difference between text and speech modality. When using text-only LLMs to model spoken dialogue, text-only LLMs cannot give different responses based on the speaking style of the current turn. In this paper, we focus on enabling LLMs to listen to the speaking styles and respond properly. Our goal is to teach the LLM that "even if the sentences are identical if they are spoken in different styles, their corresponding responses might be different". Since there is no suitable dataset for achieving this goal, we collect a speech-to-speech dataset, StyleTalk, with the following desired characteristics: when two current speeches have the same content but are spoken in different styles, their responses will be different. To teach LLMs to understand and respond properly to the speaking styles, we propose the Spoken-LLM framework that can model the linguistic content and the speaking styles. We train Spoken-LLM using the StyleTalk dataset and devise a two-stage training pipeline to help the Spoken-LLM better learn the speaking styles. Based on extensive experiments, we show that Spoken-LLM outperforms text-only baselines and prior speech LLMs methods.
WeatherProof: A Paired-Dataset Approach to Semantic Segmentation in Adverse Weather
The introduction of large, foundational models to computer vision has led to drastically improved performance on the task of semantic segmentation. However, these existing methods exhibit a large performance drop when testing on images degraded by weather conditions such as rain, fog, or snow. We introduce a general paired-training method that can be applied to all current foundational model architectures that leads to improved performance on images in adverse weather conditions. To this end, we create the WeatherProof Dataset, the first semantic segmentation dataset with accurate clear and adverse weather image pairs, which not only enables our new training paradigm, but also improves the evaluation of the performance gap between clear and degraded segmentation. We find that training on these paired clear and adverse weather frames which share an underlying scene results in improved performance on adverse weather data. With this knowledge, we propose a training pipeline which accentuates the advantages of paired-data training using consistency losses and language guidance, which leads to performance improvements by up to 18.4% as compared to standard training procedures.
Exploring Continual Learning for Code Generation Models
Large-scale code generation models such as Codex and CodeT5 have achieved impressive performance. However, libraries are upgraded or deprecated very frequently and re-training large-scale language models is computationally expensive. Therefore, Continual Learning (CL) is an important aspect that remains underexplored in the code domain. In this paper, we introduce a benchmark called CodeTask-CL that covers a wide range of tasks, including code generation, translation, summarization, and refinement, with different input and output programming languages. Next, on our CodeTask-CL benchmark, we compare popular CL techniques from NLP and Vision domains. We find that effective methods like Prompt Pooling (PP) suffer from catastrophic forgetting due to the unstable training of the prompt selection mechanism caused by stark distribution shifts in coding tasks. We address this issue with our proposed method, Prompt Pooling with Teacher Forcing (PP-TF), that stabilizes training by enforcing constraints on the prompt selection mechanism and leads to a 21.54% improvement over Prompt Pooling. Along with the benchmark, we establish a training pipeline that can be used for CL on code models, which we believe can motivate further development of CL methods for code models. Our code is available at https://github.com/amazon-science/codetaskcl-pptf
Combating Mode Collapse in GANs via Manifold Entropy Estimation
Generative Adversarial Networks (GANs) have shown compelling results in various tasks and applications in recent years. However, mode collapse remains a critical problem in GANs. In this paper, we propose a novel training pipeline to address the mode collapse issue of GANs. Different from existing methods, we propose to generalize the discriminator as feature embedding and maximize the entropy of distributions in the embedding space learned by the discriminator. Specifically, two regularization terms, i.e., Deep Local Linear Embedding (DLLE) and Deep Isometric feature Mapping (DIsoMap), are designed to encourage the discriminator to learn the structural information embedded in the data, such that the embedding space learned by the discriminator can be well-formed. Based on the well-learned embedding space supported by the discriminator, a non-parametric entropy estimator is designed to efficiently maximize the entropy of embedding vectors, playing as an approximation of maximizing the entropy of the generated distribution. By improving the discriminator and maximizing the distance of the most similar samples in the embedding space, our pipeline effectively reduces the mode collapse without sacrificing the quality of generated samples. Extensive experimental results show the effectiveness of our method, which outperforms the GAN baseline, MaF-GAN on CelebA (9.13 vs. 12.43 in FID) and surpasses the recent state-of-the-art energy-based model on the ANIME-FACE dataset (2.80 vs. 2.26 in Inception score). The code is available at https://github.com/HaozheLiu-ST/MEE
FloWaveNet : A Generative Flow for Raw Audio
Most modern text-to-speech architectures use a WaveNet vocoder for synthesizing high-fidelity waveform audio, but there have been limitations, such as high inference time, in its practical application due to its ancestral sampling scheme. The recently suggested Parallel WaveNet and ClariNet have achieved real-time audio synthesis capability by incorporating inverse autoregressive flow for parallel sampling. However, these approaches require a two-stage training pipeline with a well-trained teacher network and can only produce natural sound by using probability distillation along with auxiliary loss terms. We propose FloWaveNet, a flow-based generative model for raw audio synthesis. FloWaveNet requires only a single-stage training procedure and a single maximum likelihood loss, without any additional auxiliary terms, and it is inherently parallel due to the characteristics of generative flow. The model can efficiently sample raw audio in real-time, with clarity comparable to previous two-stage parallel models. The code and samples for all models, including our FloWaveNet, are publicly available.
MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code
Code has been shown to be effective in enhancing the mathematical reasoning abilities of large language models due to its precision and accuracy. Previous works involving continued mathematical pretraining often include code that utilizes math-related packages, which are primarily designed for fields such as engineering, machine learning, signal processing, or module testing, rather than being directly focused on mathematical reasoning. In this paper, we introduce a novel method for generating mathematical code accompanied with corresponding reasoning steps for continued pretraining. Our approach begins with the construction of a high-quality mathematical continued pretraining dataset by incorporating math-related web data, code using mathematical packages, math textbooks, and synthetic data. Next, we construct reasoning steps by extracting LaTeX expressions, the conditions needed for the expressions, and the results of the expressions from the previously collected dataset. Based on this extracted information, we generate corresponding code to accurately capture the mathematical reasoning process. Appending the generated code to each reasoning step results in data consisting of paired natural language reasoning steps and their corresponding code. Combining this data with the original dataset results in a 19.2B-token high-performing mathematical pretraining corpus, which we name MathCode-Pile. Training several popular base models with this corpus significantly improves their mathematical abilities, leading to the creation of the MathCoder2 family of models. All of our data processing and training code is open-sourced, ensuring full transparency and easy reproducibility of the entire data collection and training pipeline. The code is released at https://github.com/mathllm/MathCoder2 .
DriveDreamer: Towards Real-world-driven World Models for Autonomous Driving
World models, especially in autonomous driving, are trending and drawing extensive attention due to their capacity for comprehending driving environments. The established world model holds immense potential for the generation of high-quality driving videos, and driving policies for safe maneuvering. However, a critical limitation in relevant research lies in its predominant focus on gaming environments or simulated settings, thereby lacking the representation of real-world driving scenarios. Therefore, we introduce DriveDreamer, a pioneering world model entirely derived from real-world driving scenarios. Regarding that modeling the world in intricate driving scenes entails an overwhelming search space, we propose harnessing the powerful diffusion model to construct a comprehensive representation of the complex environment. Furthermore, we introduce a two-stage training pipeline. In the initial phase, DriveDreamer acquires a deep understanding of structured traffic constraints, while the subsequent stage equips it with the ability to anticipate future states. The proposed DriveDreamer is the first world model established from real-world driving scenarios. We instantiate DriveDreamer on the challenging nuScenes benchmark, and extensive experiments verify that DriveDreamer empowers precise, controllable video generation that faithfully captures the structural constraints of real-world traffic scenarios. Additionally, DriveDreamer enables the generation of realistic and reasonable driving policies, opening avenues for interaction and practical applications.
Active Self-Supervised Learning: A Few Low-Cost Relationships Are All You Need
Self-Supervised Learning (SSL) has emerged as the solution of choice to learn transferable representations from unlabeled data. However, SSL requires to build samples that are known to be semantically akin, i.e. positive views. Requiring such knowledge is the main limitation of SSL and is often tackled by ad-hoc strategies e.g. applying known data-augmentations to the same input. In this work, we generalize and formalize this principle through Positive Active Learning (PAL) where an oracle queries semantic relationships between samples. PAL achieves three main objectives. First, it unveils a theoretically grounded learning framework beyond SSL, that can be extended to tackle supervised and semi-supervised learning depending on the employed oracle. Second, it provides a consistent algorithm to embed a priori knowledge, e.g. some observed labels, into any SSL losses without any change in the training pipeline. Third, it provides a proper active learning framework yielding low-cost solutions to annotate datasets, arguably bringing the gap between theory and practice of active learning that is based on simple-to-answer-by-non-experts queries of semantic relationships between inputs.
Exploring Vision Transformers as Diffusion Learners
Score-based diffusion models have captured widespread attention and funded fast progress of recent vision generative tasks. In this paper, we focus on diffusion model backbone which has been much neglected before. We systematically explore vision Transformers as diffusion learners for various generative tasks. With our improvements the performance of vanilla ViT-based backbone (IU-ViT) is boosted to be on par with traditional U-Net-based methods. We further provide a hypothesis on the implication of disentangling the generative backbone as an encoder-decoder structure and show proof-of-concept experiments verifying the effectiveness of a stronger encoder for generative tasks with ASymmetriC ENcoder Decoder (ASCEND). Our improvements achieve competitive results on CIFAR-10, CelebA, LSUN, CUB Bird and large-resolution text-to-image tasks. To the best of our knowledge, we are the first to successfully train a single diffusion model on text-to-image task beyond 64x64 resolution. We hope this will motivate people to rethink the modeling choices and the training pipelines for diffusion-based generative models.
Qtok: A Comprehensive Framework for Evaluating Multilingual Tokenizer Quality in Large Language Models
In the development of Large Language Models (LLMs), considerable attention has been given to the quality of training datasets. However, the role of tokenizers in the LLM training pipeline, particularly for multilingual models, has received less focus. The quality of tokenization can significantly impact a model's ability to handle diverse languages effectively. We introduce Qtok, a tool designed to assess tokenizer quality with a specific emphasis on their performance in multilingual contexts. Our research proposes a set of metrics for evaluating tokenizer quality, including measures of language coverage, token completeness, and distribution across languages and linguistic categories. Qtok applies these metrics to evaluate 13 distinct tokenizers from 58 publicly available models, analyzing their output across different linguistic contexts. Our analysis revealed significant variations in token distribution across languages and categories, highlighting potential biases and areas for improvement in current tokenization strategies. This research contributes to the field of tokenizer evaluation within multilingual LLM development by providing a systematic approach to assessing tokenizer quality. Our findings highlight the critical role of tokenization in multilingual LLM capability. The Qtok tool and our analysis methodology offer practical means for researchers to evaluate and improve tokenization strategies for multilingual applications. We offer a method to compare tokenizer quality across these metrics, which may be useful when selecting or adjusting tokenizers for specific multilingual LLM applications.
Learning Manipulation by Predicting Interaction
Representation learning approaches for robotic manipulation have boomed in recent years. Due to the scarcity of in-domain robot data, prevailing methodologies tend to leverage large-scale human video datasets to extract generalizable features for visuomotor policy learning. Despite the progress achieved, prior endeavors disregard the interactive dynamics that capture behavior patterns and physical interaction during the manipulation process, resulting in an inadequate understanding of the relationship between objects and the environment. To this end, we propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction (MPI) and enhances the visual representation.Given a pair of keyframes representing the initial and final states, along with language instructions, our algorithm predicts the transition frame and detects the interaction object, respectively. These two learning objectives achieve superior comprehension towards "how-to-interact" and "where-to-interact". We conduct a comprehensive evaluation of several challenging robotic tasks.The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms as well as simulation environments. Code and checkpoints are publicly shared at https://github.com/OpenDriveLab/MPI.
An Empirical Study and Analysis of Text-to-Image Generation Using Large Language Model-Powered Textual Representation
One critical prerequisite for faithful text-to-image generation is the accurate understanding of text inputs. Existing methods leverage the text encoder of the CLIP model to represent input prompts. However, the pre-trained CLIP model can merely encode English with a maximum token length of 77. Moreover, the model capacity of the text encoder from CLIP is relatively limited compared to Large Language Models (LLMs), which offer multilingual input, accommodate longer context, and achieve superior text representation. In this paper, we investigate LLMs as the text encoder to improve the language understanding in text-to-image generation. Unfortunately, training text-to-image generative model with LLMs from scratch demands significant computational resources and data. To this end, we introduce a three-stage training pipeline that effectively and efficiently integrates the existing text-to-image model with LLMs. Specifically, we propose a lightweight adapter that enables fast training of the text-to-image model using the textual representations from LLMs. Extensive experiments demonstrate that our model supports not only multilingual but also longer input context with superior image generation quality.
Improving Text Embeddings with Large Language Models
In this paper, we introduce a novel and simple method for obtaining high-quality text embeddings using only synthetic data and less than 1k training steps. Unlike existing methods that often depend on multi-stage intermediate pre-training with billions of weakly-supervised text pairs, followed by fine-tuning with a few labeled datasets, our method does not require building complex training pipelines or relying on manually collected datasets that are often constrained by task diversity and language coverage. We leverage proprietary LLMs to generate diverse synthetic data for hundreds of thousands of text embedding tasks across nearly 100 languages. We then fine-tune open-source decoder-only LLMs on the synthetic data using standard contrastive loss. Experiments demonstrate that our method achieves strong performance on highly competitive text embedding benchmarks without using any labeled data. Furthermore, when fine-tuned with a mixture of synthetic and labeled data, our model sets new state-of-the-art results on the BEIR and MTEB benchmarks.
Fine-Tuning Small Language Models for Domain-Specific AI: An Edge AI Perspective
Deploying large scale language models on edge devices faces inherent challenges such as high computational demands, energy consumption, and potential data privacy risks. This paper introduces the Shakti Small Language Models (SLMs) Shakti-100M, Shakti-250M, and Shakti-500M which target these constraints headon. By combining efficient architectures, quantization techniques, and responsible AI principles, the Shakti series enables on-device intelligence for smartphones, smart appliances, IoT systems, and beyond. We provide comprehensive insights into their design philosophy, training pipelines, and benchmark performance on both general tasks (e.g., MMLU, Hellaswag) and specialized domains (healthcare, finance, and legal). Our findings illustrate that compact models, when carefully engineered and fine-tuned, can meet and often exceed expectations in real-world edge-AI scenarios.
PIN: Positional Insert Unlocks Object Localisation Abilities in VLMs
Vision-Language Models (VLMs), such as Flamingo and GPT-4V, have shown immense potential by integrating large language models with vision systems. Nevertheless, these models face challenges in the fundamental computer vision task of object localisation, due to their training on multimodal data containing mostly captions without explicit spatial grounding. While it is possible to construct custom, supervised training pipelines with bounding box annotations that integrate with VLMs, these result in specialized and hard-to-scale models. In this paper, we aim to explore the limits of caption-based VLMs and instead propose to tackle the challenge in a simpler manner by i) keeping the weights of a caption-based VLM frozen and ii) not using any supervised detection data. To this end, we introduce an input-agnostic Positional Insert (PIN), a learnable spatial prompt, containing a minimal set of parameters that are slid inside the frozen VLM, unlocking object localisation capabilities. Our PIN module is trained with a simple next-token prediction task on synthetic data without requiring the introduction of new output heads. Our experiments demonstrate strong zero-shot localisation performances on a variety of images, including Pascal VOC, COCO, LVIS, and diverse images like paintings or cartoons.
Nightshade: Prompt-Specific Poisoning Attacks on Text-to-Image Generative Models
Data poisoning attacks manipulate training data to introduce unexpected behaviors into machine learning models at training time. For text-to-image generative models with massive training datasets, current understanding of poisoning attacks suggests that a successful attack would require injecting millions of poison samples into their training pipeline. In this paper, we show that poisoning attacks can be successful on generative models. We observe that training data per concept can be quite limited in these models, making them vulnerable to prompt-specific poisoning attacks, which target a model's ability to respond to individual prompts. We introduce Nightshade, an optimized prompt-specific poisoning attack where poison samples look visually identical to benign images with matching text prompts. Nightshade poison samples are also optimized for potency and can corrupt an Stable Diffusion SDXL prompt in <100 poison samples. Nightshade poison effects "bleed through" to related concepts, and multiple attacks can composed together in a single prompt. Surprisingly, we show that a moderate number of Nightshade attacks can destabilize general features in a text-to-image generative model, effectively disabling its ability to generate meaningful images. Finally, we propose the use of Nightshade and similar tools as a last defense for content creators against web scrapers that ignore opt-out/do-not-crawl directives, and discuss possible implications for model trainers and content creators.
Allegro: Open the Black Box of Commercial-Level Video Generation Model
Significant advancements have been made in the field of video generation, with the open-source community contributing a wealth of research papers and tools for training high-quality models. However, despite these efforts, the available information and resources remain insufficient for achieving commercial-level performance. In this report, we open the black box and introduce Allegro, an advanced video generation model that excels in both quality and temporal consistency. We also highlight the current limitations in the field and present a comprehensive methodology for training high-performance, commercial-level video generation models, addressing key aspects such as data, model architecture, training pipeline, and evaluation. Our user study shows that Allegro surpasses existing open-source models and most commercial models, ranking just behind Hailuo and Kling. Code: https://github.com/rhymes-ai/Allegro , Model: https://huggingface.co/rhymes-ai/Allegro , Gallery: https://rhymes.ai/allegro_gallery .
SynerGen-VL: Towards Synergistic Image Understanding and Generation with Vision Experts and Token Folding
The remarkable success of Large Language Models (LLMs) has extended to the multimodal domain, achieving outstanding performance in image understanding and generation. Recent efforts to develop unified Multimodal Large Language Models (MLLMs) that integrate these capabilities have shown promising results. However, existing approaches often involve complex designs in model architecture or training pipeline, increasing the difficulty of model training and scaling. In this paper, we propose SynerGen-VL, a simple yet powerful encoder-free MLLM capable of both image understanding and generation. To address challenges identified in existing encoder-free unified MLLMs, we introduce the token folding mechanism and the vision-expert-based progressive alignment pretraining strategy, which effectively support high-resolution image understanding while reducing training complexity. After being trained on large-scale mixed image-text data with a unified next-token prediction objective, SynerGen-VL achieves or surpasses the performance of existing encoder-free unified MLLMs with comparable or smaller parameter sizes, and narrows the gap with task-specific state-of-the-art models, highlighting a promising path toward future unified MLLMs. Our code and models shall be released.
LivePhoto: Real Image Animation with Text-guided Motion Control
Despite the recent progress in text-to-video generation, existing studies usually overlook the issue that only spatial contents but not temporal motions in synthesized videos are under the control of text. Towards such a challenge, this work presents a practical system, named LivePhoto, which allows users to animate an image of their interest with text descriptions. We first establish a strong baseline that helps a well-learned text-to-image generator (i.e., Stable Diffusion) take an image as a further input. We then equip the improved generator with a motion module for temporal modeling and propose a carefully designed training pipeline to better link texts and motions. In particular, considering the facts that (1) text can only describe motions roughly (e.g., regardless of the moving speed) and (2) text may include both content and motion descriptions, we introduce a motion intensity estimation module as well as a text re-weighting module to reduce the ambiguity of text-to-motion mapping. Empirical evidence suggests that our approach is capable of well decoding motion-related textual instructions into videos, such as actions, camera movements, or even conjuring new contents from thin air (e.g., pouring water into an empty glass). Interestingly, thanks to the proposed intensity learning mechanism, our system offers users an additional control signal (i.e., the motion intensity) besides text for video customization.
Jina-ColBERT-v2: A General-Purpose Multilingual Late Interaction Retriever
Multi-vector dense models, such as ColBERT, have proven highly effective in information retrieval. ColBERT's late interaction scoring approximates the joint query-document attention seen in cross-encoders while maintaining inference efficiency closer to traditional dense retrieval models, thanks to its bi-encoder architecture and recent optimizations in indexing and search. In this paper, we introduce several improvements to the ColBERT model architecture and training pipeline, leveraging techniques successful in the more established single-vector embedding model paradigm, particularly those suited for heterogeneous multilingual data. Our new model, Jina-ColBERT-v2, demonstrates strong performance across a range of English and multilingual retrieval tasks, while also cutting storage requirements by up to 50% compared to previous models.
JaxMARL: Multi-Agent RL Environments in JAX
Benchmarks play an important role in the development of machine learning algorithms. For example, research in reinforcement learning (RL) has been heavily influenced by available environments and benchmarks. However, RL environments are traditionally run on the CPU, limiting their scalability with typical academic compute. Recent advancements in JAX have enabled the wider use of hardware acceleration to overcome these computational hurdles, enabling massively parallel RL training pipelines and environments. This is particularly useful for multi-agent reinforcement learning (MARL) research. First of all, multiple agents must be considered at each environment step, adding computational burden, and secondly, the sample complexity is increased due to non-stationarity, decentralised partial observability, or other MARL challenges. In this paper, we present JaxMARL, the first open-source code base that combines ease-of-use with GPU enabled efficiency, and supports a large number of commonly used MARL environments as well as popular baseline algorithms. When considering wall clock time, our experiments show that per-run our JAX-based training pipeline is up to 12500x faster than existing approaches. This enables efficient and thorough evaluations, with the potential to alleviate the evaluation crisis of the field. We also introduce and benchmark SMAX, a vectorised, simplified version of the popular StarCraft Multi-Agent Challenge, which removes the need to run the StarCraft II game engine. This not only enables GPU acceleration, but also provides a more flexible MARL environment, unlocking the potential for self-play, meta-learning, and other future applications in MARL. We provide code at https://github.com/flairox/jaxmarl.
EMOPortraits: Emotion-enhanced Multimodal One-shot Head Avatars
Head avatars animated by visual signals have gained popularity, particularly in cross-driving synthesis where the driver differs from the animated character, a challenging but highly practical approach. The recently presented MegaPortraits model has demonstrated state-of-the-art results in this domain. We conduct a deep examination and evaluation of this model, with a particular focus on its latent space for facial expression descriptors, and uncover several limitations with its ability to express intense face motions. To address these limitations, we propose substantial changes in both training pipeline and model architecture, to introduce our EMOPortraits model, where we: Enhance the model's capability to faithfully support intense, asymmetric face expressions, setting a new state-of-the-art result in the emotion transfer task, surpassing previous methods in both metrics and quality. Incorporate speech-driven mode to our model, achieving top-tier performance in audio-driven facial animation, making it possible to drive source identity through diverse modalities, including visual signal, audio, or a blend of both. We propose a novel multi-view video dataset featuring a wide range of intense and asymmetric facial expressions, filling the gap with absence of such data in existing datasets.
Adversarial Supervision Makes Layout-to-Image Diffusion Models Thrive
Despite the recent advances in large-scale diffusion models, little progress has been made on the layout-to-image (L2I) synthesis task. Current L2I models either suffer from poor editability via text or weak alignment between the generated image and the input layout. This limits their usability in practice. To mitigate this, we propose to integrate adversarial supervision into the conventional training pipeline of L2I diffusion models (ALDM). Specifically, we employ a segmentation-based discriminator which provides explicit feedback to the diffusion generator on the pixel-level alignment between the denoised image and the input layout. To encourage consistent adherence to the input layout over the sampling steps, we further introduce the multistep unrolling strategy. Instead of looking at a single timestep, we unroll a few steps recursively to imitate the inference process, and ask the discriminator to assess the alignment of denoised images with the layout over a certain time window. Our experiments show that ALDM enables layout faithfulness of the generated images, while allowing broad editability via text prompts. Moreover, we showcase its usefulness for practical applications: by synthesizing target distribution samples via text control, we improve domain generalization of semantic segmentation models by a large margin (~12 mIoU points).
DiTTo-TTS: Efficient and Scalable Zero-Shot Text-to-Speech with Diffusion Transformer
Large-scale diffusion models have shown outstanding generative abilities across multiple modalities including images, videos, and audio. However, text-to-speech (TTS) systems typically involve domain-specific modeling factors (e.g., phonemes and phoneme-level durations) to ensure precise temporal alignments between text and speech, which hinders the efficiency and scalability of diffusion models for TTS. In this work, we present an efficient and scalable Diffusion Transformer (DiT) that utilizes off-the-shelf pre-trained text and speech encoders. Our approach addresses the challenge of text-speech alignment via cross-attention mechanisms with the prediction of the total length of speech representations. To achieve this, we enhance the DiT architecture to suit TTS and improve the alignment by incorporating semantic guidance into the latent space of speech. We scale the training dataset and the model size to 82K hours and 790M parameters, respectively. Our extensive experiments demonstrate that the large-scale diffusion model for TTS without domain-specific modeling not only simplifies the training pipeline but also yields superior or comparable zero-shot performance to state-of-the-art TTS models in terms of naturalness, intelligibility, and speaker similarity. Our speech samples are available at https://ditto-tts.github.io.
The Wisdom of Hindsight Makes Language Models Better Instruction Followers
Reinforcement learning has seen wide success in finetuning large language models to better align with instructions via human feedback. The so-called algorithm, Reinforcement Learning with Human Feedback (RLHF) demonstrates impressive performance on the GPT series models. However, the underlying Reinforcement Learning (RL) algorithm is complex and requires an additional training pipeline for reward and value networks. In this paper, we consider an alternative approach: converting feedback to instruction by relabeling the original one and training the model for better alignment in a supervised manner. Such an algorithm doesn't require any additional parameters except for the original language model and maximally reuses the pretraining pipeline. To achieve this, we formulate instruction alignment problem for language models as a goal-reaching problem in decision making. We propose Hindsight Instruction Relabeling (HIR), a novel algorithm for aligning language models with instructions. The resulting two-stage algorithm shed light to a family of reward-free approaches that utilize the hindsightly relabeled instructions based on feedback. We evaluate the performance of HIR extensively on 12 challenging BigBench reasoning tasks and show that HIR outperforms the baseline algorithms and is comparable to or even surpasses supervised finetuning.
Compute-Efficient Deep Learning: Algorithmic Trends and Opportunities
Although deep learning has made great progress in recent years, the exploding economic and environmental costs of training neural networks are becoming unsustainable. To address this problem, there has been a great deal of research on *algorithmically-efficient deep learning*, which seeks to reduce training costs not at the hardware or implementation level, but through changes in the semantics of the training program. In this paper, we present a structured and comprehensive overview of the research in this field. First, we formalize the *algorithmic speedup* problem, then we use fundamental building blocks of algorithmically efficient training to develop a taxonomy. Our taxonomy highlights commonalities of seemingly disparate methods and reveals current research gaps. Next, we present evaluation best practices to enable comprehensive, fair, and reliable comparisons of speedup techniques. To further aid research and applications, we discuss common bottlenecks in the training pipeline (illustrated via experiments) and offer taxonomic mitigation strategies for them. Finally, we highlight some unsolved research challenges and present promising future directions.
SSAST: Self-Supervised Audio Spectrogram Transformer
Recently, neural networks based purely on self-attention, such as the Vision Transformer (ViT), have been shown to outperform deep learning models constructed with convolutional neural networks (CNNs) on various vision tasks, thus extending the success of Transformers, which were originally developed for language processing, to the vision domain. A recent study showed that a similar methodology can also be applied to the audio domain. Specifically, the Audio Spectrogram Transformer (AST) achieves state-of-the-art results on various audio classification benchmarks. However, pure Transformer models tend to require more training data compared to CNNs, and the success of the AST relies on supervised pretraining that requires a large amount of labeled data and a complex training pipeline, thus limiting the practical usage of AST. This paper focuses on audio and speech classification, and aims to reduce the need for large amounts of labeled data for AST by leveraging self-supervised learning using unlabeled data. Specifically, we propose to pretrain the AST model with joint discriminative and generative masked spectrogram patch modeling (MSPM) using unlabeled audio from AudioSet and Librispeech. We evaluate our pretrained models on both audio and speech classification tasks including audio event classification, keyword spotting, emotion recognition, and speaker identification. The proposed self-supervised framework significantly boosts AST performance on all tasks, with an average improvement of 60.9%, leading to similar or even better results than a supervised pretrained AST. To the best of our knowledge, it is the first patch-based self-supervised learning framework in the audio and speech domain, and also the first self-supervised learning framework for AST.
One TTS Alignment To Rule Them All
Speech-to-text alignment is a critical component of neural textto-speech (TTS) models. Autoregressive TTS models typically use an attention mechanism to learn these alignments on-line. However, these alignments tend to be brittle and often fail to generalize to long utterances and out-of-domain text, leading to missing or repeating words. Most non-autoregressive endto-end TTS models rely on durations extracted from external sources. In this paper we leverage the alignment mechanism proposed in RAD-TTS as a generic alignment learning framework, easily applicable to a variety of neural TTS models. The framework combines forward-sum algorithm, the Viterbi algorithm, and a simple and efficient static prior. In our experiments, the alignment learning framework improves all tested TTS architectures, both autoregressive (Flowtron, Tacotron 2) and non-autoregressive (FastPitch, FastSpeech 2, RAD-TTS). Specifically, it improves alignment convergence speed of existing attention-based mechanisms, simplifies the training pipeline, and makes the models more robust to errors on long utterances. Most importantly, the framework improves the perceived speech synthesis quality, as judged by human evaluators.
Multimodal Clustering Networks for Self-supervised Learning from Unlabeled Videos
Multimodal self-supervised learning is getting more and more attention as it allows not only to train large networks without human supervision but also to search and retrieve data across various modalities. In this context, this paper proposes a self-supervised training framework that learns a common multimodal embedding space that, in addition to sharing representations across different modalities, enforces a grouping of semantically similar instances. To this end, we extend the concept of instance-level contrastive learning with a multimodal clustering step in the training pipeline to capture semantic similarities across modalities. The resulting embedding space enables retrieval of samples across all modalities, even from unseen datasets and different domains. To evaluate our approach, we train our model on the HowTo100M dataset and evaluate its zero-shot retrieval capabilities in two challenging domains, namely text-to-video retrieval, and temporal action localization, showing state-of-the-art results on four different datasets.
EuroBERT: Scaling Multilingual Encoders for European Languages
General-purpose multilingual vector representations, used in retrieval, regression and classification, are traditionally obtained from bidirectional encoder models. Despite their wide applicability, encoders have been recently overshadowed by advances in generative decoder-only models. However, many innovations driving this progress are not inherently tied to decoders. In this paper, we revisit the development of multilingual encoders through the lens of these advances, and introduce EuroBERT, a family of multilingual encoders covering European and widely spoken global languages. Our models outperform existing alternatives across a diverse range of tasks, spanning multilingual capabilities, mathematics, and coding, and natively supporting sequences of up to 8,192 tokens. We also examine the design decisions behind EuroBERT, offering insights into our dataset composition and training pipeline. We publicly release the EuroBERT models, including intermediate training checkpoints, together with our training framework.
MM-LLMs: Recent Advances in MultiModal Large Language Models
In the past year, MultiModal Large Language Models (MM-LLMs) have undergone substantial advancements, augmenting off-the-shelf LLMs to support MM inputs or outputs via cost-effective training strategies. The resulting models not only preserve the inherent reasoning and decision-making capabilities of LLMs but also empower a diverse range of MM tasks. In this paper, we provide a comprehensive survey aimed at facilitating further research of MM-LLMs. Specifically, we first outline general design formulations for model architecture and training pipeline. Subsequently, we provide brief introductions of 26 existing MM-LLMs, each characterized by its specific formulations. Additionally, we review the performance of MM-LLMs on mainstream benchmarks and summarize key training recipes to enhance the potency of MM-LLMs. Lastly, we explore promising directions for MM-LLMs while concurrently maintaining a real-time tracking website for the latest developments in the field. We hope that this survey contributes to the ongoing advancement of the MM-LLMs domain.
MAVIS: Mathematical Visual Instruction Tuning
Multi-modal Large Language Models (MLLMs) have recently emerged as a significant focus in academia and industry. Despite their proficiency in general multi-modal scenarios, the mathematical problem-solving capabilities in visual contexts remain insufficiently explored. We identify three key areas within MLLMs that need to be improved: visual encoding of math diagrams, diagram-language alignment, and mathematical reasoning skills. This draws forth an urgent demand for large-scale, high-quality data and training pipelines in visual mathematics. In this paper, we propose MAVIS, the first MAthematical VISual instruction tuning paradigm for MLLMs, involving a series of mathematical visual datasets and specialized MLLMs. Targeting the three issues, MAVIS contains three progressive training stages from scratch. First, we curate MAVIS-Caption, consisting of 558K diagram-caption pairs, to fine-tune a math-specific vision encoder (CLIP-Math) through contrastive learning, tailored for improved diagram visual encoding. Second, we utilize MAVIS-Caption to align the CLIP-Math with a large language model (LLM) by a projection layer, enhancing vision-language alignment in mathematical domains. Third, we introduce MAVIS-Instruct, including 900K meticulously collected and annotated visual math problems, which is adopted to finally instruct-tune the MLLM for robust mathematical reasoning skills. In MAVIS-Instruct, we incorporate complete chain-of-thought (CoT) rationales for each problem, and minimize textual redundancy, thereby concentrating the model towards the visual elements. Data and Models are released at https://github.com/ZrrSkywalker/MAVIS
Insight-V: Exploring Long-Chain Visual Reasoning with Multimodal Large Language Models
Large Language Models (LLMs) demonstrate enhanced capabilities and reliability by reasoning more, evolving from Chain-of-Thought prompting to product-level solutions like OpenAI o1. Despite various efforts to improve LLM reasoning, high-quality long-chain reasoning data and optimized training pipelines still remain inadequately explored in vision-language tasks. In this paper, we present Insight-V, an early effort to 1) scalably produce long and robust reasoning data for complex multi-modal tasks, and 2) an effective training pipeline to enhance the reasoning capabilities of multi-modal large language models (MLLMs). Specifically, to create long and structured reasoning data without human labor, we design a two-step pipeline with a progressive strategy to generate sufficiently long and diverse reasoning paths and a multi-granularity assessment method to ensure data quality. We observe that directly supervising MLLMs with such long and complex reasoning data will not yield ideal reasoning ability. To tackle this problem, we design a multi-agent system consisting of a reasoning agent dedicated to performing long-chain reasoning and a summary agent trained to judge and summarize reasoning results. We further incorporate an iterative DPO algorithm to enhance the reasoning agent's generation stability and quality. Based on the popular LLaVA-NeXT model and our stronger base MLLM, we demonstrate significant performance gains across challenging multi-modal benchmarks requiring visual reasoning. Benefiting from our multi-agent system, Insight-V can also easily maintain or improve performance on perception-focused multi-modal tasks.
Forget What You Know about LLMs Evaluations - LLMs are Like a Chameleon
Large language models (LLMs) often appear to excel on public benchmarks, but these high scores may mask an overreliance on dataset-specific surface cues rather than true language understanding. We introduce the Chameleon Benchmark Overfit Detector (C-BOD), a meta-evaluation framework that systematically distorts benchmark prompts via a parametric transformation and detects overfitting of LLMs. By rephrasing inputs while preserving their semantic content and labels, C-BOD exposes whether a model's performance is driven by memorized patterns. Evaluated on the MMLU benchmark using 26 leading LLMs, our method reveals an average performance degradation of 2.15% under modest perturbations, with 20 out of 26 models exhibiting statistically significant differences. Notably, models with higher baseline accuracy exhibit larger performance differences under perturbation, and larger LLMs tend to be more sensitive to rephrasings indicating that both cases may overrely on fixed prompt patterns. In contrast, the Llama family and models with lower baseline accuracy show insignificant degradation, suggesting reduced dependency on superficial cues. Moreover, C-BOD's dataset- and model-agnostic design allows easy integration into training pipelines to promote more robust language understanding. Our findings challenge the community to look beyond leaderboard scores and prioritize resilience and generalization in LLM evaluation.
AutoML-GPT: Automatic Machine Learning with GPT
AI tasks encompass a wide range of domains and fields. While numerous AI models have been designed for specific tasks and applications, they often require considerable human efforts in finding the right model architecture, optimization algorithm, and hyperparameters. Recent advances in large language models (LLMs) like ChatGPT show remarkable capabilities in various aspects of reasoning, comprehension, and interaction. Consequently, we propose developing task-oriented prompts and automatically utilizing LLMs to automate the training pipeline. To implement this concept, we present the AutoML-GPT, which employs GPT as the bridge to diverse AI models and dynamically trains models with optimized hyperparameters. AutoML-GPT dynamically takes user requests from the model and data cards and composes the corresponding prompt paragraph. Ultimately, with this prompt paragraph, AutoML-GPT will automatically conduct the experiments from data processing to model architecture, hyperparameter tuning, and predicted training log. By leveraging {\ours}'s robust language capabilities and the available AI models, AutoML-GPT can tackle numerous intricate AI tasks across various tasks and datasets. This approach achieves remarkable results in computer vision, natural language processing, and other challenging areas. Extensive experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many AI tasks.
PRISE: Learning Temporal Action Abstractions as a Sequence Compression Problem
Temporal action abstractions, along with belief state representations, are a powerful knowledge sharing mechanism for sequential decision making. In this work, we propose a novel view that treats inducing temporal action abstractions as a sequence compression problem. To do so, we bring a subtle but critical component of LLM training pipelines -- input tokenization via byte pair encoding (BPE) -- to the seemingly distant task of learning skills of variable time span in continuous control domains. We introduce an approach called Primitive Sequence Encoding (PRISE) that combines continuous action quantization with BPE to learn powerful action abstractions. We empirically show that high-level skills discovered by PRISE from a multitask set of robotic manipulation demonstrations significantly boost the performance of both multitask imitation learning as well as few-shot imitation learning on unseen tasks. Our code will be released at https://github.com/FrankZheng2022/PRISE.
One ruler to measure them all: Benchmarking multilingual long-context language models
We present ONERULER, a multilingual benchmark designed to evaluate long-context language models across 26 languages. ONERULER adapts the English-only RULER benchmark (Hsieh et al., 2024) by including seven synthetic tasks that test both retrieval and aggregation, including new variations of the "needle-in-a-haystack" task that allow for the possibility of a nonexistent needle. We create ONERULER through a two-step process, first writing English instructions for each task and then collaborating with native speakers to translate them into 25 additional languages. Experiments with both open-weight and closed LLMs reveal a widening performance gap between low- and high-resource languages as context length increases from 8K to 128K tokens. Surprisingly, English is not the top-performing language on long-context tasks (ranked 6th out of 26), with Polish emerging as the top language. Our experiments also show that many LLMs (particularly OpenAI's o3-mini-high) incorrectly predict the absence of an answer, even in high-resource languages. Finally, in cross-lingual scenarios where instructions and context appear in different languages, performance can fluctuate by up to 20% depending on the instruction language. We hope the release of ONERULER will facilitate future research into improving multilingual and cross-lingual long-context training pipelines.
Improved Generation of Synthetic Imaging Data Using Feature-Aligned Diffusion
Synthetic data generation is an important application of machine learning in the field of medical imaging. While existing approaches have successfully applied fine-tuned diffusion models for synthesizing medical images, we explore potential improvements to this pipeline through feature-aligned diffusion. Our approach aligns intermediate features of the diffusion model to the output features of an expert, and our preliminary findings show an improvement of 9% in generation accuracy and ~0.12 in SSIM diversity. Our approach is also synergistic with existing methods, and easily integrated into diffusion training pipelines for improvements. We make our code available at https://github.com/lnairGT/Feature-Aligned-Diffusion.
Few-shot Prompting for Pairwise Ranking: An Effective Non-Parametric Retrieval Model
A supervised ranking model, despite its advantage of being effective, usually involves complex processing - typically multiple stages of task-specific pre-training and fine-tuning. This has motivated researchers to explore simpler pipelines leveraging large language models (LLMs) that are capable of working in a zero-shot manner. However, since zero-shot inference does not make use of a training set of pairs of queries and their relevant documents, its performance is mostly worse than that of supervised models, which are trained on such example pairs. Motivated by the existing findings that training examples generally improve zero-shot performance, in our work, we explore if this also applies to ranking models. More specifically, given a query and a pair of documents, the preference prediction task is improved by augmenting examples of preferences for similar queries from a training set. Our proposed pairwise few-shot ranker demonstrates consistent improvements over the zero-shot baseline on both in-domain (TREC DL) and out-domain (BEIR subset) retrieval benchmarks. Our method also achieves a close performance to that of a supervised model without requiring any complex training pipeline.
AugUndo: Scaling Up Augmentations for Monocular Depth Completion and Estimation
Unsupervised depth completion and estimation methods are trained by minimizing reconstruction error. Block artifacts from resampling, intensity saturation, and occlusions are amongst the many undesirable by-products of common data augmentation schemes that affect image reconstruction quality, and thus the training signal. Hence, typical augmentations on images viewed as essential to training pipelines in other vision tasks have seen limited use beyond small image intensity changes and flipping. The sparse depth modality in depth completion have seen even less use as intensity transformations alter the scale of the 3D scene, and geometric transformations may decimate the sparse points during resampling. We propose a method that unlocks a wide range of previously-infeasible geometric augmentations for unsupervised depth completion and estimation. This is achieved by reversing, or ``undo''-ing, geometric transformations to the coordinates of the output depth, warping the depth map back to the original reference frame. This enables computing the reconstruction losses using the original images and sparse depth maps, eliminating the pitfalls of naive loss computation on the augmented inputs and allowing us to scale up augmentations to boost performance. We demonstrate our method on indoor (VOID) and outdoor (KITTI) datasets, where we consistently improve upon recent methods across both datasets as well as generalization to four other datasets. Code available at: https://github.com/alexklwong/augundo.
Computational Approaches for App-to-App Retrieval and Design Consistency Check
Extracting semantic representations from mobile user interfaces (UI) and using the representations for designers' decision-making processes have shown the potential to be effective computational design support tools. Current approaches rely on machine learning models trained on small-sized mobile UI datasets to extract semantic vectors and use screenshot-to-screenshot comparison to retrieve similar-looking UIs given query screenshots. However, the usability of these methods is limited because they are often not open-sourced and have complex training pipelines for practitioners to follow, and are unable to perform screenshot set-to-set (i.e., app-to-app) retrieval. To this end, we (1) employ visual models trained with large web-scale images and test whether they could extract a UI representation in a zero-shot way and outperform existing specialized models, and (2) use mathematically founded methods to enable app-to-app retrieval and design consistency analysis. Our experiments show that our methods not only improve upon previous retrieval models but also enable multiple new applications.
Towards Better Dynamic Graph Learning: New Architecture and Unified Library
We propose DyGFormer, a new Transformer-based architecture for dynamic graph learning. DyGFormer is conceptually simple and only needs to learn from nodes' historical first-hop interactions by: (1) a neighbor co-occurrence encoding scheme that explores the correlations of the source node and destination node based on their historical sequences; (2) a patching technique that divides each sequence into multiple patches and feeds them to Transformer, allowing the model to effectively and efficiently benefit from longer histories. We also introduce DyGLib, a unified library with standard training pipelines, extensible coding interfaces, and comprehensive evaluating protocols to promote reproducible, scalable, and credible dynamic graph learning research. By performing exhaustive experiments on thirteen datasets for dynamic link prediction and dynamic node classification tasks, we find that DyGFormer achieves state-of-the-art performance on most of the datasets, demonstrating its effectiveness in capturing nodes' correlations and long-term temporal dependencies. Moreover, some results of baselines are inconsistent with previous reports, which may be caused by their diverse but less rigorous implementations, showing the importance of DyGLib. All the used resources are publicly available at https://github.com/yule-BUAA/DyGLib.
ProReflow: Progressive Reflow with Decomposed Velocity
Diffusion models have achieved significant progress in both image and video generation while still suffering from huge computation costs. As an effective solution, flow matching aims to reflow the diffusion process of diffusion models into a straight line for a few-step and even one-step generation. However, in this paper, we suggest that the original training pipeline of flow matching is not optimal and introduce two techniques to improve it. Firstly, we introduce progressive reflow, which progressively reflows the diffusion models in local timesteps until the whole diffusion progresses, reducing the difficulty of flow matching. Second, we introduce aligned v-prediction, which highlights the importance of direction matching in flow matching over magnitude matching. Experimental results on SDv1.5 and SDXL demonstrate the effectiveness of our method, for example, conducting on SDv1.5 achieves an FID of 10.70 on MSCOCO2014 validation set with only 4 sampling steps, close to our teacher model (32 DDIM steps, FID = 10.05).
Unified Perception: Efficient Depth-Aware Video Panoptic Segmentation with Minimal Annotation Costs
Depth-aware video panoptic segmentation is a promising approach to camera based scene understanding. However, the current state-of-the-art methods require costly video annotations and use a complex training pipeline compared to their image-based equivalents. In this paper, we present a new approach titled Unified Perception that achieves state-of-the-art performance without requiring video-based training. Our method employs a simple two-stage cascaded tracking algorithm that (re)uses object embeddings computed in an image-based network. Experimental results on the Cityscapes-DVPS dataset demonstrate that our method achieves an overall DVPQ of 57.1, surpassing state-of-the-art methods. Furthermore, we show that our tracking strategies are effective for long-term object association on KITTI-STEP, achieving an STQ of 59.1 which exceeded the performance of state-of-the-art methods that employ the same backbone network. Code is available at: https://tue-mps.github.io/unipercept
Paint Transformer: Feed Forward Neural Painting with Stroke Prediction
Neural painting refers to the procedure of producing a series of strokes for a given image and non-photo-realistically recreating it using neural networks. While reinforcement learning (RL) based agents can generate a stroke sequence step by step for this task, it is not easy to train a stable RL agent. On the other hand, stroke optimization methods search for a set of stroke parameters iteratively in a large search space; such low efficiency significantly limits their prevalence and practicality. Different from previous methods, in this paper, we formulate the task as a set prediction problem and propose a novel Transformer-based framework, dubbed Paint Transformer, to predict the parameters of a stroke set with a feed forward network. This way, our model can generate a set of strokes in parallel and obtain the final painting of size 512 * 512 in near real time. More importantly, since there is no dataset available for training the Paint Transformer, we devise a self-training pipeline such that it can be trained without any off-the-shelf dataset while still achieving excellent generalization capability. Experiments demonstrate that our method achieves better painting performance than previous ones with cheaper training and inference costs. Codes and models are available.
Symbol Preference Aware Generative Models for Recovering Variable Names from Stripped Binary
Decompilation aims to recover the source code form of a binary executable. It has many security applications such as malware analysis, vulnerability detection and code hardening. A prominent challenge in decompilation is to recover variable names. We propose a novel technique that leverages the strengths of generative models while mitigating model biases and potential hallucinations. We build a prototype, GenNm, from pre-trained generative models CodeGemma-2B and CodeLlama-7B. We finetune GenNm on decompiled functions, and mitigate model biases by incorporating symbol preference to the training pipeline. GenNm includes names from callers and callees while querying a function, providing rich contextual information within the model's input token limitation. It further leverages program analysis to validate the consistency of names produced by the generative model. Our results show that GenNm improves the state-of-the-art name recovery accuracy by 8.6 and 11.4 percentage points on two commonly used datasets, and improves the state-of-the-art from 8.5% to 22.8% in the most challenging setup where ground-truth variable names are not seen in the training dataset.
LoGU: Long-form Generation with Uncertainty Expressions
While Large Language Models (LLMs) demonstrate impressive capabilities, they still struggle with generating factually incorrect content (i.e., hallucinations). A promising approach to mitigate this issue is enabling models to express uncertainty when unsure. Previous research on uncertainty modeling has primarily focused on short-form QA, but realworld applications often require much longer responses. In this work, we introduce the task of Long-form Generation with Uncertainty(LoGU). We identify two key challenges: Uncertainty Suppression, where models hesitate to express uncertainty, and Uncertainty Misalignment, where models convey uncertainty inaccurately. To tackle these challenges, we propose a refinement-based data collection framework and a two-stage training pipeline. Our framework adopts a divide-and-conquer strategy, refining uncertainty based on atomic claims. The collected data are then used in training through supervised fine-tuning (SFT) and direct preference optimization (DPO) to enhance uncertainty expression. Extensive experiments on three long-form instruction following datasets show that our method significantly improves accuracy, reduces hallucinations, and maintains the comprehensiveness of responses.
Molmo and PixMo: Open Weights and Open Data for State-of-the-Art Multimodal Models
Today's most advanced multimodal models remain proprietary. The strongest open-weight models rely heavily on synthetic data from proprietary VLMs to achieve good performance, effectively distilling these closed models into open ones. As a result, the community is still missing foundational knowledge about how to build performant VLMs from scratch. We present Molmo, a new family of VLMs that are state-of-the-art in their class of openness. Our key innovation is a novel, highly detailed image caption dataset collected entirely from human annotators using speech-based descriptions. To enable a wide array of user interactions, we also introduce a diverse dataset mixture for fine-tuning that includes in-the-wild Q&A and innovative 2D pointing data. The success of our approach relies on careful choices for the model architecture details, a well-tuned training pipeline, and, most critically, the quality of our newly collected datasets, all of which will be released. The best-in-class 72B model within the Molmo family not only outperforms others in the class of open weight and data models but also compares favorably against proprietary systems like GPT-4o, Claude 3.5, and Gemini 1.5 on both academic benchmarks and human evaluation. We will be releasing all of our model weights, captioning and fine-tuning data, and source code in the near future. Select model weights, inference code, and demo are available at https://molmo.allenai.org.
Aguvis: Unified Pure Vision Agents for Autonomous GUI Interaction
Graphical User Interfaces (GUIs) are critical to human-computer interaction, yet automating GUI tasks remains challenging due to the complexity and variability of visual environments. Existing approaches often rely on textual representations of GUIs, which introduce limitations in generalization, efficiency, and scalability. In this paper, we introduce Aguvis, a unified pure vision-based framework for autonomous GUI agents that operates across various platforms. Our approach leverages image-based observations, and grounding instructions in natural language to visual elements, and employs a consistent action space to ensure cross-platform generalization. To address the limitations of previous work, we integrate explicit planning and reasoning within the model, enhancing its ability to autonomously navigate and interact with complex digital environments. We construct a large-scale dataset of GUI agent trajectories, incorporating multimodal reasoning and grounding, and employ a two-stage training pipeline that first focuses on general GUI grounding, followed by planning and reasoning. Through comprehensive experiments, we demonstrate that Aguvis surpasses previous state-of-the-art methods in both offline and real-world online scenarios, achieving, to our knowledge, the first fully autonomous pure vision GUI agent capable of performing tasks independently without collaboration with external closed-source models. We open-sourced all datasets, models, and training recipes to facilitate future research at https://aguvis-project.github.io/.
SmolTulu: Higher Learning Rate to Batch Size Ratios Can Lead to Better Reasoning in SLMs
We present SmolTulu-1.7b-Instruct, referenced in this report as SmolTulu-DPO-1130, an instruction-tuned language model that adapts AllenAI's Tulu 3 post-training pipeline to enhance Huggingface's SmolLM2-1.7B base model. Through comprehensive empirical analysis using a 135M parameter model, we demonstrate that the relationship between learning rate and batch size significantly impacts model performance in a task-dependent manner. Our findings reveal a clear split: reasoning tasks like ARC and GSM8K benefit from higher learning rate to batch size ratios, while pattern recognition tasks such as HellaSwag and IFEval show optimal performance with lower ratios. These insights informed the development of SmolTulu, which achieves state-of-the-art performance among sub-2B parameter models on instruction following, scoring 67.7% on IFEval (Delta11%), and mathematical reasoning with 51.6% on GSM8K (Delta3.4%), with an alternate version achieving scoring 57.1% on ARC (Delta5.4%). We release our model, training recipes, and ablation studies to facilitate further research in efficient model alignment, demonstrating that careful adaptation of optimization dynamics can help bridge the capability gap between small and large language models.
Multilingual Pretraining Using a Large Corpus Machine-Translated from a Single Source Language
English, as a very high-resource language, enables the pretraining of high-quality large language models (LLMs). The same cannot be said for most other languages, as leading LLMs still underperform for non-English languages, likely due to a gap in the quality and diversity of the available multilingual pretraining corpora. In this work, we find that machine-translated text from a single high-quality source language can contribute significantly to the pretraining of multilingual LLMs. We translate FineWeb-Edu, a high-quality English web dataset, into French, German, and Spanish, resulting in a final 300B-token dataset, which we call TransWeb-Edu, and pretrain a 1.3B-parameter model, CuatroLLM, from scratch on this dataset. Across five non-English reasoning tasks, we show that CuatroLLM matches or outperforms state-of-the-art multilingual models trained using closed data, such as Llama3.2 and Gemma2, despite using an order of magnitude less data, such as about 6% of the tokens used for Llama3.2's training. We further demonstrate that with additional domain-specific pretraining, amounting to less than 1% of TransWeb-Edu, CuatroLLM surpasses the state of the art in multilingual reasoning. To promote reproducibility, we release our corpus, models, and training pipeline under open licenses at hf.co/britllm/CuatroLLM.
Advancing Semantic Future Prediction through Multimodal Visual Sequence Transformers
Semantic future prediction is important for autonomous systems navigating dynamic environments. This paper introduces FUTURIST, a method for multimodal future semantic prediction that uses a unified and efficient visual sequence transformer architecture. Our approach incorporates a multimodal masked visual modeling objective and a novel masking mechanism designed for multimodal training. This allows the model to effectively integrate visible information from various modalities, improving prediction accuracy. Additionally, we propose a VAE-free hierarchical tokenization process, which reduces computational complexity, streamlines the training pipeline, and enables end-to-end training with high-resolution, multimodal inputs. We validate FUTURIST on the Cityscapes dataset, demonstrating state-of-the-art performance in future semantic segmentation for both short- and mid-term forecasting. We provide the implementation code at https://github.com/Sta8is/FUTURIST .
CompactFlowNet: Efficient Real-time Optical Flow Estimation on Mobile Devices
We present CompactFlowNet, the first real-time mobile neural network for optical flow prediction, which involves determining the displacement of each pixel in an initial frame relative to the corresponding pixel in a subsequent frame. Optical flow serves as a fundamental building block for various video-related tasks, such as video restoration, motion estimation, video stabilization, object tracking, action recognition, and video generation. While current state-of-the-art methods prioritize accuracy, they often overlook constraints regarding speed and memory usage. Existing light models typically focus on reducing size but still exhibit high latency, compromise significantly on quality, or are optimized for high-performance GPUs, resulting in sub-optimal performance on mobile devices. This study aims to develop a mobile-optimized optical flow model by proposing a novel mobile device-compatible architecture, as well as enhancements to the training pipeline, which optimize the model for reduced weight, low memory utilization, and increased speed while maintaining minimal error. Our approach demonstrates superior or comparable performance to the state-of-the-art lightweight models on the challenging KITTI and Sintel benchmarks. Furthermore, it attains a significantly accelerated inference speed, thereby yielding real-time operational efficiency on the iPhone 8, while surpassing real-time performance levels on more advanced mobile devices.
VideoSAVi: Self-Aligned Video Language Models without Human Supervision
Recent advances in vision-language models (VLMs) have significantly enhanced video understanding tasks. Instruction tuning (i.e., fine-tuning models on datasets of instructions paired with desired outputs) has been key to improving model performance. However, creating diverse instruction-tuning datasets is challenging due to high annotation costs and the complexity of capturing temporal information in videos. Existing approaches often rely on large language models to generate instruction-output pairs, which can limit diversity and lead to responses that lack grounding in the video content. To address this, we propose VideoSAVi (Self-Aligned Video Language Model), a novel self-training pipeline that enables VLMs to generate their own training data without extensive manual annotation. The process involves three stages: (1) generating diverse video-specific questions, (2) producing multiple candidate answers, and (3) evaluating these responses for alignment with the video content. This self-generated data is then used for direct preference optimization (DPO), allowing the model to refine its own high-quality outputs and improve alignment with video content. Our experiments demonstrate that even smaller models (0.5B and 7B parameters) can effectively use this self-training approach, outperforming previous methods and achieving results comparable to those trained on proprietary preference data. VideoSAVi shows significant improvements across multiple benchmarks: up to 28% on multi-choice QA, 8% on zero-shot open-ended QA, and 12% on temporal reasoning benchmarks. These results demonstrate the effectiveness of our self-training approach in enhancing video understanding while reducing dependence on proprietary models.
From Fake to Real: Pretraining on Balanced Synthetic Images to Prevent Spurious Correlations in Image Recognition
Visual recognition models are prone to learning spurious correlations induced by a biased training set where certain conditions B (\eg, Indoors) are over-represented in certain classes Y (\eg, Big Dogs). Synthetic data from off-the-shelf large-scale generative models offers a promising direction to mitigate this issue by augmenting underrepresented subgroups in the real dataset. However, by using a mixed distribution of real and synthetic data, we introduce another source of bias due to distributional differences between synthetic and real data (\eg synthetic artifacts). As we will show, prior work's approach for using synthetic data to resolve the model's bias toward B do not correct the model's bias toward the pair (B, G), where G denotes whether the sample is real or synthetic. Thus, the model could simply learn signals based on the pair (B, G) (\eg, Synthetic Indoors) to make predictions about Y (\eg, Big Dogs). To address this issue, we propose a simple, easy-to-implement, two-step training pipeline that we call From Fake to Real (FFR). The first step of FFR pre-trains a model on balanced synthetic data to learn robust representations across subgroups. In the second step, FFR fine-tunes the model on real data using ERM or common loss-based bias mitigation methods. By training on real and synthetic data separately, FFR does not expose the model to the statistical differences between real and synthetic data and thus avoids the issue of bias toward the pair (B, G). Our experiments show that FFR improves worst group accuracy over the state-of-the-art by up to 20\% over three datasets. Code available: https://github.com/mqraitem/From-Fake-to-Real
Zhongjing: Enhancing the Chinese Medical Capabilities of Large Language Model through Expert Feedback and Real-world Multi-turn Dialogue
Recent advances in Large Language Models (LLMs) have achieved remarkable breakthroughs in understanding and responding to user intents. However, their performance lag behind general use cases in some expertise domains, such as Chinese medicine. Existing efforts to incorporate Chinese medicine into LLMs rely on Supervised Fine-Tuning (SFT) with single-turn and distilled dialogue data. These models lack the ability for doctor-like proactive inquiry and multi-turn comprehension and cannot align responses with experts' intentions. In this work, we introduce Zhongjing, the first Chinese medical LLaMA-based LLM that implements an entire training pipeline from continuous pre-training, SFT, to Reinforcement Learning from Human Feedback (RLHF). Additionally, we construct a Chinese multi-turn medical dialogue dataset of 70,000 authentic doctor-patient dialogues, CMtMedQA, which significantly enhances the model's capability for complex dialogue and proactive inquiry initiation. We also define a refined annotation rule and evaluation criteria given the unique characteristics of the biomedical domain. Extensive experimental results show that Zhongjing outperforms baselines in various capacities and matches the performance of ChatGPT in some abilities, despite the 100x parameters. Ablation studies also demonstrate the contributions of each component: pre-training enhances medical knowledge, and RLHF further improves instruction-following ability and safety. Our code, datasets, and models are available at https://github.com/SupritYoung/Zhongjing.
ExpPoint-MAE: Better interpretability and performance for self-supervised point cloud transformers
In this paper we delve into the properties of transformers, attained through self-supervision, in the point cloud domain. Specifically, we evaluate the effectiveness of Masked Autoencoding as a pretraining scheme, and explore Momentum Contrast as an alternative. In our study we investigate the impact of data quantity on the learned features, and uncover similarities in the transformer's behavior across domains. Through comprehensive visualiations, we observe that the transformer learns to attend to semantically meaningful regions, indicating that pretraining leads to a better understanding of the underlying geometry. Moreover, we examine the finetuning process and its effect on the learned representations. Based on that, we devise an unfreezing strategy which consistently outperforms our baseline without introducing any other modifications to the model or the training pipeline, and achieve state-of-the-art results in the classification task among transformer models.
V$^2$L: Leveraging Vision and Vision-language Models into Large-scale Product Retrieval
Product retrieval is of great importance in the ecommerce domain. This paper introduces our 1st-place solution in eBay eProduct Visual Search Challenge (FGVC9), which is featured for an ensemble of about 20 models from vision models and vision-language models. While model ensemble is common, we show that combining the vision models and vision-language models brings particular benefits from their complementarity and is a key factor to our superiority. Specifically, for the vision models, we use a two-stage training pipeline which first learns from the coarse labels provided in the training set and then conducts fine-grained self-supervised training, yielding a coarse-to-fine metric learning manner. For the vision-language models, we use the textual description of the training image as the supervision signals for fine-tuning the image-encoder (feature extractor). With these designs, our solution achieves 0.7623 MAR@10, ranking the first place among all the competitors. The code is available at: https://github.com/WangWenhao0716/V2L{V^2L}.
StudioGAN: A Taxonomy and Benchmark of GANs for Image Synthesis
Generative Adversarial Network (GAN) is one of the state-of-the-art generative models for realistic image synthesis. While training and evaluating GAN becomes increasingly important, the current GAN research ecosystem does not provide reliable benchmarks for which the evaluation is conducted consistently and fairly. Furthermore, because there are few validated GAN implementations, researchers devote considerable time to reproducing baselines. We study the taxonomy of GAN approaches and present a new open-source library named StudioGAN. StudioGAN supports 7 GAN architectures, 9 conditioning methods, 4 adversarial losses, 13 regularization modules, 3 differentiable augmentations, 7 evaluation metrics, and 5 evaluation backbones. With our training and evaluation protocol, we present a large-scale benchmark using various datasets (CIFAR10, ImageNet, AFHQv2, FFHQ, and Baby/Papa/Granpa-ImageNet) and 3 different evaluation backbones (InceptionV3, SwAV, and Swin Transformer). Unlike other benchmarks used in the GAN community, we train representative GANs, including BigGAN, StyleGAN2, and StyleGAN3, in a unified training pipeline and quantify generation performance with 7 evaluation metrics. The benchmark evaluates other cutting-edge generative models(e.g., StyleGAN-XL, ADM, MaskGIT, and RQ-Transformer). StudioGAN provides GAN implementations, training, and evaluation scripts with the pre-trained weights. StudioGAN is available at https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.
FBNetV5: Neural Architecture Search for Multiple Tasks in One Run
Neural Architecture Search (NAS) has been widely adopted to design accurate and efficient image classification models. However, applying NAS to a new computer vision task still requires a huge amount of effort. This is because 1) previous NAS research has been over-prioritized on image classification while largely ignoring other tasks; 2) many NAS works focus on optimizing task-specific components that cannot be favorably transferred to other tasks; and 3) existing NAS methods are typically designed to be "proxyless" and require significant effort to be integrated with each new task's training pipelines. To tackle these challenges, we propose FBNetV5, a NAS framework that can search for neural architectures for a variety of vision tasks with much reduced computational cost and human effort. Specifically, we design 1) a search space that is simple yet inclusive and transferable; 2) a multitask search process that is disentangled with target tasks' training pipeline; and 3) an algorithm to simultaneously search for architectures for multiple tasks with a computational cost agnostic to the number of tasks. We evaluate the proposed FBNetV5 targeting three fundamental vision tasks -- image classification, object detection, and semantic segmentation. Models searched by FBNetV5 in a single run of search have outperformed the previous stateof-the-art in all the three tasks: image classification (e.g., +1.3% ImageNet top-1 accuracy under the same FLOPs as compared to FBNetV3), semantic segmentation (e.g., +1.8% higher ADE20K val. mIoU than SegFormer with 3.6x fewer FLOPs), and object detection (e.g., +1.1% COCO val. mAP with 1.2x fewer FLOPs as compared to YOLOX).
Go-with-the-Flow: Motion-Controllable Video Diffusion Models Using Real-Time Warped Noise
Generative modeling aims to transform random noise into structured outputs. In this work, we enhance video diffusion models by allowing motion control via structured latent noise sampling. This is achieved by just a change in data: we pre-process training videos to yield structured noise. Consequently, our method is agnostic to diffusion model design, requiring no changes to model architectures or training pipelines. Specifically, we propose a novel noise warping algorithm, fast enough to run in real time, that replaces random temporal Gaussianity with correlated warped noise derived from optical flow fields, while preserving the spatial Gaussianity. The efficiency of our algorithm enables us to fine-tune modern video diffusion base models using warped noise with minimal overhead, and provide a one-stop solution for a wide range of user-friendly motion control: local object motion control, global camera movement control, and motion transfer. The harmonization between temporal coherence and spatial Gaussianity in our warped noise leads to effective motion control while maintaining per-frame pixel quality. Extensive experiments and user studies demonstrate the advantages of our method, making it a robust and scalable approach for controlling motion in video diffusion models. Video results are available on our webpage: https://vgenai-netflix-eyeline-research.github.io/Go-with-the-Flow. Source code and model checkpoints are available on GitHub: https://github.com/VGenAI-Netflix-Eyeline-Research/Go-with-the-Flow.
EzAudio: Enhancing Text-to-Audio Generation with Efficient Diffusion Transformer
Latent diffusion models have shown promising results in text-to-audio (T2A) generation tasks, yet previous models have encountered difficulties in generation quality, computational cost, diffusion sampling, and data preparation. In this paper, we introduce EzAudio, a transformer-based T2A diffusion model, to handle these challenges. Our approach includes several key innovations: (1) We build the T2A model on the latent space of a 1D waveform Variational Autoencoder (VAE), avoiding the complexities of handling 2D spectrogram representations and using an additional neural vocoder. (2) We design an optimized diffusion transformer architecture specifically tailored for audio latent representations and diffusion modeling, which enhances convergence speed, training stability, and memory usage, making the training process easier and more efficient. (3) To tackle data scarcity, we adopt a data-efficient training strategy that leverages unlabeled data for learning acoustic dependencies, audio caption data annotated by audio-language models for text-to-audio alignment learning, and human-labeled data for fine-tuning. (4) We introduce a classifier-free guidance (CFG) rescaling method that simplifies EzAudio by achieving strong prompt alignment while preserving great audio quality when using larger CFG scores, eliminating the need to struggle with finding the optimal CFG score to balance this trade-off. EzAudio surpasses existing open-source models in both objective metrics and subjective evaluations, delivering realistic listening experiences while maintaining a streamlined model structure, low training costs, and an easy-to-follow training pipeline. Code, data, and pre-trained models are released at: https://haidog-yaqub.github.io/EzAudio-Page/.
Cuckoo: An IE Free Rider Hatched by Massive Nutrition in LLM's Nest
Massive high-quality data, both pre-training raw texts and post-training annotations, have been carefully prepared to incubate advanced large language models (LLMs). In contrast, for information extraction (IE), pre-training data, such as BIO-tagged sequences, are hard to scale up. We show that IE models can act as free riders on LLM resources by reframing next-token prediction into extraction for tokens already present in the context. Specifically, our proposed next tokens extraction (NTE) paradigm learns a versatile IE model, Cuckoo, with 102.6M extractive data converted from LLM's pre-training and post-training data. Under the few-shot setting, Cuckoo adapts effectively to traditional and complex instruction-following IE with better performance than existing pre-trained IE models. As a free rider, Cuckoo can naturally evolve with the ongoing advancements in LLM data preparation, benefiting from improvements in LLM training pipelines without additional manual effort.
The Perfect Blend: Redefining RLHF with Mixture of Judges
Reinforcement learning from human feedback (RLHF) has become the leading approach for fine-tuning large language models (LLM). However, RLHF has limitations in multi-task learning (MTL) due to challenges of reward hacking and extreme multi-objective optimization (i.e., trade-off of multiple and/or sometimes conflicting objectives). Applying RLHF for MTL currently requires careful tuning of the weights for reward model and data combinations. This is often done via human intuition and does not generalize. In this work, we introduce a novel post-training paradigm which we called Constrained Generative Policy Optimization (CGPO). The core of CGPO is Mixture of Judges (MoJ) with cost-efficient constrained policy optimization with stratification, which can identify the perfect blend in RLHF in a principled manner. It shows strong empirical results with theoretical guarantees, does not require extensive hyper-parameter tuning, and is plug-and-play in common post-training pipelines. Together, this can detect and mitigate reward hacking behaviors while reaching a pareto-optimal point across an extremely large number of objectives. Our empirical evaluations demonstrate that CGPO significantly outperforms standard RLHF algorithms like PPO and DPO across various tasks including general chat, STEM questions, instruction following, and coding. Specifically, CGPO shows improvements of 7.4% in AlpacaEval-2 (general chat), 12.5% in Arena-Hard (STEM & reasoning), and consistent gains in other domains like math and coding. Notably, PPO, while commonly used, is prone to severe reward hacking in popular coding benchmarks, which CGPO successfully addresses. This breakthrough in RLHF not only tackles reward hacking and extreme multi-objective optimization challenges but also advances the state-of-the-art in aligning general-purpose LLMs for diverse applications.
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
Extraction of building footprint polygons from remotely sensed data is essential for several urban understanding tasks such as reconstruction, navigation, and mapping. Despite significant progress in the area, extracting accurate polygonal building footprints remains an open problem. In this paper, we introduce Pix2Poly, an attention-based end-to-end trainable and differentiable deep neural network capable of directly generating explicit high-quality building footprints in a ring graph format. Pix2Poly employs a generative encoder-decoder transformer to produce a sequence of graph vertex tokens whose connectivity information is learned by an optimal matching network. Compared to previous graph learning methods, ours is a truly end-to-end trainable approach that extracts high-quality building footprints and road networks without requiring complicated, computationally intensive raster loss functions and intricate training pipelines. Upon evaluating Pix2Poly on several complex and challenging datasets, we report that Pix2Poly outperforms state-of-the-art methods in several vector shape quality metrics while being an entirely explicit method. Our code is available at https://github.com/yeshwanth95/Pix2Poly.
Unleashing the Potentials of Likelihood Composition for Multi-modal Language Models
Model fusing has always been an important topic, especially in an era where large language models (LLM) and multi-modal language models (MLM) with different architectures, parameter sizes and training pipelines, are being created all the time. In this work, we propose a post-hoc framework, aiming at fusing heterogeneous models off-the-shell, which we call likelihood composition, and the basic idea is to compose multiple models' likelihood distribution when doing a multi-choice visual-question-answering task. Here the core concept, likelihood, is actually the log-probability of the candidate answer. In likelihood composition, we introduce some basic operations: debias, highlight, majority-vote and ensemble. By combining (composing) these basic elements, we get the mixed composition methods: mix-composition. Through conducting comprehensive experiments on 9 VQA datasets and 10 MLMs, we prove the effectiveness of mix-composition compared with simple ensemble or majority-vote methods. In this framework, people can propose new basic composition methods and combine them to get the new mixed composition methods. We hope our proposed likelihood composition can provide a new perspective of fusing heterogeneous models and inspire the exploration under this framework.
Visually-Aware Context Modeling for News Image Captioning
News Image Captioning aims to create captions from news articles and images, emphasizing the connection between textual context and visual elements. Recognizing the significance of human faces in news images and the face-name co-occurrence pattern in existing datasets, we propose a face-naming module for learning better name embeddings. Apart from names, which can be directly linked to an image area (faces), news image captions mostly contain context information that can only be found in the article. We design a retrieval strategy using CLIP to retrieve sentences that are semantically close to the image, mimicking human thought process of linking articles to images. Furthermore, to tackle the problem of the imbalanced proportion of article context and image context in captions, we introduce a simple yet effective method Contrasting with Language Model backbone (CoLaM) to the training pipeline. We conduct extensive experiments to demonstrate the efficacy of our framework. We out-perform the previous state-of-the-art (without external data) by 7.97/5.80 CIDEr scores on GoodNews/NYTimes800k. Our code is available at https://github.com/tingyu215/VACNIC.
Mask2Former for Video Instance Segmentation
We find Mask2Former also achieves state-of-the-art performance on video instance segmentation without modifying the architecture, the loss or even the training pipeline. In this report, we show universal image segmentation architectures trivially generalize to video segmentation by directly predicting 3D segmentation volumes. Specifically, Mask2Former sets a new state-of-the-art of 60.4 AP on YouTubeVIS-2019 and 52.6 AP on YouTubeVIS-2021. We believe Mask2Former is also capable of handling video semantic and panoptic segmentation, given its versatility in image segmentation. We hope this will make state-of-the-art video segmentation research more accessible and bring more attention to designing universal image and video segmentation architectures.
SSL-TTS: Leveraging Self-Supervised Embeddings and kNN Retrieval for Zero-Shot Multi-speaker TTS
While recent zero-shot multispeaker text-to-speech (TTS) models achieve impressive results, they typically rely on extensive transcribed speech datasets from numerous speakers and intricate training pipelines. Meanwhile, self-supervised learning (SSL) speech features have emerged as effective intermediate representations for TTS. It was also observed that SSL features from different speakers that are linearly close share phonetic information while maintaining individual speaker identity, which enables straight-forward and robust voice cloning. In this study, we introduce SSL-TTS, a lightweight and efficient zero-shot TTS framework trained on transcribed speech from a single speaker. SSL-TTS leverages SSL features and retrieval methods for simple and robust zero-shot multi-speaker synthesis. Objective and subjective evaluations show that our approach achieves performance comparable to state-of-the-art models that require significantly larger training datasets. The low training data requirements mean that SSL-TTS is well suited for the development of multi-speaker TTS systems for low-resource domains and languages. We also introduce an interpolation parameter which enables fine control over the output speech by blending voices. Demo samples are available at https://idiap.github.io/ssl-tts
Pooling Image Datasets With Multiple Covariate Shift and Imbalance
Small sample sizes are common in many disciplines, which necessitates pooling roughly similar datasets across multiple institutions to study weak but relevant associations between images and disease outcomes. Such data often manifest shift/imbalance in covariates (i.e., secondary non-imaging data). Controlling for such nuisance variables is common within standard statistical analysis, but the ideas do not directly apply to overparameterized models. Consequently, recent work has shown how strategies from invariant representation learning provides a meaningful starting point, but the current repertoire of methods is limited to accounting for shifts/imbalances in just a couple of covariates at a time. In this paper, we show how viewing this problem from the perspective of Category theory provides a simple and effective solution that completely avoids elaborate multi-stage training pipelines that would otherwise be needed. We show the effectiveness of this approach via extensive experiments on real datasets. Further, we discuss how this style of formulation offers a unified perspective on at least 5+ distinct problem settings, from self-supervised learning to matching problems in 3D reconstruction.
AutoMMLab: Automatically Generating Deployable Models from Language Instructions for Computer Vision Tasks
Automated machine learning (AutoML) is a collection of techniques designed to automate the machine learning development process. While traditional AutoML approaches have been successfully applied in several critical steps of model development (e.g. hyperparameter optimization), there lacks a AutoML system that automates the entire end-to-end model production workflow. To fill this blank, we present AutoMMLab, a general-purpose LLM-empowered AutoML system that follows user's language instructions to automate the whole model production workflow for computer vision tasks. The proposed AutoMMLab system effectively employs LLMs as the bridge to connect AutoML and OpenMMLab community, empowering non-expert individuals to easily build task-specific models via a user-friendly language interface. Specifically, we propose RU-LLaMA to understand users' request and schedule the whole pipeline, and propose a novel LLM-based hyperparameter optimizer called HPO-LLaMA to effectively search for the optimal hyperparameters. Experiments show that our AutoMMLab system is versatile and covers a wide range of mainstream tasks, including classification, detection, segmentation and keypoint estimation. We further develop a new benchmark, called LAMP, for studying key components in the end-to-end prompt-based model training pipeline. Code, model, and data will be released.
Beating Backdoor Attack at Its Own Game
Deep neural networks (DNNs) are vulnerable to backdoor attack, which does not affect the network's performance on clean data but would manipulate the network behavior once a trigger pattern is added. Existing defense methods have greatly reduced attack success rate, but their prediction accuracy on clean data still lags behind a clean model by a large margin. Inspired by the stealthiness and effectiveness of backdoor attack, we propose a simple but highly effective defense framework which injects non-adversarial backdoors targeting poisoned samples. Following the general steps in backdoor attack, we detect a small set of suspected samples and then apply a poisoning strategy to them. The non-adversarial backdoor, once triggered, suppresses the attacker's backdoor on poisoned data, but has limited influence on clean data. The defense can be carried out during data preprocessing, without any modification to the standard end-to-end training pipeline. We conduct extensive experiments on multiple benchmarks with different architectures and representative attacks. Results demonstrate that our method achieves state-of-the-art defense effectiveness with by far the lowest performance drop on clean data. Considering the surprising defense ability displayed by our framework, we call for more attention to utilizing backdoor for backdoor defense. Code is available at https://github.com/damianliumin/non-adversarial_backdoor.
Generative Artificial Intelligence Consensus in a Trustless Network
We performed a billion locality sensitive hash comparisons between artificially generated data samples to answer the critical question - can we verify the "correctness" of generative AI output in a non-deterministic, trustless, decentralized network? We generate millions of data samples from a variety of open source diffusion and large language models and describe the procedures and trade-offs between generating more verses less deterministic output in a heterogenous, stochastic network. Further, we analyze the outputs to provide empirical evidence of different parameterizations of tolerance and error bounds for verification. Finally, given that we have the generated an enormous amount of simulated data, we also release a new training dataset called ImageNet-Gen for use in augmenting existing training pipelines. For our results, we show that with a majority vote between three independent verifiers, we can detect image generated perceptual collisions in generated AI with over 99.89% probability and less than 0.0267% chance of intra-class collision. For large language models (LLMs), we are able to gain 100% consensus using greedy methods or n-way beam searches to generate consensus demonstrated on different LLMs. In the context of generative AI training, we pinpoint and minimize the major sources of stochasticity and present gossip and synchronization training techniques for verifiability. Thus, this work provides a practical, solid foundation for AI verification and consensus for the minimization of trust in a decentralized network.
Music Source Separation with Band-split RNN
The performance of music source separation (MSS) models has been greatly improved in recent years thanks to the development of novel neural network architectures and training pipelines. However, recent model designs for MSS were mainly motivated by other audio processing tasks or other research fields, while the intrinsic characteristics and patterns of the music signals were not fully discovered. In this paper, we propose band-split RNN (BSRNN), a frequency-domain model that explictly splits the spectrogram of the mixture into subbands and perform interleaved band-level and sequence-level modeling. The choices of the bandwidths of the subbands can be determined by a priori knowledge or expert knowledge on the characteristics of the target source in order to optimize the performance on a certain type of target musical instrument. To better make use of unlabeled data, we also describe a semi-supervised model finetuning pipeline that can further improve the performance of the model. Experiment results show that BSRNN trained only on MUSDB18-HQ dataset significantly outperforms several top-ranking models in Music Demixing (MDX) Challenge 2021, and the semi-supervised finetuning stage further improves the performance on all four instrument tracks.
Spinning Language Models: Risks of Propaganda-As-A-Service and Countermeasures
We investigate a new threat to neural sequence-to-sequence (seq2seq) models: training-time attacks that cause models to "spin" their outputs so as to support an adversary-chosen sentiment or point of view -- but only when the input contains adversary-chosen trigger words. For example, a spinned summarization model outputs positive summaries of any text that mentions the name of some individual or organization. Model spinning introduces a "meta-backdoor" into a model. Whereas conventional backdoors cause models to produce incorrect outputs on inputs with the trigger, outputs of spinned models preserve context and maintain standard accuracy metrics, yet also satisfy a meta-task chosen by the adversary. Model spinning enables propaganda-as-a-service, where propaganda is defined as biased speech. An adversary can create customized language models that produce desired spins for chosen triggers, then deploy these models to generate disinformation (a platform attack), or else inject them into ML training pipelines (a supply-chain attack), transferring malicious functionality to downstream models trained by victims. To demonstrate the feasibility of model spinning, we develop a new backdooring technique. It stacks an adversarial meta-task onto a seq2seq model, backpropagates the desired meta-task output to points in the word-embedding space we call "pseudo-words," and uses pseudo-words to shift the entire output distribution of the seq2seq model. We evaluate this attack on language generation, summarization, and translation models with different triggers and meta-tasks such as sentiment, toxicity, and entailment. Spinned models largely maintain their accuracy metrics (ROUGE and BLEU) while shifting their outputs to satisfy the adversary's meta-task. We also show that, in the case of a supply-chain attack, the spin functionality transfers to downstream models.
Tabular Benchmarks for Joint Architecture and Hyperparameter Optimization
Due to the high computational demands executing a rigorous comparison between hyperparameter optimization (HPO) methods is often cumbersome. The goal of this paper is to facilitate a better empirical evaluation of HPO methods by providing benchmarks that are cheap to evaluate, but still represent realistic use cases. We believe these benchmarks provide an easy and efficient way to conduct reproducible experiments for neural hyperparameter search. Our benchmarks consist of a large grid of configurations of a feed forward neural network on four different regression datasets including architectural hyperparameters and hyperparameters concerning the training pipeline. Based on this data, we performed an in-depth analysis to gain a better understanding of the properties of the optimization problem, as well as of the importance of different types of hyperparameters. Second, we exhaustively compared various different state-of-the-art methods from the hyperparameter optimization literature on these benchmarks in terms of performance and robustness.
ESPnet2-TTS: Extending the Edge of TTS Research
This paper describes ESPnet2-TTS, an end-to-end text-to-speech (E2E-TTS) toolkit. ESPnet2-TTS extends our earlier version, ESPnet-TTS, by adding many new features, including: on-the-fly flexible pre-processing, joint training with neural vocoders, and state-of-the-art TTS models with extensions like full-band E2E text-to-waveform modeling, which simplify the training pipeline and further enhance TTS performance. The unified design of our recipes enables users to quickly reproduce state-of-the-art E2E-TTS results. We also provide many pre-trained models in a unified Python interface for inference, offering a quick means for users to generate baseline samples and build demos. Experimental evaluations with English and Japanese corpora demonstrate that our provided models synthesize utterances comparable to ground-truth ones, achieving state-of-the-art TTS performance. The toolkit is available online at https://github.com/espnet/espnet.
DiffusionPipe: Training Large Diffusion Models with Efficient Pipelines
Diffusion models have emerged as dominant performers for image generation. To support training large diffusion models, this paper studies pipeline parallel training of diffusion models and proposes DiffusionPipe, a synchronous pipeline training system that advocates innovative pipeline bubble filling technique, catering to structural characteristics of diffusion models. State-of-the-art diffusion models typically include trainable (the backbone) and non-trainable (e.g., frozen input encoders) parts. We first unify optimal stage partitioning and pipeline scheduling of single and multiple backbones in representative diffusion models with a dynamic programming approach. We then propose to fill the computation of non-trainable model parts into idle periods of the pipeline training of the backbones by an efficient greedy algorithm, thus achieving high training throughput. Extensive experiments show that DiffusionPipe can achieve up to 1.41x speedup over pipeline parallel methods and 1.28x speedup over data parallel training on popular diffusion models.
GNNPipe: Scaling Deep GNN Training with Pipelined Model Parallelism
Communication is a key bottleneck for distributed graph neural network (GNN) training. This paper proposes GNNPipe, a new approach that scales the distributed full-graph deep GNN training. Being the first to use layer-level model parallelism for GNN training, GNNPipe partitions GNN layers among GPUs, each device performs the computation for a disjoint subset of consecutive GNN layers on the whole graph. Compared to graph parallelism with each GPU handling a graph partition, GNNPipe reduces the communication volume by a factor of the number of GNN layers. GNNPipe overcomes the unique challenges for pipelined layer-level model parallelism on the whole graph by partitioning it into dependent chunks, allowing the use of historical vertex embeddings, and applying specific training techniques to ensure convergence. We also propose a hybrid approach by combining GNNPipe with graph parallelism to handle large graphs, achieve better computer resource utilization and ensure model convergence. We build a general GNN training system supporting all three parallelism setting. Extensive experiments show that our method reduces the per-epoch training time by up to 2.45x (on average 1.58x) and reduces the communication volume and overhead by up to 22.89x and 27.21x (on average 8.69x and 11.60x), respectively, while achieving a comparable level of model accuracy and convergence speed compared to graph parallelism.
Training-Free Sketch-Guided Diffusion with Latent Optimization
Based on recent advanced diffusion models, Text-to-image (T2I) generation models have demonstrated their capabilities in generating diverse and high-quality images. However, leveraging their potential for real-world content creation, particularly in providing users with precise control over the image generation result, poses a significant challenge. In this paper, we propose an innovative training-free pipeline that extends existing text-to-image generation models to incorporate a sketch as an additional condition. To generate new images with a layout and structure closely resembling the input sketch, we find that these core features of a sketch can be tracked with the cross-attention maps of diffusion models. We introduce latent optimization, a method that refines the noisy latent at each intermediate step of the generation process using cross-attention maps to ensure that the generated images closely adhere to the desired structure outlined in the reference sketch. Through latent optimization, our method enhances the fidelity and accuracy of image generation, offering users greater control and customization options in content creation.
DiskGNN: Bridging I/O Efficiency and Model Accuracy for Out-of-Core GNN Training
Graph neural networks (GNNs) are machine learning models specialized for graph data and widely used in many applications. To train GNNs on large graphs that exceed CPU memory, several systems store data on disk and conduct out-of-core processing. However, these systems suffer from either read amplification when reading node features that are usually smaller than a disk page or degraded model accuracy by treating the graph as disconnected partitions. To close this gap, we build a system called DiskGNN, which achieves high I/O efficiency and thus fast training without hurting model accuracy. The key technique used by DiskGNN is offline sampling, which helps decouple graph sampling from model computation. In particular, by conducting graph sampling beforehand, DiskGNN acquires the node features that will be accessed by model computation, and such information is utilized to pack the target node features contiguously on disk to avoid read amplification. Besides, also adopts designs including four-level feature store to fully utilize the memory hierarchy to cache node features and reduce disk access, batched packing to accelerate the feature packing process, and pipelined training to overlap disk access with other operations. We compare DiskGNN with Ginex and MariusGNN, which are state-of-the-art systems for out-of-core GNN training. The results show that DiskGNN can speed up the baselines by over 8x while matching their best model accuracy.
Controllable Text-to-Image Generation with GPT-4
Current text-to-image generation models often struggle to follow textual instructions, especially the ones requiring spatial reasoning. On the other hand, Large Language Models (LLMs), such as GPT-4, have shown remarkable precision in generating code snippets for sketching out text inputs graphically, e.g., via TikZ. In this work, we introduce Control-GPT to guide the diffusion-based text-to-image pipelines with programmatic sketches generated by GPT-4, enhancing their abilities for instruction following. Control-GPT works by querying GPT-4 to write TikZ code, and the generated sketches are used as references alongside the text instructions for diffusion models (e.g., ControlNet) to generate photo-realistic images. One major challenge to training our pipeline is the lack of a dataset containing aligned text, images, and sketches. We address the issue by converting instance masks in existing datasets into polygons to mimic the sketches used at test time. As a result, Control-GPT greatly boosts the controllability of image generation. It establishes a new state-of-art on the spatial arrangement and object positioning generation and enhances users' control of object positions, sizes, etc., nearly doubling the accuracy of prior models. Our work, as a first attempt, shows the potential for employing LLMs to enhance the performance in computer vision tasks.
Can LLMs Learn by Teaching? A Preliminary Study
Teaching to improve student models (e.g., knowledge distillation) is an extensively studied methodology in LLMs. However, for humans, teaching not only improves students but also improves teachers. We ask: Can LLMs also learn by teaching (LbT)? If yes, we can potentially unlock the possibility of continuously advancing the models without solely relying on human-produced data or stronger models. In this paper, we provide a preliminary exploration of this ambitious agenda. We show that LbT ideas can be incorporated into existing LLM training/prompting pipelines and provide noticeable improvements. Specifically, we design three methods, each mimicking one of the three levels of LbT in humans: observing students' feedback, learning from the feedback, and learning iteratively, with the goals of improving answer accuracy without training and improving models' inherent capability with fine-tuning. The findings are encouraging. For example, similar to LbT in human, we see that: (1) LbT can induce weak-to-strong generalization: strong models can improve themselves by teaching other weak models; (2) Diversity in students might help: teaching multiple students could be better than teaching one student or the teacher itself. We hope that this early promise can inspire future research on LbT and more broadly adopting the advanced techniques in education to improve LLMs. The code is available at https://github.com/imagination-research/lbt.
MULAN: A Multi Layer Annotated Dataset for Controllable Text-to-Image Generation
Text-to-image generation has achieved astonishing results, yet precise spatial controllability and prompt fidelity remain highly challenging. This limitation is typically addressed through cumbersome prompt engineering, scene layout conditioning, or image editing techniques which often require hand drawn masks. Nonetheless, pre-existing works struggle to take advantage of the natural instance-level compositionality of scenes due to the typically flat nature of rasterized RGB output images. Towards adressing this challenge, we introduce MuLAn: a novel dataset comprising over 44K MUlti-Layer ANnotations of RGB images as multilayer, instance-wise RGBA decompositions, and over 100K instance images. To build MuLAn, we developed a training free pipeline which decomposes a monocular RGB image into a stack of RGBA layers comprising of background and isolated instances. We achieve this through the use of pretrained general-purpose models, and by developing three modules: image decomposition for instance discovery and extraction, instance completion to reconstruct occluded areas, and image re-assembly. We use our pipeline to create MuLAn-COCO and MuLAn-LAION datasets, which contain a variety of image decompositions in terms of style, composition and complexity. With MuLAn, we provide the first photorealistic resource providing instance decomposition and occlusion information for high quality images, opening up new avenues for text-to-image generative AI research. With this, we aim to encourage the development of novel generation and editing technology, in particular layer-wise solutions. MuLAn data resources are available at https://MuLAn-dataset.github.io/.
WebFace260M: A Benchmark Unveiling the Power of Million-Scale Deep Face Recognition
In this paper, we contribute a new million-scale face benchmark containing noisy 4M identities/260M faces (WebFace260M) and cleaned 2M identities/42M faces (WebFace42M) training data, as well as an elaborately designed time-constrained evaluation protocol. Firstly, we collect 4M name list and download 260M faces from the Internet. Then, a Cleaning Automatically utilizing Self-Training (CAST) pipeline is devised to purify the tremendous WebFace260M, which is efficient and scalable. To the best of our knowledge, the cleaned WebFace42M is the largest public face recognition training set and we expect to close the data gap between academia and industry. Referring to practical scenarios, Face Recognition Under Inference Time conStraint (FRUITS) protocol and a test set are constructed to comprehensively evaluate face matchers. Equipped with this benchmark, we delve into million-scale face recognition problems. A distributed framework is developed to train face recognition models efficiently without tampering with the performance. Empowered by WebFace42M, we reduce relative 40% failure rate on the challenging IJB-C set, and ranks the 3rd among 430 entries on NIST-FRVT. Even 10% data (WebFace4M) shows superior performance compared with public training set. Furthermore, comprehensive baselines are established on our rich-attribute test set under FRUITS-100ms/500ms/1000ms protocol, including MobileNet, EfficientNet, AttentionNet, ResNet, SENet, ResNeXt and RegNet families. Benchmark website is https://www.face-benchmark.org.
MA-LoT: Multi-Agent Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving
Solving mathematical problems using computer-verifiable languages like Lean has significantly impacted mathematical and computer science communities. State-of-the-art methods utilize single Large Language Models (LLMs) as agents or provers to either generate complete proof or perform tree searches. However, single-agent methods inherently lack a structured way to combine high-level reasoning in Natural Language (NL) with Formal Language (FL) verification feedback. To solve these issues, we propose MA-LoT: Multi-Agent Lean-based Long Chain-of-Thought framework, (to the best of our knowledge), the first multi-agent framework for Lean4 theorem proving that balance high-level NL reasoning and FL verification in Long CoT. Using this structured interaction, our approach enables deeper insights and long-term coherence in proof generation, with which past methods struggle. We do this by leveraging emergent formal reasoning ability in Long CoT using our novel LoT-Transfer Learning training-inference pipeline. Extensive experiments show that our framework achieves 54.51% accuracy rate on the Lean4 version of MiniF2F-Test dataset, largely outperforming GPT-4 (22.95%), single-agent tree search (InternLM-Step-Prover, 50.70%), and whole-proof generation (DeepSeek-Prover-v1.5, 48.36%) baselines. Furthermore, our findings highlight the potential of combining Long CoT with formal verification for a more insightful generation in a broader perspective.
Visual Fact Checker: Enabling High-Fidelity Detailed Caption Generation
Existing automatic captioning methods for visual content face challenges such as lack of detail, content hallucination, and poor instruction following. In this work, we propose VisualFactChecker (VFC), a flexible training-free pipeline that generates high-fidelity and detailed captions for both 2D images and 3D objects. VFC consists of three steps: 1) proposal, where image-to-text captioning models propose multiple initial captions; 2) verification, where a large language model (LLM) utilizes tools such as object detection and VQA models to fact-check proposed captions; 3) captioning, where an LLM generates the final caption by summarizing caption proposals and the fact check verification results. In this step, VFC can flexibly generate captions in various styles following complex instructions. We conduct comprehensive captioning evaluations using four metrics: 1) CLIP-Score for image-text similarity; 2) CLIP-Image-Score for measuring the image-image similarity between the original and the reconstructed image generated by a text-to-image model using the caption. 3) human study on Amazon Mechanical Turk; 4) GPT-4V for fine-grained evaluation. Evaluation results show that VFC outperforms state-of-the-art open-sourced captioning methods for 2D images on the COCO dataset and 3D assets on the Objaverse dataset. Our study demonstrates that by combining open-source models into a pipeline, we can attain captioning capability comparable to proprietary models such as GPT-4V, despite being over 10x smaller in model size.
MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT
"Bigger the better" has been the predominant trend in recent Large Language Models (LLMs) development. However, LLMs do not suit well for scenarios that require on-device processing, energy efficiency, low memory footprint, and response efficiency. These requisites are crucial for privacy, security, and sustainable deployment. This paper explores the "less is more" paradigm by addressing the challenge of designing accurate yet efficient Small Language Models (SLMs) for resource constrained devices. Our primary contribution is the introduction of an accurate and fully transparent open-source 0.5 billion (0.5B) parameter SLM, named MobiLlama, catering to the specific needs of resource-constrained computing with an emphasis on enhanced performance with reduced resource demands. MobiLlama is a SLM design that initiates from a larger model and applies a careful parameter sharing scheme to reduce both the pre-training and the deployment cost. Our work strives to not only bridge the gap in open-source SLMs but also ensures full transparency, where complete training data pipeline, training code, model weights, and over 300 checkpoints along with evaluation codes is available at : https://github.com/mbzuai-oryx/MobiLlama.
GenRC: Generative 3D Room Completion from Sparse Image Collections
Sparse RGBD scene completion is a challenging task especially when considering consistent textures and geometries throughout the entire scene. Different from existing solutions that rely on human-designed text prompts or predefined camera trajectories, we propose GenRC, an automated training-free pipeline to complete a room-scale 3D mesh with high-fidelity textures. To achieve this, we first project the sparse RGBD images to a highly incomplete 3D mesh. Instead of iteratively generating novel views to fill in the void, we utilized our proposed E-Diffusion to generate a view-consistent panoramic RGBD image which ensures global geometry and appearance consistency. Furthermore, we maintain the input-output scene stylistic consistency through textual inversion to replace human-designed text prompts. To bridge the domain gap among datasets, E-Diffusion leverages models trained on large-scale datasets to generate diverse appearances. GenRC outperforms state-of-the-art methods under most appearance and geometric metrics on ScanNet and ARKitScenes datasets, even though GenRC is not trained on these datasets nor using predefined camera trajectories. Project page: https://minfenli.github.io/GenRC
Pipelined Backpropagation at Scale: Training Large Models without Batches
New hardware can substantially increase the speed and efficiency of deep neural network training. To guide the development of future hardware architectures, it is pertinent to explore the hardware and machine learning properties of alternative training algorithms. In this work we evaluate the use of small batch, fine-grained Pipelined Backpropagation, an asynchronous pipeline parallel training algorithm that has significant hardware advantages. We introduce two methods, Spike Compensation and Linear Weight Prediction, that effectively mitigate the downsides caused by the asynchronicity of Pipelined Backpropagation and outperform existing techniques in our setting. We show that appropriate normalization and small batch sizes can also aid training. With our methods, fine-grained Pipelined Backpropagation using a batch size of one can match the accuracy of SGD for multiple networks trained on CIFAR-10 and ImageNet. Simple scaling rules allow the use of existing hyperparameters for traditional training without additional tuning.
Confidant: Customizing Transformer-based LLMs via Collaborative Edge Training
Transformer-based large language models (LLMs) have demonstrated impressive capabilities in a variety of natural language processing (NLP) tasks. Nonetheless, it is challenging to deploy and fine-tune LLMs on mobile edge devices with limited computing, memory, and energy budgets. In this paper, we propose Confidant, a multi-backend collaborative training framework for customizing state-of-the-art LLMs on commodity mobile devices like smartphones. Confidant partitions an LLM into several sub-models so that each fits into a mobile device's memory. A pipeline parallel training mechanism is further developed to ensure fast and efficient distributed training. In addition, we propose a novel backend scheduler to allocate different attention heads to heterogeneous compute hardware, including mobile CPU and GPUs, to maximize the compute resource utilization on each edge device. Our preliminary experimental results show that Confidant achieves at most 45.3% memory reduction and 8.03x inference speedup in practical settings.
Bag of Freebies for Training Object Detection Neural Networks
Training heuristics greatly improve various image classification model accuracies~he2018bag. Object detection models, however, have more complex neural network structures and optimization targets. The training strategies and pipelines dramatically vary among different models. In this works, we explore training tweaks that apply to various models including Faster R-CNN and YOLOv3. These tweaks do not change the model architectures, therefore, the inference costs remain the same. Our empirical results demonstrate that, however, these freebies can improve up to 5% absolute precision compared to state-of-the-art baselines.
Arena Learning: Build Data Flywheel for LLMs Post-training via Simulated Chatbot Arena
Assessing the effectiveness of large language models (LLMs) presents substantial challenges. The method of conducting human-annotated battles in an online Chatbot Arena is a highly effective evaluative technique. However, this approach is limited by the costs and time required for human annotation. In this paper, we introduce Arena Learning, an innovative offline strategy designed to simulate these arena battles using AI-driven annotations to evaluate battle outcomes, thus facilitating the continuous improvement of the target model through both supervised fine-tuning and reinforcement learning. Arena Learning comprises two key elements. First, it ensures precise evaluations and maintains consistency between offline simulations and online competitions via WizardArena, a pipeline developed to accurately predict the Elo rankings of various models using a meticulously designed offline test set. Our results demonstrate that WizardArena's predictions closely align with those from the online Arena. Second, it involves the continuous improvement of training data based on the battle results and the refined model. We establish a data flywheel to iteratively update the training data by highlighting the weaknesses of the target model based on its battle results, enabling it to learn from the strengths of multiple different models. We apply Arena Learning to train our target model, WizardLM-beta, and demonstrate significant performance enhancements across various metrics. This fully automated training and evaluation pipeline sets the stage for continuous advancements in various LLMs via post-training. Notably, Arena Learning plays a pivotal role in the success of WizardLM-2, and this paper serves both as an exploration of its efficacy and a foundational study for future discussions related to WizardLM-2 and its derivatives.
Tackling Interference Induced by Data Training Loops in A/B Tests: A Weighted Training Approach
In modern recommendation systems, the standard pipeline involves training machine learning models on historical data to predict user behaviors and improve recommendations continuously. However, these data training loops can introduce interference in A/B tests, where data generated by control and treatment algorithms, potentially with different distributions, are combined. To address these challenges, we introduce a novel approach called weighted training. This approach entails training a model to predict the probability of each data point appearing in either the treatment or control data and subsequently applying weighted losses during model training. We demonstrate that this approach achieves the least variance among all estimators without causing shifts in the training distributions. Through simulation studies, we demonstrate the lower bias and variance of our approach compared to other methods.
EE-LLM: Large-Scale Training and Inference of Early-Exit Large Language Models with 3D Parallelism
We present EE-LLM, a framework for large-scale training and inference of early-exit large language models (LLMs). While recent works have shown preliminary evidence for the efficacy of early exiting in accelerating LLM inference, EE-LLM makes a foundational step towards scaling up early-exit LLMs by supporting their training and inference with massive 3D parallelism. Built upon Megatron-LM, EE-LLM implements a variety of algorithmic innovations and performance optimizations tailored to early exiting, including a lightweight method that facilitates backpropagation for the early-exit training objective with pipeline parallelism, techniques of leveraging idle resources in the original pipeline schedule for computation related to early-exit layers, and two approaches of early-exit inference that are compatible with KV caching for autoregressive generation. Our analytical and empirical study shows that EE-LLM achieves great training efficiency with negligible computational overhead compared to standard LLM training, as well as outstanding inference speedup without compromising output quality. To facilitate further research and adoption, we release EE-LLM at https://github.com/pan-x-c/EE-LLM.
CTVIS: Consistent Training for Online Video Instance Segmentation
The discrimination of instance embeddings plays a vital role in associating instances across time for online video instance segmentation (VIS). Instance embedding learning is directly supervised by the contrastive loss computed upon the contrastive items (CIs), which are sets of anchor/positive/negative embeddings. Recent online VIS methods leverage CIs sourced from one reference frame only, which we argue is insufficient for learning highly discriminative embeddings. Intuitively, a possible strategy to enhance CIs is replicating the inference phase during training. To this end, we propose a simple yet effective training strategy, called Consistent Training for Online VIS (CTVIS), which devotes to aligning the training and inference pipelines in terms of building CIs. Specifically, CTVIS constructs CIs by referring inference the momentum-averaged embedding and the memory bank storage mechanisms, and adding noise to the relevant embeddings. Such an extension allows a reliable comparison between embeddings of current instances and the stable representations of historical instances, thereby conferring an advantage in modeling VIS challenges such as occlusion, re-identification, and deformation. Empirically, CTVIS outstrips the SOTA VIS models by up to +5.0 points on three VIS benchmarks, including YTVIS19 (55.1% AP), YTVIS21 (50.1% AP) and OVIS (35.5% AP). Furthermore, we find that pseudo-videos transformed from images can train robust models surpassing fully-supervised ones.
CASE: Efficient Curricular Data Pre-training for Building Assistive Psychology Expert Models
The limited availability of psychologists necessitates efficient identification of individuals requiring urgent mental healthcare. This study explores the use of Natural Language Processing (NLP) pipelines to analyze text data from online mental health forums used for consultations. By analyzing forum posts, these pipelines can flag users who may require immediate professional attention. A crucial challenge in this domain is data privacy and scarcity. To address this, we propose utilizing readily available curricular texts used in institutes specializing in mental health for pre-training the NLP pipelines. This helps us mimic the training process of a psychologist. Our work presents CASE-BERT that flags potential mental health disorders based on forum text. CASE-BERT demonstrates superior performance compared to existing methods, achieving an f1 score of 0.91 for Depression and 0.88 for Anxiety, two of the most commonly reported mental health disorders. Our code is publicly available.
SiTH: Single-view Textured Human Reconstruction with Image-Conditioned Diffusion
A long-standing goal of 3D human reconstruction is to create lifelike and fully detailed 3D humans from single images. The main challenge lies in inferring unknown human shapes, clothing, and texture information in areas not visible in the images. To address this, we propose SiTH, a novel pipeline that uniquely integrates an image-conditioned diffusion model into a 3D mesh reconstruction workflow. At the core of our method lies the decomposition of the ill-posed single-view reconstruction problem into hallucination and reconstruction subproblems. For the former, we employ a powerful generative diffusion model to hallucinate back appearances from the input images. For the latter, we leverage skinned body meshes as guidance to recover full-body texture meshes from the input and back-view images. Our designs enable training of the pipeline with only about 500 3D human scans while maintaining its generality and robustness. Extensive experiments and user studies on two 3D reconstruction benchmarks demonstrated the efficacy of our method in generating realistic, fully textured 3D humans from a diverse range of unseen images.
OpenCOLE: Towards Reproducible Automatic Graphic Design Generation
Automatic generation of graphic designs has recently received considerable attention. However, the state-of-the-art approaches are complex and rely on proprietary datasets, which creates reproducibility barriers. In this paper, we propose an open framework for automatic graphic design called OpenCOLE, where we build a modified version of the pioneering COLE and train our model exclusively on publicly available datasets. Based on GPT4V evaluations, our model shows promising performance comparable to the original COLE. We release the pipeline and training results to encourage open development.
Pose-Free Neural Radiance Fields via Implicit Pose Regularization
Pose-free neural radiance fields (NeRF) aim to train NeRF with unposed multi-view images and it has achieved very impressive success in recent years. Most existing works share the pipeline of training a coarse pose estimator with rendered images at first, followed by a joint optimization of estimated poses and neural radiance field. However, as the pose estimator is trained with only rendered images, the pose estimation is usually biased or inaccurate for real images due to the domain gap between real images and rendered images, leading to poor robustness for the pose estimation of real images and further local minima in joint optimization. We design IR-NeRF, an innovative pose-free NeRF that introduces implicit pose regularization to refine pose estimator with unposed real images and improve the robustness of the pose estimation for real images. With a collection of 2D images of a specific scene, IR-NeRF constructs a scene codebook that stores scene features and captures the scene-specific pose distribution implicitly as priors. Thus, the robustness of pose estimation can be promoted with the scene priors according to the rationale that a 2D real image can be well reconstructed from the scene codebook only when its estimated pose lies within the pose distribution. Extensive experiments show that IR-NeRF achieves superior novel view synthesis and outperforms the state-of-the-art consistently across multiple synthetic and real datasets.
H3WB: Human3.6M 3D WholeBody Dataset and Benchmark
3D human whole-body pose estimation aims to localize precise 3D keypoints on the entire human body, including the face, hands, body, and feet. Due to the lack of a large-scale fully annotated 3D whole-body dataset, a common approach has been to train several deep networks separately on datasets dedicated to specific body parts, and combine them during inference. This approach suffers from complex training and inference pipelines because of the different biases in each dataset used. It also lacks a common benchmark which makes it difficult to compare different methods. To address these issues, we introduce Human3.6M 3D WholeBody (H3WB) which provides whole-body annotations for the Human3.6M dataset using the COCO Wholebody layout. H3WB is a large scale dataset with 133 whole-body keypoint annotations on 100K images, made possible by our new multi-view pipeline. Along with H3WB, we propose 3 tasks: i) 3D whole-body pose lifting from 2D complete whole-body pose, ii) 3D whole-body pose lifting from 2D incomplete whole-body pose, iii) 3D whole-body pose estimation from a single RGB image. We also report several baselines from popular methods for these tasks. The dataset is publicly available at https://github.com/wholebody3d/wholebody3d.
AISHELL-2: Transforming Mandarin ASR Research Into Industrial Scale
AISHELL-1 is by far the largest open-source speech corpus available for Mandarin speech recognition research. It was released with a baseline system containing solid training and testing pipelines for Mandarin ASR. In AISHELL-2, 1000 hours of clean read-speech data from iOS is published, which is free for academic usage. On top of AISHELL-2 corpus, an improved recipe is developed and released, containing key components for industrial applications, such as Chinese word segmentation, flexible vocabulary expension and phone set transformation etc. Pipelines support various state-of-the-art techniques, such as time-delayed neural networks and Lattic-Free MMI objective funciton. In addition, we also release dev and test data from other channels(Android and Mic). For research community, we hope that AISHELL-2 corpus can be a solid resource for topics like transfer learning and robust ASR. For industry, we hope AISHELL-2 recipe can be a helpful reference for building meaningful industrial systems and products.
Towards System 2 Reasoning in LLMs: Learning How to Think With Meta Chain-of-Though
We propose a novel framework, Meta Chain-of-Thought (Meta-CoT), which extends traditional Chain-of-Thought (CoT) by explicitly modeling the underlying reasoning required to arrive at a particular CoT. We present empirical evidence from state-of-the-art models exhibiting behaviors consistent with in-context search, and explore methods for producing Meta-CoT via process supervision, synthetic data generation, and search algorithms. Finally, we outline a concrete pipeline for training a model to produce Meta-CoTs, incorporating instruction tuning with linearized search traces and reinforcement learning post-training. Finally, we discuss open research questions, including scaling laws, verifier roles, and the potential for discovering novel reasoning algorithms. This work provides a theoretical and practical roadmap to enable Meta-CoT in LLMs, paving the way for more powerful and human-like reasoning in artificial intelligence.
MatchTime: Towards Automatic Soccer Game Commentary Generation
Soccer is a globally popular sport with a vast audience, in this paper, we consider constructing an automatic soccer game commentary model to improve the audiences' viewing experience. In general, we make the following contributions: First, observing the prevalent video-text misalignment in existing datasets, we manually annotate timestamps for 49 matches, establishing a more robust benchmark for soccer game commentary generation, termed as SN-Caption-test-align; Second, we propose a multi-modal temporal alignment pipeline to automatically correct and filter the existing dataset at scale, creating a higher-quality soccer game commentary dataset for training, denoted as MatchTime; Third, based on our curated dataset, we train an automatic commentary generation model, named MatchVoice. Extensive experiments and ablation studies have demonstrated the effectiveness of our alignment pipeline, and training model on the curated datasets achieves state-of-the-art performance for commentary generation, showcasing that better alignment can lead to significant performance improvements in downstream tasks.
SongGen: A Single Stage Auto-regressive Transformer for Text-to-Song Generation
Text-to-song generation, the task of creating vocals and accompaniment from textual inputs, poses significant challenges due to domain complexity and data scarcity. Existing approaches often employ multi-stage generation procedures, resulting in cumbersome training and inference pipelines. In this paper, we propose SongGen, a fully open-source, single-stage auto-regressive transformer designed for controllable song generation. The proposed model facilitates fine-grained control over diverse musical attributes, including lyrics and textual descriptions of instrumentation, genre, mood, and timbre, while also offering an optional three-second reference clip for voice cloning. Within a unified auto-regressive framework, SongGen supports two output modes: mixed mode, which generates a mixture of vocals and accompaniment directly, and dual-track mode, which synthesizes them separately for greater flexibility in downstream applications. We explore diverse token pattern strategies for each mode, leading to notable improvements and valuable insights. Furthermore, we design an automated data preprocessing pipeline with effective quality control. To foster community engagement and future research, we will release our model weights, training code, annotated data, and preprocessing pipeline. The generated samples are showcased on our project page at https://liuzh-19.github.io/SongGen/ , and the code will be available at https://github.com/LiuZH-19/SongGen .
GME: Improving Universal Multimodal Retrieval by Multimodal LLMs
Universal Multimodal Retrieval (UMR) aims to enable search across various modalities using a unified model, where queries and candidates can consist of pure text, images, or a combination of both. Previous work has attempted to adopt multimodal large language models (MLLMs) to realize UMR using only text data. However, our preliminary experiments demonstrate that more diverse multimodal training data can further unlock the potential of MLLMs. Despite its effectiveness, the existing multimodal training data is highly imbalanced in terms of modality, which motivates us to develop a training data synthesis pipeline and construct a large-scale, high-quality fused-modal training dataset. Based on the synthetic training data, we develop the General Multimodal Embedder (GME), an MLLM-based dense retriever designed for UMR. Furthermore, we construct a comprehensive UMR Benchmark (UMRB) to evaluate the effectiveness of our approach. Experimental results show that our method achieves state-of-the-art performance among existing UMR methods. Last, we provide in-depth analyses of model scaling, training strategies, and perform ablation studies on both the model and synthetic data.
On the Feasibility of Vision-Language Models for Time-Series Classification
We build upon time-series classification by leveraging the capabilities of Vision Language Models (VLMs). We find that VLMs produce competitive results after two or less epochs of fine-tuning. We develop a novel approach that incorporates graphical data representations as images in conjunction with numerical data. This approach is rooted in the hypothesis that graphical representations can provide additional contextual information that numerical data alone may not capture. Additionally, providing a graphical representation can circumvent issues such as limited context length faced by LLMs. To further advance this work, we implemented a scalable end-to-end pipeline for training on different scenarios, allowing us to isolate the most effective strategies for transferring learning capabilities from LLMs to Time Series Classification (TSC) tasks. Our approach works with univariate and multivariate time-series data. In addition, we conduct extensive and practical experiments to show how this approach works for time-series classification and generative labels.
Dense Pose Transfer
In this work we integrate ideas from surface-based modeling with neural synthesis: we propose a combination of surface-based pose estimation and deep generative models that allows us to perform accurate pose transfer, i.e. synthesize a new image of a person based on a single image of that person and the image of a pose donor. We use a dense pose estimation system that maps pixels from both images to a common surface-based coordinate system, allowing the two images to be brought in correspondence with each other. We inpaint and refine the source image intensities in the surface coordinate system, prior to warping them onto the target pose. These predictions are fused with those of a convolutional predictive module through a neural synthesis module allowing for training the whole pipeline jointly end-to-end, optimizing a combination of adversarial and perceptual losses. We show that dense pose estimation is a substantially more powerful conditioning input than landmark-, or mask-based alternatives, and report systematic improvements over state of the art generators on DeepFashion and MVC datasets.
YAYI 2: Multilingual Open-Source Large Language Models
As the latest advancements in natural language processing, large language models (LLMs) have achieved human-level language understanding and generation abilities in many real-world tasks, and even have been regarded as a potential path to the artificial general intelligence. To better facilitate research on LLMs, many open-source LLMs, such as Llama 2 and Falcon, have recently been proposed and gained comparable performances to proprietary models. However, these models are primarily designed for English scenarios and exhibit poor performances in Chinese contexts. In this technical report, we propose YAYI 2, including both base and chat models, with 30 billion parameters. YAYI 2 is pre-trained from scratch on a multilingual corpus which contains 2.65 trillion tokens filtered by our pre-training data processing pipeline. The base model is aligned with human values through supervised fine-tuning with millions of instructions and reinforcement learning from human feedback. Extensive experiments on multiple benchmarks, such as MMLU and CMMLU, consistently demonstrate that the proposed YAYI 2 outperforms other similar sized open-source models.
LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of Experts (MoEs) plays an important role in the development of more efficient and effective large language models (LLMs). Due to the enormous resource requirements, studying large scale MoE algorithms remain in-accessible to many researchers. This work develops LibMoE, a comprehensive and modular framework to streamline the research, training, and evaluation of MoE algorithms. Built upon three core principles: (i) modular design, (ii) efficient training; (iii) comprehensive evaluation, LibMoE brings MoE in LLMs more accessible to a wide range of researchers by standardizing the training and evaluation pipelines. Using LibMoE, we extensively benchmarked five state-of-the-art MoE algorithms over three different LLMs and 11 datasets under the zero-shot setting. The results show that despite the unique characteristics, all MoE algorithms perform roughly similar when averaged across a wide range of tasks. With the modular design and extensive evaluation, we believe LibMoE will be invaluable for researchers to make meaningful progress towards the next generation of MoE and LLMs. Project page: https://fsoft-aic.github.io/fsoft-LibMoE.github.io.
Otter: A Multi-Modal Model with In-Context Instruction Tuning
Large language models (LLMs) have demonstrated significant universal capabilities as few/zero-shot learners in various tasks due to their pre-training on vast amounts of text data, as exemplified by GPT-3, which boosted to InstrctGPT and ChatGPT, effectively following natural language instructions to accomplish real-world tasks. In this paper, we propose to introduce instruction tuning into multi-modal models, motivated by the Flamingo model's upstream interleaved format pretraining dataset. We adopt a similar approach to construct our MultI-Modal In-Context Instruction Tuning (MIMIC-IT) dataset. We then introduce Otter, a multi-modal model based on OpenFlamingo (open-sourced version of DeepMind's Flamingo), trained on MIMIC-IT and showcasing improved instruction-following ability and in-context learning. We also optimize OpenFlamingo's implementation for researchers, democratizing the required training resources from 1times A100 GPU to 4times RTX-3090 GPUs, and integrate both OpenFlamingo and Otter into Huggingface Transformers for more researchers to incorporate the models into their customized training and inference pipelines.
GistScore: Learning Better Representations for In-Context Example Selection with Gist Bottlenecks
In-context Learning (ICL) is the ability of Large Language Models (LLMs) to perform new tasks when conditioned on prompts comprising a few task examples. However, ICL performance can be critically sensitive to the choice of examples. To dynamically select the best examples for every test input, we propose Example Gisting, a novel approach for training example encoders through supervised fine-tuning with an attention bottleneck between the inputs and outputs. These gist models form the basis for GistScore, a novel metric for scoring and selecting informative examples. Further, we experiment with two variations: (1) fine-tuning gist models for each dataset and (2) multi-task training a single model on a large collection of datasets. The latter can be used for new tasks out-of-the-box, enabling a training-free ICL pipeline. Evaluations with 21 datasets spanning 9 tasks and 8 diverse LLMs show that our fine-tuned models get state-of-the-art ICL performance with over 20% absolute gain over off-the-shelf retrievers and 5% over the best prior methods. Further, our multi-task model generalizes well to new tasks, datasets, and prompt templates. Selection using this model matches or outperforms prior methods while being three orders of magnitude faster than the strongest training-free baseline.
Incorporating Visual Experts to Resolve the Information Loss in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) are experiencing rapid growth, yielding a plethora of noteworthy contributions in recent months. The prevailing trend involves adopting data-driven methodologies, wherein diverse instruction-following datasets are collected. However, a prevailing challenge persists in these approaches, specifically in relation to the limited visual perception ability, as CLIP-like encoders employed for extracting visual information from inputs. Though these encoders are pre-trained on billions of image-text pairs, they still grapple with the information loss dilemma, given that textual captions only partially capture the contents depicted in images. To address this limitation, this paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism. Specifically, we introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline, aiming to provide a more comprehensive and accurate summarization of visual inputs. Extensive experiments have evaluated its effectiveness of advancing MLLMs, showcasing improved visual perception achieved through the integration of visual experts.
Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review and Replicability Study
Medical coding is the task of assigning medical codes to clinical free-text documentation. Healthcare professionals manually assign such codes to track patient diagnoses and treatments. Automated medical coding can considerably alleviate this administrative burden. In this paper, we reproduce, compare, and analyze state-of-the-art automated medical coding machine learning models. We show that several models underperform due to weak configurations, poorly sampled train-test splits, and insufficient evaluation. In previous work, the macro F1 score has been calculated sub-optimally, and our correction doubles it. We contribute a revised model comparison using stratified sampling and identical experimental setups, including hyperparameters and decision boundary tuning. We analyze prediction errors to validate and falsify assumptions of previous works. The analysis confirms that all models struggle with rare codes, while long documents only have a negligible impact. Finally, we present the first comprehensive results on the newly released MIMIC-IV dataset using the reproduced models. We release our code, model parameters, and new MIMIC-III and MIMIC-IV training and evaluation pipelines to accommodate fair future comparisons.
ESPnet-se: end-to-end speech enhancement and separation toolkit designed for asr integration
We present ESPnet-SE, which is designed for the quick development of speech enhancement and speech separation systems in a single framework, along with the optional downstream speech recognition module. ESPnet-SE is a new project which integrates rich automatic speech recognition related models, resources and systems to support and validate the proposed front-end implementation (i.e. speech enhancement and separation).It is capable of processing both single-channel and multi-channel data, with various functionalities including dereverberation, denoising and source separation. We provide all-in-one recipes including data pre-processing, feature extraction, training and evaluation pipelines for a wide range of benchmark datasets. This paper describes the design of the toolkit, several important functionalities, especially the speech recognition integration, which differentiates ESPnet-SE from other open source toolkits, and experimental results with major benchmark datasets.
Layered gradient accumulation and modular pipeline parallelism: fast and efficient training of large language models
The advent of the transformer has sparked a quick growth in the size of language models, far outpacing hardware improvements. (Dense) transformers are expected to reach the trillion-parameter scale in the near future, for which training requires thousands or even tens of thousands of GPUs. We investigate the challenges of training at this scale and beyond on commercially available hardware. In particular, we analyse the shortest possible training time for different configurations of distributed training, leveraging empirical scaling laws for language models to estimate the optimal (critical) batch size. Contrary to popular belief, we find no evidence for a memory wall, and instead argue that the real limitation -- other than the cost -- lies in the training duration. In addition to this analysis, we introduce two new methods, layered gradient accumulation and modular pipeline parallelism, which together cut the shortest training time by half. The methods also reduce data movement, lowering the network requirement to a point where a fast InfiniBand connection is not necessary. This increased network efficiency also improve on the methods introduced with the ZeRO optimizer, reducing the memory usage to a tiny fraction of the available GPU memory.
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism
Scaling up deep neural network capacity has been known as an effective approach to improving model quality for several different machine learning tasks. In many cases, increasing model capacity beyond the memory limit of a single accelerator has required developing special algorithms or infrastructure. These solutions are often architecture-specific and do not transfer to other tasks. To address the need for efficient and task-independent model parallelism, we introduce GPipe, a pipeline parallelism library that allows scaling any network that can be expressed as a sequence of layers. By pipelining different sub-sequences of layers on separate accelerators, GPipe provides the flexibility of scaling a variety of different networks to gigantic sizes efficiently. Moreover, GPipe utilizes a novel batch-splitting pipelining algorithm, resulting in almost linear speedup when a model is partitioned across multiple accelerators. We demonstrate the advantages of GPipe by training large-scale neural networks on two different tasks with distinct network architectures: (i) Image Classification: We train a 557-million-parameter AmoebaNet model and attain a top-1 accuracy of 84.4% on ImageNet-2012, (ii) Multilingual Neural Machine Translation: We train a single 6-billion-parameter, 128-layer Transformer model on a corpus spanning over 100 languages and achieve better quality than all bilingual models.
Hanayo: Harnessing Wave-like Pipeline Parallelism for Enhanced Large Model Training Efficiency
Large-scale language models have become increasingly challenging and expensive to train. Among various methods addressing this issue, Pipeline Parallelism has been widely employed to accommodate massive model weights within limited GPU memory. This paper introduces Hanayo, a wave-like pipeline parallelism strategy that boasts a concise structure and practical applicability, alongside a high-performance pipeline execution runtime to tackle the challenges of pipeline strategy implementation. Hanayo mitigates the issues of pipeline bubbles and excessive memory consumption prevalent in existing schemes, without resorting to model duplicates as in Chimera. Our evaluation, conducted on four distinct computing clusters and involving both GPT-like and BERT-like architectures with up to 32 GPUs, demonstrates up to a 30.4 \% increase in throughput compared to the state-of-the-art approach.
BitPipe: Bidirectional Interleaved Pipeline Parallelism for Accelerating Large Models Training
With the increasing scale of models, the need for efficient distributed training has become increasingly urgent. Recently, many synchronous pipeline parallelism approaches have been proposed to improve training throughput. However, these approaches still suffer from two major issues, i.e., pipeline bubbles caused by periodic flushing and extra communication due to the increasing number of pipeline stages. To this end, we propose BitPipe, a bidirectional interleaved pipeline parallelism for accelerating large models training. Specifically, a hybrid scheme of fusing interleaved pipelines with bidirectional pipelines is proposed to reduce the computational time of each single micro-batch and multiply the number of devices executing simultaneously. A V-shaped schedule with eager gradient synchronization is introduced to reduce and overlap the communication between devices. Experiments conducted on up to 32 GPUs show that BitPipe improves the training throughput of GPT-style and BERT-style models by 1.05x-1.28x compared to the state-of-the-art synchronous approaches. The code of our implementation is available at https://github.com/wuhouming/BitPipe.
Training LLMs to Better Self-Debug and Explain Code
In the domain of code generation, self-debugging is crucial. It allows LLMs to refine their generated code based on execution feedback. This is particularly important because generating correct solutions in one attempt proves challenging for complex tasks. Prior works on self-debugging mostly focus on prompting methods by providing LLMs with few-shot examples, which work poorly on small open-sourced LLMs. In this work, we propose a training framework that significantly improves self-debugging capability of LLMs. Intuitively, we observe that a chain of explanations on the wrong code followed by code refinement helps LLMs better analyze the wrong code and do refinement. We thus propose an automated pipeline to collect a high-quality dataset for code explanation and refinement by generating a number of explanations and refinement trajectories and filtering via execution verification. We perform supervised fine-tuning (SFT) and further reinforcement learning (RL) on both success and failure trajectories with a novel reward design considering code explanation and refinement quality. SFT improves the pass@1 by up to 15.92% and pass@10 by 9.30% over four benchmarks. RL training brings additional up to 3.54% improvement on pass@1 and 2.55% improvement on pass@10. The trained LLMs show iterative refinement ability, and can keep refining code continuously. Lastly, our human evaluation shows that the LLMs trained with our framework generate more useful code explanations and help developers better understand bugs in source code.
AGent: A Novel Pipeline for Automatically Creating Unanswerable Questions
The development of large high-quality datasets and high-performing models have led to significant advancements in the domain of Extractive Question Answering (EQA). This progress has sparked considerable interest in exploring unanswerable questions within the EQA domain. Training EQA models with unanswerable questions helps them avoid extracting misleading or incorrect answers for queries that lack valid responses. However, manually annotating unanswerable questions is labor-intensive. To address this, we propose AGent, a novel pipeline that automatically creates new unanswerable questions by re-matching a question with a context that lacks the necessary information for a correct answer. In this paper, we demonstrate the usefulness of this AGent pipeline by creating two sets of unanswerable questions from answerable questions in SQuAD and HotpotQA. These created question sets exhibit low error rates. Additionally, models fine-tuned on these questions show comparable performance with those fine-tuned on the SQuAD 2.0 dataset on multiple EQA benchmarks.
Towards Internet-Scale Training For Agents
The predominant approach for training web navigation agents gathers human demonstrations for a set of popular websites and hand-written tasks, but it is becoming clear that human data are an inefficient resource. We develop a pipeline to facilitate Internet-scale training for agents without laborious human annotations. In the first stage, an LLM generates tasks for 150k diverse websites. In the next stage, LLM agents complete tasks and produce trajectories. In the final stage, an LLM reviews the trajectories and judges their success. Language models are competitive with human annotators, detecting and filtering out harmful content with an accuracy of 97%, generating feasible tasks with an 89% rate, and judging successful trajectories with an 82.6% accuracy. Scaling the pipeline, agents based on Llama 3.1 70B solve 16.7% of tasks for 150k sites. Training on the data generated by our pipeline is competitive with training on human demonstrations. In data-limited settings derived from Mind2Web and WebLINX, we improve Step Accuracy by up to +89.5% and +122.1% respectively for agents trained on mixtures of data from our pipeline, and human data. When training agents with all available human data from these benchmarks, agents fail to generalize to diverse real sites, and adding our data improves their generalization by +149.0% for WebLINX and +156.3% for Mind2Web. Code will be available at: data-for-agents.github.io.
SBS Figures: Pre-training Figure QA from Stage-by-Stage Synthesized Images
Building a large-scale figure QA dataset requires a considerable amount of work, from gathering and selecting figures to extracting attributes like text, numbers, and colors, and generating QAs. Although recent developments in LLMs have led to efforts to synthesize figures, most of these focus primarily on QA generation. Additionally, creating figures directly using LLMs often encounters issues such as code errors, similar-looking figures, and repetitive content in figures. To address this issue, we present SBSFigures (Stage-by-Stage Synthetic Figures), a dataset for pre-training figure QA. Our proposed pipeline enables the creation of chart figures with complete annotations of the visualized data and dense QA annotations without any manual annotation process. Our stage-by-stage pipeline makes it possible to create diverse topic and appearance figures efficiently while minimizing code errors. Our SBSFigures demonstrate a strong pre-training effect, making it possible to achieve efficient training with a limited amount of real-world chart data starting from our pre-trained weights.
Extracting Training Data from Diffusion Models
Image diffusion models such as DALL-E 2, Imagen, and Stable Diffusion have attracted significant attention due to their ability to generate high-quality synthetic images. In this work, we show that diffusion models memorize individual images from their training data and emit them at generation time. With a generate-and-filter pipeline, we extract over a thousand training examples from state-of-the-art models, ranging from photographs of individual people to trademarked company logos. We also train hundreds of diffusion models in various settings to analyze how different modeling and data decisions affect privacy. Overall, our results show that diffusion models are much less private than prior generative models such as GANs, and that mitigating these vulnerabilities may require new advances in privacy-preserving training.
TinyHelen's First Curriculum: Training and Evaluating Tiny Language Models in a Simpler Language Environment
Training language models (LMs) and their application agents is increasingly costly due to large datasets and models, making test failures difficult to bear. Simplified language environments serve as primordial training and testing grounds, retaining essential commonsense and communication skills but in a more digestible form, potentially enhancing the learning efficiency of LMs, and thus reducing the required model size and data volume for effective training and evaluation. In these simplified language environments, workable strategies for small models, datasets, and agents may be adaptable to larger models, datasets, and agents in complex language environments. To create such environments, we focus on two aspects: i) minimizing language dataset noise and complexity, and ii) preserving the essential text distribution characteristics. Unlike previous methods, we propose a pipeline to refine text data by eliminating noise, minimizing vocabulary, and maintaining genre-specific patterns (e.g., for books, conversation, code, etc.). Implementing this pipeline with large LMs, we have created a leaner suite of LM training and evaluation datasets: 71M Leaner-Pretrain, 7M Leaner-Instruct, Leaner-Glue for assessing linguistic proficiency, and Leaner-Eval for testing instruction-following ability. Our experiments show that leaner pre-training boosts LM learning efficiency. Tiny LMs trained on these datasets outperform those trained on original datasets in instruction-following across different language granularity levels. Moreover, the Leaner-Pretrain dataset's alignment with conventional large LM training sets enables resource-optimized analysis of how learning objectives, model architectures, and training techniques impact performance on language modeling and downstream tasks. Our code and datasets are available at https://github.com/EmpathYang/TinyHelen.git.
Brouhaha: multi-task training for voice activity detection, speech-to-noise ratio, and C50 room acoustics estimation
Most automatic speech processing systems are sensitive to the acoustic environment, with degraded performance when applied to noisy or reverberant speech. But how can one tell whether speech is noisy or reverberant? We propose Brouhaha, a pipeline to simulate audio segments recorded in noisy and reverberant conditions. We then use the simulated audio to jointly train the Brouhaha model for voice activity detection, signal-to-noise ratio estimation, and C50 room acoustics prediction. We show how the predicted SNR and C50 values can be used to investigate and help diagnose errors made by automatic speech processing tools (such as pyannote.audio for speaker diarization or OpenAI's Whisper for automatic speech recognition). Both our pipeline and a pretrained model are open source and shared with the speech community.
Training Language Models to Critique With Multi-agent Feedback
Critique ability, a meta-cognitive capability of humans, presents significant challenges for LLMs to improve. Recent works primarily rely on supervised fine-tuning (SFT) using critiques generated by a single LLM like GPT-4. However, these model-generated critiques often exhibit flaws due to the inherent complexity of the critique. Consequently, fine-tuning LLMs on such flawed critiques typically limits the model's performance and propagates these flaws into the learned model. To overcome these challenges, this paper proposes a novel data generation pipeline, named MultiCritique, that improves the critique ability of LLMs by utilizing multi-agent feedback in both the SFT and reinforcement learning (RL) stages. First, our data generation pipeline aggregates high-quality critiques from multiple agents instead of a single model, with crucial information as input for simplifying the critique. Furthermore, our pipeline improves the preference accuracy of critique quality through multi-agent feedback, facilitating the effectiveness of RL in improving the critique ability of LLMs. Based on our proposed MultiCritique data generation pipeline, we construct the MultiCritiqueDataset for the SFT and RL fine-tuning stages. Extensive experimental results on two benchmarks demonstrate: 1) the superior quality of our constructed SFT dataset compared to existing critique datasets; 2) additional improvements to the critique ability of LLMs brought by the RL stage. Notably, our fine-tuned 7B model significantly surpasses other advanced 7B-13B open-source models, approaching the performance of advanced 70B LLMs and GPT-4. Codes, datasets and model weights will be publicly available.
JavaBERT: Training a transformer-based model for the Java programming language
Code quality is and will be a crucial factor while developing new software code, requiring appropriate tools to ensure functional and reliable code. Machine learning techniques are still rarely used for software engineering tools, missing out the potential benefits of its application. Natural language processing has shown the potential to process text data regarding a variety of tasks. We argue, that such models can also show similar benefits for software code processing. In this paper, we investigate how models used for natural language processing can be trained upon software code. We introduce a data retrieval pipeline for software code and train a model upon Java software code. The resulting model, JavaBERT, shows a high accuracy on the masked language modeling task showing its potential for software engineering tools.
CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation
Pipelined NLP systems have largely been superseded by end-to-end neural modeling, yet nearly all commonly-used models still require an explicit tokenization step. While recent tokenization approaches based on data-derived subword lexicons are less brittle than manually engineered tokenizers, these techniques are not equally suited to all languages, and the use of any fixed vocabulary may limit a model's ability to adapt. In this paper, we present CANINE, a neural encoder that operates directly on character sequences, without explicit tokenization or vocabulary, and a pre-training strategy that operates either directly on characters or optionally uses subwords as a soft inductive bias. To use its finer-grained input effectively and efficiently, CANINE combines downsampling, which reduces the input sequence length, with a deep transformer stack, which encodes context. CANINE outperforms a comparable mBERT model by 2.8 F1 on TyDi QA, a challenging multilingual benchmark, despite having 28% fewer model parameters.
Balancing Pipeline Parallelism with Vocabulary Parallelism
Pipeline parallelism is widely used to scale the training of transformer-based large language models, various works have been done to improve its throughput and memory footprint. In this paper, we address a frequently overlooked issue: the vocabulary layers can cause imbalanced computation and memory usage across pipeline stages, worsening pipeline bubbles and the memory bottleneck. To tackle this, we partition the vocabulary layers evenly across pipeline devices and group the computation into pipeline passes. To reduce the activation memory overhead, we propose several algorithms to reduce communication barriers within vocabulary layers. Additionally, we utilize a generalizable method to integrate Vocabulary Parallelism with existing pipeline schedules. By combining these techniques, our methods effectively balance the computation and parameter memory, with only a small constant activation memory overhead. Notably, when combined with activation memory-balanced schedules like V-Half, our approach achieves perfect balance in both memory and computation. Extensive evaluations demonstrate that our method achieves computation and memory balance regardless of the vocabulary size, resulting in a 5% to 51% improvement in throughput compared to naive approaches, meanwhile significantly reducing peak memory usage especially for large vocabulary scenarios. Our implementation is open-sourced at https://github.com/sail-sg/VocabularyParallelism .
PipeOffload: Improving Scalability of Pipeline Parallelism with Memory Optimization
Pipeline parallelism (PP) is widely used for training large language models (LLMs), yet its scalability is often constrained by high activation memory consumption as the number of in-flight microbatches grows with the degree of PP. In this paper, we focus on addressing this challenge by leveraging the under-explored memory offload strategy in PP. With empirical study, we discover that in the majority of standard configurations, at least half, and potentially all, of the activations can be offloaded with negligible overhead. In the cases where full overload is not possible, we introduce a novel selective offload strategy that decreases peak activation memory in a better-than-linear manner. Furthermore, we integrate memory offload with other techniques to jointly consider overall throughput and memory limitation. Our experiments proves that the per-device activation memory effectively reduces with the total number of stages, making PP a stronger alternative than TP, offering up to a 19\% acceleration with even lower memory consumption. The implementation is open-sourced at https://github.com/sail-sg/zero-bubble-pipeline-parallelism{this url}.
CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing
Computer Aided Design (CAD) is indispensable across various industries. Text-based CAD editing, which automates the modification of CAD models based on textual instructions, holds great potential but remains underexplored. Existing methods primarily focus on design variation generation or text-based CAD generation, either lacking support for text-based control or neglecting existing CAD models as constraints. We introduce CAD-Editor, the first framework for text-based CAD editing. To address the challenge of demanding triplet data with accurate correspondence for training, we propose an automated data synthesis pipeline. This pipeline utilizes design variation models to generate pairs of original and edited CAD models and employs Large Vision-Language Models (LVLMs) to summarize their differences into editing instructions. To tackle the composite nature of text-based CAD editing, we propose a locate-then-infill framework that decomposes the task into two focused sub-tasks: locating regions requiring modification and infilling these regions with appropriate edits. Large Language Models (LLMs) serve as the backbone for both sub-tasks, leveraging their capabilities in natural language understanding and CAD knowledge. Experiments show that CAD-Editor achieves superior performance both quantitatively and qualitatively.
Scalable Vision Language Model Training via High Quality Data Curation
In this paper, we introduce SAIL-VL (ScAlable Vision Language Model TraIning via High QuaLity Data Curation), an open-source vision language model (VLM) of state-of-the-art (SOTA) performance with 2B parameters. We introduce three key improvements that contribute to SAIL-VL's leading performance: (1) Scalable high-quality visual understanding data construction: We implement a visual understanding data construction pipeline, which enables hundred-million-scale high-quality recaption data annotation. Equipped with this pipeline, we curate SAIL-Caption, a large-scale caption dataset with large quantity and the highest data quality compared with opensource caption datasets. (2) Scalable Pretraining with High-Quality Visual Understanding Data: We scale SAIL-VL's pretraining budget up to 131B tokens and show that even a 2B VLM benefits from scaled up training data sizes, exhibiting expected data size scaling laws in visual understanding and instruction following performance. (3) Scalable SFT via quantity and quality scaling: We introduce general guidance for instruction data curation to scale up instruction data continuously, allowing us to construct a large SFT dataset with the highest quality. To further improve SAIL-VL's performance, we propose quality scaling, a multi-stage training recipe with curriculum learning, to improve model performance scaling curves w.r.t. data sizes from logarithmic to be near-linear. SAIL-VL obtains the highest average score in 19 commonly used benchmarks in our evaluation and achieves top1 performance among VLMs of comparable sizes on OpenCompass (https://rank.opencompass.org.cn/leaderboard-multimodal). We release our SAIL-VL-2B model at HuggingFace (https://huggingface.co/BytedanceDouyinContent/SAIL-VL-2B).
Pipeline Analysis for Developing Instruct LLMs in Low-Resource Languages: A Case Study on Basque
Large language models (LLMs) are typically optimized for resource-rich languages like English, exacerbating the gap between high-resource and underrepresented languages. This work presents a detailed analysis of strategies for developing a model capable of following instructions in a low-resource language, specifically Basque, by focusing on three key stages: pre-training, instruction tuning, and alignment with human preferences. Our findings demonstrate that continual pre-training with a high-quality Basque corpus of around 600 million words improves natural language understanding (NLU) of the foundational model by over 12 points. Moreover, instruction tuning and human preference alignment using automatically translated datasets proved highly effective, resulting in a 24-point improvement in instruction-following performance. The resulting models, Llama-eus-8B and Llama-eus-8B-instruct, establish a new state-of-the-art for Basque in the sub-10B parameter category.
Adaptive Blockwise Task-interleaved Pipeline Parallelism
Efficient distributed training serves as a powerful catalyst and an essential foundation for the development of large-scale neural networks. In distributed training scenarios, various pipeline parallelism methods are cleverly designed and widely employed. In this paper, we propose ZeroPP, a highly efficient and flexible pipeline parallelism method that trades off pipeline bubbles, memory usage, and communication through adaptive scheduling units. ZeroPP achieves minimal pipeline bubbles by carefully staggering the computation tasks of forward, input gradient, and weight gradient within a scheduling unit. Additionally, ZeroPP optimizes the combination of pipeline parallelism and fully sharded data parallelism using a blockwise schedule. We conduct experiments with popular GPT-style models and observe up to a 30% increase in throughput compared to the state-of-the-art breath-first pipeline parallelism. Besides, our evaluation also demonstrates up to a 68% increase in throughput and a 10% reduction in memory consumption compared to the memory-efficient 1F1B method.
Breadth-First Pipeline Parallelism
We introduce Breadth-First Pipeline Parallelism, a novel training schedule which optimizes the combination of pipeline and data parallelism. Breadth-First Pipeline Parallelism lowers training time, cost and memory usage by combining a high GPU utilization with a small batch size per GPU, and by making use of fully sharded data parallelism. Experimentally, we observed an increase of up to 43% in training throughput for a 52 billion-parameter model using a small batch size per GPU compared to Megatron-LM, which would reduce the training time and cost by the same amount on a large GPU cluster.
MQDD: Pre-training of Multimodal Question Duplicity Detection for Software Engineering Domain
This work proposes a new pipeline for leveraging data collected on the Stack Overflow website for pre-training a multimodal model for searching duplicates on question answering websites. Our multimodal model is trained on question descriptions and source codes in multiple programming languages. We design two new learning objectives to improve duplicate detection capabilities. The result of this work is a mature, fine-tuned Multimodal Question Duplicity Detection (MQDD) model, ready to be integrated into a Stack Overflow search system, where it can help users find answers for already answered questions. Alongside the MQDD model, we release two datasets related to the software engineering domain. The first Stack Overflow Dataset (SOD) represents a massive corpus of paired questions and answers. The second Stack Overflow Duplicity Dataset (SODD) contains data for training duplicate detection models.
Human101: Training 100+FPS Human Gaussians in 100s from 1 View
Reconstructing the human body from single-view videos plays a pivotal role in the virtual reality domain. One prevalent application scenario necessitates the rapid reconstruction of high-fidelity 3D digital humans while simultaneously ensuring real-time rendering and interaction. Existing methods often struggle to fulfill both requirements. In this paper, we introduce Human101, a novel framework adept at producing high-fidelity dynamic 3D human reconstructions from 1-view videos by training 3D Gaussians in 100 seconds and rendering in 100+ FPS. Our method leverages the strengths of 3D Gaussian Splatting, which provides an explicit and efficient representation of 3D humans. Standing apart from prior NeRF-based pipelines, Human101 ingeniously applies a Human-centric Forward Gaussian Animation method to deform the parameters of 3D Gaussians, thereby enhancing rendering speed (i.e., rendering 1024-resolution images at an impressive 60+ FPS and rendering 512-resolution images at 100+ FPS). Experimental results indicate that our approach substantially eclipses current methods, clocking up to a 10 times surge in frames per second and delivering comparable or superior rendering quality. Code and demos will be released at https://github.com/longxiang-ai/Human101.
SWARM Parallelism: Training Large Models Can Be Surprisingly Communication-Efficient
Many deep learning applications benefit from using large models with billions of parameters. Training these models is notoriously expensive due to the need for specialized HPC clusters. In this work, we consider alternative setups for training large models: using cheap "preemptible" instances or pooling existing resources from multiple regions. We analyze the performance of existing model-parallel algorithms in these conditions and find configurations where training larger models becomes less communication-intensive. Based on these findings, we propose SWARM parallelism, a model-parallel training algorithm designed for poorly connected, heterogeneous and unreliable devices. SWARM creates temporary randomized pipelines between nodes that are rebalanced in case of failure. We empirically validate our findings and compare SWARM parallelism with existing large-scale training approaches. Finally, we combine our insights with compression strategies to train a large Transformer language model with 1B shared parameters (approximately 13B before sharing) on preemptible T4 GPUs with less than 200Mb/s network.
Dual-Layer Training and Decoding of Large Language Model with Simultaneously Thinking and Speaking
Large Language Model can reasonably understand and generate human expressions but may lack of thorough thinking and reasoning mechanisms. Recently there have been several studies which enhance the thinking ability of language models but most of them are not data-driven or training-based. In this paper, we are motivated by the cognitive mechanism in the natural world, and design a novel model architecture called TaS which allows it to first consider the thoughts and then express the response based upon the query. We design several pipelines to annotate or generate the thought contents from prompt-response samples, then add language heads in a middle layer which behaves as the thinking layer. We train the language model by the thoughts-augmented data and successfully let the thinking layer automatically generate reasonable thoughts and finally output more reasonable responses. Both qualitative examples and quantitative results validate the effectiveness and performance of TaS. Our code is available at https://anonymous.4open.science/r/TadE.
Bag of Tricks for Training Data Extraction from Language Models
With the advance of language models, privacy protection is receiving more attention. Training data extraction is therefore of great importance, as it can serve as a potential tool to assess privacy leakage. However, due to the difficulty of this task, most of the existing methods are proof-of-concept and still not effective enough. In this paper, we investigate and benchmark tricks for improving training data extraction using a publicly available dataset. Because most existing extraction methods use a pipeline of generating-then-ranking, i.e., generating text candidates as potential training data and then ranking them based on specific criteria, our research focuses on the tricks for both text generation (e.g., sampling strategy) and text ranking (e.g., token-level criteria). The experimental results show that several previously overlooked tricks can be crucial to the success of training data extraction. Based on the GPT-Neo 1.3B evaluation results, our proposed tricks outperform the baseline by a large margin in most cases, providing a much stronger baseline for future research.
A Graph-Based Synthetic Data Pipeline for Scaling High-Quality Reasoning Instructions
Synthesizing high-quality reasoning data for continual training has been proven to be effective in enhancing the performance of Large Language Models (LLMs). However, previous synthetic approaches struggle to easily scale up data and incur high costs in the pursuit of high quality. In this paper, we propose the Graph-based Synthetic Data Pipeline (GSDP), an economical and scalable framework for high-quality reasoning data synthesis. Inspired by knowledge graphs, we extracted knowledge points from seed data and constructed a knowledge point relationships graph to explore their interconnections. By exploring the implicit relationships among knowledge, our method achieves times255 data expansion. Furthermore, GSDP led by open-source models, achieves synthesis quality comparable to GPT-4-0613 while maintaining times100 lower costs. To tackle the most challenging mathematical reasoning task, we present the GSDP-MATH dataset comprising over 1.91 million pairs of math problems and answers. After fine-tuning on GSDP-MATH, GSDP-7B based on Mistral-7B achieves 37.7% accuracy on MATH and 78.4% on GSM8K, demonstrating the effectiveness of our method. The dataset and models trained in this paper will be available.
Automated Federated Pipeline for Parameter-Efficient Fine-Tuning of Large Language Models
Recently, there has been a surge in the development of advanced intelligent generative content (AIGC), especially large language models (LLMs). However, for many downstream tasks, it is necessary to fine-tune LLMs using private data. While federated learning offers a promising privacy-preserving solution to LLM fine-tuning, the substantial size of an LLM, combined with high computational and communication demands, makes it hard to apply to downstream tasks. More importantly, private edge servers often possess varying computing and network resources in real-world scenarios, introducing additional complexities to LLM fine-tuning. To tackle these problems, we design and implement an automated federated pipeline, named FedPipe, to fine-tune LLMs with minimal training cost but without adding any inference latency. FedPipe firstly identifies the weights to be fine-tuned based on their contributions to the LLM training. It then configures a low-rank adapter for each selected weight to train local low-rank adapters on an edge server, and aggregate local adapters of all edge servers to fine-tune the whole LLM. Finally, it appropriately quantizes the parameters of LLM to reduce memory space according to the requirements of edge servers. Extensive experiments demonstrate that FedPipe expedites the model training and achieves higher accuracy than state-of-the-art benchmarks.
Pandora's White-Box: Increased Training Data Leakage in Open LLMs
In this paper we undertake a systematic study of privacy attacks against open source Large Language Models (LLMs), where an adversary has access to either the model weights, gradients, or losses, and tries to exploit them to learn something about the underlying training data. Our headline results are the first membership inference attacks (MIAs) against pre-trained LLMs that are able to simultaneously achieve high TPRs and low FPRs, and a pipeline showing that over 50% (!) of the fine-tuning dataset can be extracted from a fine-tuned LLM in natural settings. We consider varying degrees of access to the underlying model, customization of the language model, and resources available to the attacker. In the pre-trained setting, we propose three new white-box MIAs: an attack based on the gradient norm, a supervised neural network classifier, and a single step loss ratio attack. All outperform existing black-box baselines, and our supervised attack closes the gap between MIA attack success against LLMs and other types of models. In fine-tuning, we find that given access to the loss of the fine-tuned and base models, a fine-tuned loss ratio attack FLoRA is able to achieve near perfect MIA peformance. We then leverage these MIAs to extract fine-tuning data from fine-tuned language models. We find that the pipeline of generating from fine-tuned models prompted with a small snippet of the prefix of each training example, followed by using FLoRa to select the most likely training sample, succeeds the majority of the fine-tuning dataset after only 3 epochs of fine-tuning. Taken together, these findings show that highly effective MIAs are available in almost all LLM training settings, and highlight that great care must be taken before LLMs are fine-tuned on highly sensitive data and then deployed.
An Open and Comprehensive Pipeline for Unified Object Grounding and Detection
Grounding-DINO is a state-of-the-art open-set detection model that tackles multiple vision tasks including Open-Vocabulary Detection (OVD), Phrase Grounding (PG), and Referring Expression Comprehension (REC). Its effectiveness has led to its widespread adoption as a mainstream architecture for various downstream applications. However, despite its significance, the original Grounding-DINO model lacks comprehensive public technical details due to the unavailability of its training code. To bridge this gap, we present MM-Grounding-DINO, an open-source, comprehensive, and user-friendly baseline, which is built with the MMDetection toolbox. It adopts abundant vision datasets for pre-training and various detection and grounding datasets for fine-tuning. We give a comprehensive analysis of each reported result and detailed settings for reproduction. The extensive experiments on the benchmarks mentioned demonstrate that our MM-Grounding-DINO-Tiny outperforms the Grounding-DINO-Tiny baseline. We release all our models to the research community. Codes and trained models are released at https://github.com/open-mmlab/mmdetection/tree/main/configs/mm_grounding_dino.
Pipeline and Dataset Generation for Automated Fact-checking in Almost Any Language
This article presents a pipeline for automated fact-checking leveraging publicly available Language Models and data. The objective is to assess the accuracy of textual claims using evidence from a ground-truth evidence corpus. The pipeline consists of two main modules -- the evidence retrieval and the claim veracity evaluation. Our primary focus is on the ease of deployment in various languages that remain unexplored in the field of automated fact-checking. Unlike most similar pipelines, which work with evidence sentences, our pipeline processes data on a paragraph level, simplifying the overall architecture and data requirements. Given the high cost of annotating language-specific fact-checking training data, our solution builds on the Question Answering for Claim Generation (QACG) method, which we adapt and use to generate the data for all models of the pipeline. Our strategy enables the introduction of new languages through machine translation of only two fixed datasets of moderate size. Subsequently, any number of training samples can be generated based on an evidence corpus in the target language. We provide open access to all data and fine-tuned models for Czech, English, Polish, and Slovak pipelines, as well as to our codebase that may be used to reproduce the results.We comprehensively evaluate the pipelines for all four languages, including human annotations and per-sample difficulty assessment using Pointwise V-information. The presented experiments are based on full Wikipedia snapshots to promote reproducibility. To facilitate implementation and user interaction, we develop the FactSearch application featuring the proposed pipeline and the preliminary feedback on its performance.
Cramming: Training a Language Model on a Single GPU in One Day
Recent trends in language modeling have focused on increasing performance through scaling, and have resulted in an environment where training language models is out of reach for most researchers and practitioners. While most in the community are asking how to push the limits of extreme computation, we ask the opposite question: How far can we get with a single GPU in just one day? We investigate the downstream performance achievable with a transformer-based language model trained completely from scratch with masked language modeling for a single day on a single consumer GPU. Aside from re-analyzing nearly all components of the pretraining pipeline for this scenario and providing a modified pipeline with performance close to BERT, we investigate why scaling down is hard, and which modifications actually improve performance in this scenario. We provide evidence that even in this constrained setting, performance closely follows scaling laws observed in large-compute settings. Through the lens of scaling laws, we categorize a range of recent improvements to training and architecture and discuss their merit and practical applicability (or lack thereof) for the limited compute setting.
Neural Pipeline for Zero-Shot Data-to-Text Generation
In data-to-text (D2T) generation, training on in-domain data leads to overfitting to the data representation and repeating training data noise. We examine how to avoid finetuning pretrained language models (PLMs) on D2T generation datasets while still taking advantage of surface realization capabilities of PLMs. Inspired by pipeline approaches, we propose to generate text by transforming single-item descriptions with a sequence of modules trained on general-domain text-based operations: ordering, aggregation, and paragraph compression. We train PLMs for performing these operations on a synthetic corpus WikiFluent which we build from English Wikipedia. Our experiments on two major triple-to-text datasets -- WebNLG and E2E -- show that our approach enables D2T generation from RDF triples in zero-shot settings.
Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM
Large language models have led to state-of-the-art accuracies across a range of tasks. However, training these models efficiently is challenging for two reasons: a) GPU memory capacity is limited, making it impossible to fit large models on even a multi-GPU server, and b) the number of compute operations required to train these models can result in unrealistically long training times. Consequently, new methods of model parallelism such as tensor and pipeline parallelism have been proposed. Unfortunately, naive usage of these methods leads to fundamental scaling issues at thousands of GPUs, e.g., due to expensive cross-node communication or devices spending significant time waiting on other devices to make progress. In this paper, we show how different types of parallelism methods (tensor, pipeline, and data parallelism) can be composed to scale to thousands of GPUs and models with trillions of parameters. We survey techniques for pipeline parallelism and propose a novel interleaved pipeline parallelism schedule that can improve throughput by 10+% with memory footprint comparable to existing approaches. We quantitatively study the trade-offs between tensor, pipeline, and data parallelism, and provide intuition as to how to configure distributed training of a large model. Our approach allows us to perform training iterations on a model with 1 trillion parameters at 502 petaFLOP/s on 3072 GPUs with achieved per-GPU throughput of 52% of theoretical peak. Our code is open sourced at https://github.com/nvidia/megatron-lm.
LatinCy: Synthetic Trained Pipelines for Latin NLP
This paper introduces LatinCy, a set of trained general purpose Latin-language "core" pipelines for use with the spaCy natural language processing framework. The models are trained on a large amount of available Latin data, including all five of the Latin Universal Dependency treebanks, which have been preprocessed to be compatible with each other. The result is a set of general models for Latin with good performance on a number of natural language processing tasks (e.g. the top-performing model yields POS tagging, 97.41% accuracy; lemmatization, 94.66% accuracy; morphological tagging 92.76% accuracy). The paper describes the model training, including its training data and parameterization, and presents the advantages to Latin-language researchers of having a spaCy model available for NLP work.
Zero Bubble Pipeline Parallelism
Pipeline parallelism is one of the key components for large-scale distributed training, yet its efficiency suffers from pipeline bubbles which were deemed inevitable. In this work, we introduce a scheduling strategy that, to our knowledge, is the first to successfully achieve zero pipeline bubbles under synchronous training semantics. The key idea behind this improvement is to split the backward computation into two parts, one that computes gradient for the input and another that computes for the parameters. Based on this idea, we handcraft novel pipeline schedules that significantly outperform the baseline methods. We further develop an algorithm that automatically finds an optimal schedule based on specific model configuration and memory limit. Additionally, to truly achieve zero bubble, we introduce a novel technique to bypass synchronizations during the optimizer step. Experimental evaluations show that our method outperforms the 1F1B schedule up to 23% in throughput under a similar memory limit. This number can be further pushed to 31% when the memory constraint is relaxed. We believe our results mark a major step forward in harnessing the true potential of pipeline parallelism. We open sourced our implementation based on the popular Megatron-LM repository on https://github.com/sail-sg/zero-bubble-pipeline-parallelism.
Toxicity of the Commons: Curating Open-Source Pre-Training Data
Open-source large language models are becoming increasingly available and popular among researchers and practitioners. While significant progress has been made on open-weight models, open training data is a practice yet to be adopted by the leading open-weight models creators. At the same time, there researchers are working to make language models safer. We propose a data curation pipeline to reduce harmful outputs by models trained on public domain data. There are unique challenges to working with public domain data, as these sources differ from web text in both form and content. Many sources are historical documents and are the result of Optical Character Recognition (OCR). Consequently, current state-of-the-art approaches to toxicity filtering are often infeasible or inappropriate for open data models. In this paper, we introduce a new fully open-source pipeline for open-data toxicity filtering. Our contributions are threefold. We create a custom training dataset, ToxicCommons, which is composed of texts which have been classified across five different dimensions (racial/origin-based, gender/sex-based, religious, ability-based discrimination, and violence). We use this dataset to train a custom classifier, Celadon, that can be used to detect toxic content in open data more efficiently at a larger scale. Finally, we describe the balanced approach to content filtration that optimizes safety filtering with respect to the filtered data available for training.
Sequence Parallelism: Long Sequence Training from System Perspective
Transformer achieves promising results on various tasks. However, self-attention suffers from quadratic memory requirements with respect to the sequence length. Existing work focuses on reducing time and space complexity from an algorithm perspective. In this work, we propose sequence parallelism, a memory-efficient parallelism method to help us break input sequence length limitation and train with longer sequences on GPUs efficiently. Our approach is compatible with most existing parallelisms (e.g. data parallelism, pipeline parallelism and tensor parallelism), which means our sequence parallelism makes 4D parallelism possible. More importantly, we no longer require a single device to hold the whole sequence. That is, with sparse attention, our sequence parallelism enables us to train transformer with infinite long sequence. Specifically, we split the input sequence into multiple chunks and feed each chunk into its corresponding device (i.e. GPU). To compute the attention output, we integrated ring-style communication with self-attention calculation and proposed Ring Self-Attention (RSA). Experiments show that sequence parallelism performs well when scaling with batch size and sequence length. Compared with tensor parallelism, our approach achieved 13.7times and 3.0times maximum batch size and sequence length respectively when scaling up to 64 NVIDIA P100 GPUs. With sparse attention, sequence can handle sequence with over 114K tokens, which is over 27times longer than existing sparse attention works holding the whole sequence on a single device.
LLM-Assisted Code Cleaning For Training Accurate Code Generators
Natural language to code generation is an important application area of LLMs and has received wide attention from the community. The majority of relevant studies have exclusively concentrated on increasing the quantity and functional correctness of training sets while disregarding other stylistic elements of programs. More recently, data quality has garnered a lot of interest and multiple works have showcased its importance for improving performance. In this work, we investigate data quality for code and find that making the code more structured and readable leads to improved code generation performance of the system. We build a novel data-cleaning pipeline that uses these principles to transform existing programs by 1.) renaming variables, 2.) modularizing and decomposing complex code into smaller helper sub-functions, and 3.) inserting natural-language based plans via LLM based transformations. We evaluate our approach on two challenging algorithmic code generation benchmarks and find that fine-tuning CodeLLaMa-7B on our transformed modularized programs improves the performance by up to 30% compared to fine-tuning on the original dataset. Additionally, we demonstrate improved performance from using a smaller amount of higher-quality data, finding that a model fine-tuned on the entire original dataset is outperformed by a model trained on 15% of our cleaned dataset. Even in comparison to closed-source models, our models outperform the much larger AlphaCoder models.
Reproducing Whisper-Style Training Using an Open-Source Toolkit and Publicly Available Data
Pre-training speech models on large volumes of data has achieved remarkable success. OpenAI Whisper is a multilingual multitask model trained on 680k hours of supervised speech data. It generalizes well to various speech recognition and translation benchmarks even in a zero-shot setup. However, the full pipeline for developing such models (from data collection to training) is not publicly accessible, which makes it difficult for researchers to further improve its performance and address training-related issues such as efficiency, robustness, fairness, and bias. This work presents an Open Whisper-style Speech Model (OWSM), which reproduces Whisper-style training using an open-source toolkit and publicly available data. OWSM even supports more translation directions and can be more efficient to train. We will publicly release all scripts used for data preparation, training, inference, and scoring as well as pre-trained models and training logs to promote open science.
Adversarial Training on Purification (AToP): Advancing Both Robustness and Generalization
The deep neural networks are known to be vulnerable to well-designed adversarial attacks. The most successful defense technique based on adversarial training (AT) can achieve optimal robustness against particular attacks but cannot generalize well to unseen attacks. Another effective defense technique based on adversarial purification (AP) can enhance generalization but cannot achieve optimal robustness. Meanwhile, both methods share one common limitation on the degraded standard accuracy. To mitigate these issues, we propose a novel pipeline to acquire the robust purifier model, named Adversarial Training on Purification (AToP), which comprises two components: perturbation destruction by random transforms (RT) and purifier model fine-tuned (FT) by adversarial loss. RT is essential to avoid overlearning to known attacks, resulting in the robustness generalization to unseen attacks, and FT is essential for the improvement of robustness. To evaluate our method in an efficient and scalable way, we conduct extensive experiments on CIFAR-10, CIFAR-100, and ImageNette to demonstrate that our method achieves optimal robustness and exhibits generalization ability against unseen attacks.
MapReader: A Computer Vision Pipeline for the Semantic Exploration of Maps at Scale
We present MapReader, a free, open-source software library written in Python for analyzing large map collections (scanned or born-digital). This library transforms the way historians can use maps by turning extensive, homogeneous map sets into searchable primary sources. MapReader allows users with little or no computer vision expertise to i) retrieve maps via web-servers; ii) preprocess and divide them into patches; iii) annotate patches; iv) train, fine-tune, and evaluate deep neural network models; and v) create structured data about map content. We demonstrate how MapReader enables historians to interpret a collection of approx16K nineteenth-century Ordnance Survey map sheets (approx30.5M patches), foregrounding the challenge of translating visual markers into machine-readable data. We present a case study focusing on British rail infrastructure and buildings as depicted on these maps. We also show how the outputs from the MapReader pipeline can be linked to other, external datasets, which we use to evaluate as well as enrich and interpret the results. We release approx62K manually annotated patches used here for training and evaluating the models.
MorphBPE: A Morpho-Aware Tokenizer Bridging Linguistic Complexity for Efficient LLM Training Across Morphologies
Tokenization is fundamental to Natural Language Processing (NLP), directly impacting model efficiency and linguistic fidelity. While Byte Pair Encoding (BPE) is widely used in Large Language Models (LLMs), it often disregards morpheme boundaries, leading to suboptimal segmentation, particularly in morphologically rich languages. We introduce MorphBPE, a morphology-aware extension of BPE that integrates linguistic structure into subword tokenization while preserving statistical efficiency. Additionally, we propose two morphology-based evaluation metrics: (i) Morphological Consistency F1-Score, which quantifies the consistency between morpheme sharing and token sharing, contributing to LLM training convergence, and (ii) Morphological Edit Distance, which measures alignment between morphemes and tokens concerning interpretability. Experiments on English, Russian, Hungarian, and Arabic across 300M and 1B parameter LLMs demonstrate that MorphBPE consistently reduces cross-entropy loss, accelerates convergence, and improves morphological alignment scores. Fully compatible with existing LLM pipelines, MorphBPE requires minimal modifications for integration. The MorphBPE codebase and tokenizer playground will be available at: https://github.com/llm-lab-org/MorphBPE and https://tokenizer.llm-lab.org
Pushing the Limits of Simple Pipelines for Few-Shot Learning: External Data and Fine-Tuning Make a Difference
Few-shot learning (FSL) is an important and topical problem in computer vision that has motivated extensive research into numerous methods spanning from sophisticated meta-learning methods to simple transfer learning baselines. We seek to push the limits of a simple-but-effective pipeline for more realistic and practical settings of few-shot image classification. To this end, we explore few-shot learning from the perspective of neural network architecture, as well as a three stage pipeline of network updates under different data supplies, where unsupervised external data is considered for pre-training, base categories are used to simulate few-shot tasks for meta-training, and the scarcely labelled data of an novel task is taken for fine-tuning. We investigate questions such as: (1) How pre-training on external data benefits FSL? (2) How state-of-the-art transformer architectures can be exploited? and (3) How fine-tuning mitigates domain shift? Ultimately, we show that a simple transformer-based pipeline yields surprisingly good performance on standard benchmarks such as Mini-ImageNet, CIFAR-FS, CDFSL and Meta-Dataset. Our code and demo are available at https://hushell.github.io/pmf.
Depth-supervised NeRF: Fewer Views and Faster Training for Free
A commonly observed failure mode of Neural Radiance Field (NeRF) is fitting incorrect geometries when given an insufficient number of input views. One potential reason is that standard volumetric rendering does not enforce the constraint that most of a scene's geometry consist of empty space and opaque surfaces. We formalize the above assumption through DS-NeRF (Depth-supervised Neural Radiance Fields), a loss for learning radiance fields that takes advantage of readily-available depth supervision. We leverage the fact that current NeRF pipelines require images with known camera poses that are typically estimated by running structure-from-motion (SFM). Crucially, SFM also produces sparse 3D points that can be used as "free" depth supervision during training: we add a loss to encourage the distribution of a ray's terminating depth matches a given 3D keypoint, incorporating depth uncertainty. DS-NeRF can render better images given fewer training views while training 2-3x faster. Further, we show that our loss is compatible with other recently proposed NeRF methods, demonstrating that depth is a cheap and easily digestible supervisory signal. And finally, we find that DS-NeRF can support other types of depth supervision such as scanned depth sensors and RGB-D reconstruction outputs.
Pipeline MoE: A Flexible MoE Implementation with Pipeline Parallelism
The Mixture of Experts (MoE) model becomes an important choice of large language models nowadays because of its scalability with sublinear computational complexity for training and inference. However, existing MoE models suffer from two critical drawbacks, 1) tremendous inner-node and inter-node communication overhead introduced by all-to-all dispatching and gathering, and 2) limited scalability for the backbone because of the bound data parallel and expert parallel to scale in the expert dimension. In this paper, we systematically analyze these drawbacks in terms of training efficiency in the parallel framework view and propose a novel MoE architecture called Pipeline MoE (PPMoE) to tackle them. PPMoE builds expert parallel incorporating with tensor parallel and replaces communication-intensive all-to-all dispatching and gathering with a simple tensor index slicing and inner-node all-reduce. Besides, it is convenient for PPMoE to integrate pipeline parallel to further scale the backbone due to its flexible parallel architecture. Extensive experiments show that PPMoE not only achieves a more than 1.75times speed up compared to existing MoE architectures but also reaches 90% throughput of its corresponding backbone model that is 20times smaller.
Leveraging Online Olympiad-Level Math Problems for LLMs Training and Contamination-Resistant Evaluation
Advances in Large Language Models (LLMs) have sparked interest in their ability to solve Olympiad-level math problems. However, the training and evaluation of these models are constrained by the limited size and quality of available datasets, as creating large-scale data for such advanced problems requires extensive effort from human experts. In addition, current benchmarks are prone to contamination, leading to unreliable evaluations. In this paper, we present an automated pipeline that leverages the rich resources of the Art of Problem Solving (AoPS) forum, which predominantly features Olympiad-level problems and community-driven solutions. Using open-source LLMs, we develop a method to extract question-answer pairs from the forum, resulting in AoPS-Instruct, a dataset of more than 600,000 high-quality QA pairs. Our experiments demonstrate that fine-tuning LLMs on AoPS-Instruct improves their reasoning abilities across various benchmarks. Moreover, we build an automatic pipeline that introduces LiveAoPSBench, an evolving evaluation set with timestamps, derived from the latest forum data, providing a contamination-resistant benchmark for assessing LLM performance. Notably, we observe a significant decline in LLM performance over time, suggesting their success on older examples may stem from pre-training exposure rather than true reasoning ability. Our work presents a scalable approach to creating and maintaining large-scale, high-quality datasets for advanced math reasoning, offering valuable insights into the capabilities and limitations of LLMs in this domain. Our benchmark and code is available at https://github.com/DSL-Lab/aops
LOVECon: Text-driven Training-Free Long Video Editing with ControlNet
Leveraging pre-trained conditional diffusion models for video editing without further tuning has gained increasing attention due to its promise in film production, advertising, etc. Yet, seminal works in this line fall short in generation length, temporal coherence, or fidelity to the source video. This paper aims to bridge the gap, establishing a simple and effective baseline for training-free diffusion model-based long video editing. As suggested by prior arts, we build the pipeline upon ControlNet, which excels at various image editing tasks based on text prompts. To break down the length constraints caused by limited computational memory, we split the long video into consecutive windows and develop a novel cross-window attention mechanism to ensure the consistency of global style and maximize the smoothness among windows. To achieve more accurate control, we extract the information from the source video via DDIM inversion and integrate the outcomes into the latent states of the generations. We also incorporate a video frame interpolation model to mitigate the frame-level flickering issue. Extensive empirical studies verify the superior efficacy of our method over competing baselines across scenarios, including the replacement of the attributes of foreground objects, style transfer, and background replacement. In particular, our method manages to edit videos with up to 128 frames according to user requirements. Code is available at https://github.com/zhijie-group/LOVECon.
MagicFace: Training-free Universal-Style Human Image Customized Synthesis
Current human image customization methods leverage Stable Diffusion (SD) for its rich semantic prior. However, since SD is not specifically designed for human-oriented generation, these methods often require extensive fine-tuning on large-scale datasets, which renders them susceptible to overfitting and hinders their ability to personalize individuals with previously unseen styles. Moreover, these methods extensively focus on single-concept human image synthesis and lack the flexibility to customize individuals using multiple given concepts, thereby impeding their broader practical application. This paper proposes MagicFace, a novel training-free method for multi-concept universal-style human image personalized synthesis. Our core idea is to simulate how humans create images given specific concepts, i.e., first establish a semantic layout considering factors such as concepts' shape and posture, then optimize details by comparing with concepts at the pixel level. To implement this process, we introduce a coarse-to-fine generation pipeline, involving two sequential stages: semantic layout construction and concept feature injection. This is achieved by our Reference-aware Self-Attention (RSA) and Region-grouped Blend Attention (RBA) mechanisms. In the first stage, RSA enables the latent image to query features from all reference concepts simultaneously, extracting the overall semantic understanding to facilitate the initial semantic layout establishment. In the second stage, we employ an attention-based semantic segmentation method to pinpoint the latent generated regions of all concepts at each step. Following this, RBA divides the pixels of the latent image into semantic groups, with each group querying fine-grained features from the corresponding reference concept. Extensive experiments demonstrate the superiority of our MagicFace.
DiffUHaul: A Training-Free Method for Object Dragging in Images
Text-to-image diffusion models have proven effective for solving many image editing tasks. However, the seemingly straightforward task of seamlessly relocating objects within a scene remains surprisingly challenging. Existing methods addressing this problem often struggle to function reliably in real-world scenarios due to lacking spatial reasoning. In this work, we propose a training-free method, dubbed DiffUHaul, that harnesses the spatial understanding of a localized text-to-image model, for the object dragging task. Blindly manipulating layout inputs of the localized model tends to cause low editing performance due to the intrinsic entanglement of object representation in the model. To this end, we first apply attention masking in each denoising step to make the generation more disentangled across different objects and adopt the self-attention sharing mechanism to preserve the high-level object appearance. Furthermore, we propose a new diffusion anchoring technique: in the early denoising steps, we interpolate the attention features between source and target images to smoothly fuse new layouts with the original appearance; in the later denoising steps, we pass the localized features from the source images to the interpolated images to retain fine-grained object details. To adapt DiffUHaul to real-image editing, we apply a DDPM self-attention bucketing that can better reconstruct real images with the localized model. Finally, we introduce an automated evaluation pipeline for this task and showcase the efficacy of our method. Our results are reinforced through a user preference study.
Lighting Every Darkness in Two Pairs: A Calibration-Free Pipeline for RAW Denoising
Calibration-based methods have dominated RAW image denoising under extremely low-light environments. However, these methods suffer from several main deficiencies: 1) the calibration procedure is laborious and time-consuming, 2) denoisers for different cameras are difficult to transfer, and 3) the discrepancy between synthetic noise and real noise is enlarged by high digital gain. To overcome the above shortcomings, we propose a calibration-free pipeline for Lighting Every Drakness (LED), regardless of the digital gain or camera sensor. Instead of calibrating the noise parameters and training repeatedly, our method could adapt to a target camera only with few-shot paired data and fine-tuning. In addition, well-designed structural modification during both stages alleviates the domain gap between synthetic and real noise without any extra computational cost. With 2 pairs for each additional digital gain (in total 6 pairs) and 0.5% iterations, our method achieves superior performance over other calibration-based methods. Our code is available at https://github.com/Srameo/LED .
Enhanced Training of Query-Based Object Detection via Selective Query Recollection
This paper investigates a phenomenon where query-based object detectors mispredict at the last decoding stage while predicting correctly at an intermediate stage. We review the training process and attribute the overlooked phenomenon to two limitations: lack of training emphasis and cascading errors from decoding sequence. We design and present Selective Query Recollection (SQR), a simple and effective training strategy for query-based object detectors. It cumulatively collects intermediate queries as decoding stages go deeper and selectively forwards the queries to the downstream stages aside from the sequential structure. Such-wise, SQR places training emphasis on later stages and allows later stages to work with intermediate queries from earlier stages directly. SQR can be easily plugged into various query-based object detectors and significantly enhances their performance while leaving the inference pipeline unchanged. As a result, we apply SQR on Adamixer, DAB-DETR, and Deformable-DETR across various settings (backbone, number of queries, schedule) and consistently brings 1.4-2.8 AP improvement.
VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection
This paper presents VulBERTa, a deep learning approach to detect security vulnerabilities in source code. Our approach pre-trains a RoBERTa model with a custom tokenisation pipeline on real-world code from open-source C/C++ projects. The model learns a deep knowledge representation of the code syntax and semantics, which we leverage to train vulnerability detection classifiers. We evaluate our approach on binary and multi-class vulnerability detection tasks across several datasets (Vuldeepecker, Draper, REVEAL and muVuldeepecker) and benchmarks (CodeXGLUE and D2A). The evaluation results show that VulBERTa achieves state-of-the-art performance and outperforms existing approaches across different datasets, despite its conceptual simplicity, and limited cost in terms of size of training data and number of model parameters.
Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training
The success of Transformer models has pushed the deep learning model scale to billions of parameters. Due to the limited memory resource of a single GPU, However, the best practice for choosing the optimal parallel strategy is still lacking, since it requires domain expertise in both deep learning and parallel computing. The Colossal-AI system addressed the above challenge by introducing a unified interface to scale your sequential code of model training to distributed environments. It supports parallel training methods such as data, pipeline, tensor, and sequence parallelism, as well as heterogeneous training methods integrated with zero redundancy optimizer. Compared to the baseline system, Colossal-AI can achieve up to 2.76 times training speedup on large-scale models.
Bridging the Gap Between Clean Data Training and Real-World Inference for Spoken Language Understanding
Spoken language understanding (SLU) system usually consists of various pipeline components, where each component heavily relies on the results of its upstream ones. For example, Intent detection (ID), and slot filling (SF) require its upstream automatic speech recognition (ASR) to transform the voice into text. In this case, the upstream perturbations, e.g. ASR errors, environmental noise and careless user speaking, will propagate to the ID and SF models, thus deteriorating the system performance. Therefore, the well-performing SF and ID models are expected to be noise resistant to some extent. However, existing models are trained on clean data, which causes a gap between clean data training and real-world inference. To bridge the gap, we propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space. Meanwhile, we design a denoising generation model to reduce the impact of the low-quality samples. Experiments on the widely-used dataset, i.e. Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment. The source code will be released.
InfiMM-WebMath-40B: Advancing Multimodal Pre-Training for Enhanced Mathematical Reasoning
Pre-training on large-scale, high-quality datasets is crucial for enhancing the reasoning capabilities of Large Language Models (LLMs), especially in specialized domains such as mathematics. Despite the recognized importance, the Multimodal LLMs (MLLMs) field currently lacks a comprehensive open-source pre-training dataset specifically designed for mathematical reasoning. To address this gap, we introduce InfiMM-WebMath-40B, a high-quality dataset of interleaved image-text documents. It comprises 24 million web pages, 85 million associated image URLs, and 40 billion text tokens, all meticulously extracted and filtered from CommonCrawl. We provide a detailed overview of our data collection and processing pipeline. To demonstrate the robustness of InfiMM-WebMath-40B, we conducted evaluations in both text-only and multimodal settings. Our evaluations on text-only benchmarks show that, despite utilizing only 40 billion tokens, our dataset significantly enhances the performance of our 1.3B model, delivering results comparable to DeepSeekMath-1.3B, which uses 120 billion tokens for the same model size. Nevertheless, with the introduction of our multi-modal math pre-training dataset, our models set a new state-of-the-art among open-source models on multi-modal math benchmarks such as MathVerse and We-Math. We release our data at https://huggingface.co/datasets/Infi-MM/InfiMM-WebMath-40B.
Benchmarking Neural Network Training Algorithms
Training algorithms, broadly construed, are an essential part of every deep learning pipeline. Training algorithm improvements that speed up training across a wide variety of workloads (e.g., better update rules, tuning protocols, learning rate schedules, or data selection schemes) could save time, save computational resources, and lead to better, more accurate, models. Unfortunately, as a community, we are currently unable to reliably identify training algorithm improvements, or even determine the state-of-the-art training algorithm. In this work, using concrete experiments, we argue that real progress in speeding up training requires new benchmarks that resolve three basic challenges faced by empirical comparisons of training algorithms: (1) how to decide when training is complete and precisely measure training time, (2) how to handle the sensitivity of measurements to exact workload details, and (3) how to fairly compare algorithms that require hyperparameter tuning. In order to address these challenges, we introduce a new, competitive, time-to-result benchmark using multiple workloads running on fixed hardware, the AlgoPerf: Training Algorithms benchmark. Our benchmark includes a set of workload variants that make it possible to detect benchmark submissions that are more robust to workload changes than current widely-used methods. Finally, we evaluate baseline submissions constructed using various optimizers that represent current practice, as well as other optimizers that have recently received attention in the literature. These baseline results collectively demonstrate the feasibility of our benchmark, show that non-trivial gaps between methods exist, and set a provisional state-of-the-art for future benchmark submissions to try and surpass.
Dissecting the Runtime Performance of the Training, Fine-tuning, and Inference of Large Language Models
Large Language Models (LLMs) have seen great advance in both academia and industry, and their popularity results in numerous open-source frameworks and techniques in accelerating LLM pre-training, fine-tuning, and inference. Training and deploying LLMs are expensive as it requires considerable computing resources and memory, hence many efficient approaches have been developed for improving system pipelines as well as operators. However, the runtime performance can vary significantly across hardware and software stacks, which makes it difficult to choose the best configuration. In this work, we aim to benchmark the performance from both macro and micro perspectives. First, we benchmark the end-to-end performance of pre-training, fine-tuning, and serving LLMs in different sizes , i.e., 7, 13, and 70 billion parameters (7B, 13B, and 70B) on three 8-GPU platforms with and without individual optimization techniques, including ZeRO, quantization, recomputation, FlashAttention. Then, we dive deeper to provide a detailed runtime analysis of the sub-modules, including computing and communication operators in LLMs. For end users, our benchmark and findings help better understand different optimization techniques, training and inference frameworks, together with hardware platforms in choosing configurations for deploying LLMs. For researchers, our in-depth module-wise analyses discover potential opportunities for future work to further optimize the runtime performance of LLMs.
Context-Aware Transformer Pre-Training for Answer Sentence Selection
Answer Sentence Selection (AS2) is a core component for building an accurate Question Answering pipeline. AS2 models rank a set of candidate sentences based on how likely they answer a given question. The state of the art in AS2 exploits pre-trained transformers by transferring them on large annotated datasets, while using local contextual information around the candidate sentence. In this paper, we propose three pre-training objectives designed to mimic the downstream fine-tuning task of contextual AS2. This allows for specializing LMs when fine-tuning for contextual AS2. Our experiments on three public and two large-scale industrial datasets show that our pre-training approaches (applied to RoBERTa and ELECTRA) can improve baseline contextual AS2 accuracy by up to 8% on some datasets.
MDCure: A Scalable Pipeline for Multi-Document Instruction-Following
Multi-document (MD) processing is crucial for LLMs to handle real-world tasks such as summarization and question-answering across large sets of documents. While LLMs have improved at processing long inputs, MD contexts still present challenges, such as managing inter-document dependencies, redundancy, and incoherent structures. We introduce MDCure, a scalable and effective fine-tuning pipeline to enhance the MD capabilities of LLMs without the computational cost of pre-training or reliance on human annotated data. MDCure is based on generation of high-quality synthetic MD instruction data from sets of related articles via targeted prompts. We further introduce MDCureRM, a multi-objective reward model which filters generated data based on their training utility for MD settings. With MDCure, we fine-tune a variety of LLMs, from the FlanT5, Qwen2, and LLAMA3.1 model families, up to 70B parameters in size. Extensive evaluations on a wide range of MD and long-context benchmarks spanning various tasks show MDCure consistently improves performance over pre-trained baselines and over corresponding base models by up to 75.5%. Our code, datasets, and models are available at https://github.com/yale-nlp/MDCure.
Holmes: Towards Distributed Training Across Clusters with Heterogeneous NIC Environment
Large language models (LLMs) such as GPT-3, OPT, and LLaMA have demonstrated remarkable accuracy in a wide range of tasks. However, training these models can incur significant expenses, often requiring tens of thousands of GPUs for months of continuous operation. Typically, this training is carried out in specialized GPU clusters equipped with homogeneous high-speed Remote Direct Memory Access (RDMA) network interface cards (NICs). The acquisition and maintenance of such dedicated clusters is challenging. Current LLM training frameworks, like Megatron-LM and Megatron-DeepSpeed, focus primarily on optimizing training within homogeneous cluster settings. In this paper, we introduce Holmes, a training framework for LLMs that employs thoughtfully crafted data and model parallelism strategies over the heterogeneous NIC environment. Our primary technical contribution lies in a novel scheduling method that intelligently allocates distinct computational tasklets in LLM training to specific groups of GPU devices based on the characteristics of their connected NICs. Furthermore, our proposed framework, utilizing pipeline parallel techniques, demonstrates scalability to multiple GPU clusters, even in scenarios without high-speed interconnects between nodes in distinct clusters. We conducted comprehensive experiments that involved various scenarios in the heterogeneous NIC environment. In most cases, our framework achieves performance levels close to those achievable with homogeneous RDMA-capable networks (InfiniBand or RoCE), significantly exceeding training efficiency within the pure Ethernet environment. Additionally, we verified that our framework outperforms other mainstream LLM frameworks under heterogeneous NIC environment in terms of training efficiency and can be seamlessly integrated with them.
Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
Recent work in language modeling demonstrates that training large transformer models advances the state of the art in Natural Language Processing applications. However, very large models can be quite difficult to train due to memory constraints. In this work, we present our techniques for training very large transformer models and implement a simple, efficient intra-layer model parallel approach that enables training transformer models with billions of parameters. Our approach does not require a new compiler or library changes, is orthogonal and complimentary to pipeline model parallelism, and can be fully implemented with the insertion of a few communication operations in native PyTorch. We illustrate this approach by converging transformer based models up to 8.3 billion parameters using 512 GPUs. We sustain 15.1 PetaFLOPs across the entire application with 76% scaling efficiency when compared to a strong single GPU baseline that sustains 39 TeraFLOPs, which is 30% of peak FLOPs. To demonstrate that large language models can further advance the state of the art (SOTA), we train an 8.3 billion parameter transformer language model similar to GPT-2 and a 3.9 billion parameter model similar to BERT. We show that careful attention to the placement of layer normalization in BERT-like models is critical to achieving increased performance as the model size grows. Using the GPT-2 model we achieve SOTA results on the WikiText103 (10.8 compared to SOTA perplexity of 15.8) and LAMBADA (66.5% compared to SOTA accuracy of 63.2%) datasets. Our BERT model achieves SOTA results on the RACE dataset (90.9% compared to SOTA accuracy of 89.4%).
IndicLLMSuite: A Blueprint for Creating Pre-training and Fine-Tuning Datasets for Indian Languages
Despite the considerable advancements in English LLMs, the progress in building comparable models for other languages has been hindered due to the scarcity of tailored resources. Our work aims to bridge this divide by introducing an expansive suite of resources specifically designed for the development of Indic LLMs, covering 22 languages, containing a total of 251B tokens and 74.8M instruction-response pairs. Recognizing the importance of both data quality and quantity, our approach combines highly curated manually verified data, unverified yet valuable data, and synthetic data. We build a clean, open-source pipeline for curating pre-training data from diverse sources, including websites, PDFs, and videos, incorporating best practices for crawling, cleaning, flagging, and deduplication. For instruction-fine tuning, we amalgamate existing Indic datasets, translate/transliterate English datasets into Indian languages, and utilize LLaMa2 and Mixtral models to create conversations grounded in articles from Indian Wikipedia and Wikihow. Additionally, we address toxicity alignment by generating toxic prompts for multiple scenarios and then generate non-toxic responses by feeding these toxic prompts to an aligned LLaMa2 model. We hope that the datasets, tools, and resources released as a part of this work will not only propel the research and development of Indic LLMs but also establish an open-source blueprint for extending such efforts to other languages. The data and other artifacts created as part of this work are released with permissive licenses.
SIG: A Synthetic Identity Generation Pipeline for Generating Evaluation Datasets for Face Recognition
As Artificial Intelligence applications expand, the evaluation of models faces heightened scrutiny. Ensuring public readiness requires evaluation datasets, which differ from training data by being disjoint and ethically sourced in compliance with privacy regulations. The performance and fairness of face recognition systems depend significantly on the quality and representativeness of these evaluation datasets. This data is sometimes scraped from the internet without user's consent, causing ethical concerns that can prohibit its use without proper releases. In rare cases, data is collected in a controlled environment with consent, however, this process is time-consuming, expensive, and logistically difficult to execute. This creates a barrier for those unable to conjure the immense resources required to gather ethically sourced evaluation datasets. To address these challenges, we introduce the Synthetic Identity Generation pipeline, or SIG, that allows for the targeted creation of ethical, balanced datasets for face recognition evaluation. Our proposed and demonstrated pipeline generates high-quality images of synthetic identities with controllable pose, facial features, and demographic attributes, such as race, gender, and age. We also release an open-source evaluation dataset named ControlFace10k, consisting of 10,008 face images of 3,336 unique synthetic identities balanced across race, gender, and age, generated using the proposed SIG pipeline. We analyze ControlFace10k along with a non-synthetic BUPT dataset using state-of-the-art face recognition algorithms to demonstrate its effectiveness as an evaluation tool. This analysis highlights the dataset's characteristics and its utility in assessing algorithmic bias across different demographic groups.
Codec-ASR: Training Performant Automatic Speech Recognition Systems with Discrete Speech Representations
Discrete speech representations have garnered recent attention for their efficacy in training transformer-based models for various speech-related tasks such as automatic speech recognition (ASR), translation, speaker verification, and joint speech-text foundational models. In this work, we present a comprehensive analysis on building ASR systems with discrete codes. We investigate different methods for codec training such as quantization schemes and time-domain vs spectral feature encodings. We further explore ASR training techniques aimed at enhancing performance, training efficiency, and noise robustness. Drawing upon our findings, we introduce a codec ASR pipeline that outperforms Encodec at similar bit-rate. Remarkably, it also surpasses the state-of-the-art results achieved by strong self-supervised models on the 143 languages ML-SUPERB benchmark despite being smaller in size and pretrained on significantly less data.
ESPnet-SPK: full pipeline speaker embedding toolkit with reproducible recipes, self-supervised front-ends, and off-the-shelf models
This paper introduces ESPnet-SPK, a toolkit designed with several objectives for training speaker embedding extractors. First, we provide an open-source platform for researchers in the speaker recognition community to effortlessly build models. We provide several models, ranging from x-vector to recent SKA-TDNN. Through the modularized architecture design, variants can be developed easily. We also aspire to bridge developed models with other domains, facilitating the broad research community to effortlessly incorporate state-of-the-art embedding extractors. Pre-trained embedding extractors can be accessed in an off-the-shelf manner and we demonstrate the toolkit's versatility by showcasing its integration with two tasks. Another goal is to integrate with diverse self-supervised learning features. We release a reproducible recipe that achieves an equal error rate of 0.39% on the Vox1-O evaluation protocol using WavLM-Large with ECAPA-TDNN.
MARIO: MAth Reasoning with code Interpreter Output -- A Reproducible Pipeline
Large language models (LLMs) have seen considerable advancements in natural language understanding tasks, yet there remains a gap to bridge before attaining true artificial general intelligence, especially concerning shortcomings in mathematical reasoning capabilities. We postulate that the inherent nature of LLM training, which focuses on predicting probabilities of next token, presents challenges in effectively modeling mathematical reasoning that demands exact calculations, both from data-driven and theoretical standpoints. In this paper, we address this challenge by enriching the data landscape and introducing a novel math dataset, enhanced with a capability to utilize a Python code interpreter. This dataset is derived from GSM8K and MATH and has been further refined through a combination of GPT-4 annotations, human review, and self-training processes, where the errors in the original GSM8K training set have been fixed. Additionally, we propose a tentative, easily replicable protocol for the fine-tuning of math-specific LLMs, which has led to a significant improvement in the performance of a 7B-parameter LLM on the GSM8K and MATH datasets. We are committed to advancing the field of mathematical reasoning in LLMs and, to that end, we have made the model checkpoints and will make the dataset publicly available. We hope this will facilitate further research and development within the community.
Improving Lens Flare Removal with General Purpose Pipeline and Multiple Light Sources Recovery
When taking images against strong light sources, the resulting images often contain heterogeneous flare artifacts. These artifacts can importantly affect image visual quality and downstream computer vision tasks. While collecting real data pairs of flare-corrupted/flare-free images for training flare removal models is challenging, current methods utilize the direct-add approach to synthesize data. However, these methods do not consider automatic exposure and tone mapping in image signal processing pipeline (ISP), leading to the limited generalization capability of deep models training using such data. Besides, existing methods struggle to handle multiple light sources due to the different sizes, shapes and illuminance of various light sources. In this paper, we propose a solution to improve the performance of lens flare removal by revisiting the ISP and remodeling the principle of automatic exposure in the synthesis pipeline and design a more reliable light sources recovery strategy. The new pipeline approaches realistic imaging by discriminating the local and global illumination through convex combination, avoiding global illumination shifting and local over-saturation. Our strategy for recovering multiple light sources convexly averages the input and output of the neural network based on illuminance levels, thereby avoiding the need for a hard threshold in identifying light sources. We also contribute a new flare removal testing dataset containing the flare-corrupted images captured by ten types of consumer electronics. The dataset facilitates the verification of the generalization capability of flare removal methods. Extensive experiments show that our solution can effectively improve the performance of lens flare removal and push the frontier toward more general situations.
CiT: Curation in Training for Effective Vision-Language Data
Large vision-language models are generally applicable to many downstream tasks, but come at an exorbitant training cost that only large institutions can afford. This paper trades generality for efficiency and presents Curation in Training (CiT), a simple and efficient vision-text learning algorithm that couples a data objective into training. CiT automatically yields quality data to speed-up contrastive image-text training and alleviates the need for an offline data filtering pipeline, allowing broad data sources (including raw image-text pairs from the web). CiT contains two loops: an outer loop curating the training data and an inner loop consuming the curated training data. The text encoder connects the two loops. Given metadata for tasks of interest, e.g., class names, and a large pool of image-text pairs, CiT alternatively selects relevant training data from the pool by measuring the similarity of their text embeddings and embeddings of the metadata. In our experiments, we observe that CiT can speed up training by over an order of magnitude, especially if the raw data size is large.
ChatDiT: A Training-Free Baseline for Task-Agnostic Free-Form Chatting with Diffusion Transformers
Recent research arXiv:2410.15027 arXiv:2410.23775 has highlighted the inherent in-context generation capabilities of pretrained diffusion transformers (DiTs), enabling them to seamlessly adapt to diverse visual tasks with minimal or no architectural modifications. These capabilities are unlocked by concatenating self-attention tokens across multiple input and target images, combined with grouped and masked generation pipelines. Building upon this foundation, we present ChatDiT, a zero-shot, general-purpose, and interactive visual generation framework that leverages pretrained diffusion transformers in their original form, requiring no additional tuning, adapters, or modifications. Users can interact with ChatDiT to create interleaved text-image articles, multi-page picture books, edit images, design IP derivatives, or develop character design settings, all through free-form natural language across one or more conversational rounds. At its core, ChatDiT employs a multi-agent system comprising three key components: an Instruction-Parsing agent that interprets user-uploaded images and instructions, a Strategy-Planning agent that devises single-step or multi-step generation actions, and an Execution agent that performs these actions using an in-context toolkit of diffusion transformers. We thoroughly evaluate ChatDiT on IDEA-Bench arXiv:2412.11767, comprising 100 real-world design tasks and 275 cases with diverse instructions and varying numbers of input and target images. Despite its simplicity and training-free approach, ChatDiT surpasses all competitors, including those specifically designed and trained on extensive multi-task datasets. We further identify key limitations of pretrained DiTs in zero-shot adapting to tasks. We release all code, agents, results, and intermediate outputs to facilitate further research at https://github.com/ali-vilab/ChatDiT
Policy-Gradient Training of Language Models for Ranking
Text retrieval plays a crucial role in incorporating factual knowledge for decision making into language processing pipelines, ranging from chat-based web search to question answering systems. Current state-of-the-art text retrieval models leverage pre-trained large language models (LLMs) to achieve competitive performance, but training LLM-based retrievers via typical contrastive losses requires intricate heuristics, including selecting hard negatives and using additional supervision as learning signals. This reliance on heuristics stems from the fact that the contrastive loss itself is heuristic and does not directly optimize the downstream metrics of decision quality at the end of the processing pipeline. To address this issue, we introduce Neural PG-RANK, a novel training algorithm that learns to rank by instantiating a LLM as a Plackett-Luce ranking policy. Neural PG-RANK provides a principled method for end-to-end training of retrieval models as part of larger decision systems via policy gradient, with little reliance on complex heuristics, and it effectively unifies the training objective with downstream decision-making quality. We conduct extensive experiments on various text retrieval benchmarks. The results demonstrate that when the training objective aligns with the evaluation setup, Neural PG-RANK yields remarkable in-domain performance improvement, with substantial out-of-domain generalization to some critical datasets employed in downstream question answering tasks.
Rank-adaptive spectral pruning of convolutional layers during training
The computing cost and memory demand of deep learning pipelines have grown fast in recent years and thus a variety of pruning techniques have been developed to reduce model parameters. The majority of these techniques focus on reducing inference costs by pruning the network after a pass of full training. A smaller number of methods address the reduction of training costs, mostly based on compressing the network via low-rank layer factorizations. Despite their efficiency for linear layers, these methods fail to effectively handle convolutional filters. In this work, we propose a low-parametric training method that factorizes the convolutions into tensor Tucker format and adaptively prunes the Tucker ranks of the convolutional kernel during training. Leveraging fundamental results from geometric integration theory of differential equations on tensor manifolds, we obtain a robust training algorithm that provably approximates the full baseline performance and guarantees loss descent. A variety of experiments against the full model and alternative low-rank baselines are implemented, showing that the proposed method drastically reduces the training costs, while achieving high performance, comparable to or better than the full baseline, and consistently outperforms competing low-rank approaches.
Habitat 2.0: Training Home Assistants to Rearrange their Habitat
We introduce Habitat 2.0 (H2.0), a simulation platform for training virtual robots in interactive 3D environments and complex physics-enabled scenarios. We make comprehensive contributions to all levels of the embodied AI stack - data, simulation, and benchmark tasks. Specifically, we present: (i) ReplicaCAD: an artist-authored, annotated, reconfigurable 3D dataset of apartments (matching real spaces) with articulated objects (e.g. cabinets and drawers that can open/close); (ii) H2.0: a high-performance physics-enabled 3D simulator with speeds exceeding 25,000 simulation steps per second (850x real-time) on an 8-GPU node, representing 100x speed-ups over prior work; and, (iii) Home Assistant Benchmark (HAB): a suite of common tasks for assistive robots (tidy the house, prepare groceries, set the table) that test a range of mobile manipulation capabilities. These large-scale engineering contributions allow us to systematically compare deep reinforcement learning (RL) at scale and classical sense-plan-act (SPA) pipelines in long-horizon structured tasks, with an emphasis on generalization to new objects, receptacles, and layouts. We find that (1) flat RL policies struggle on HAB compared to hierarchical ones; (2) a hierarchy with independent skills suffers from 'hand-off problems', and (3) SPA pipelines are more brittle than RL policies.
HumanVid: Demystifying Training Data for Camera-controllable Human Image Animation
Human image animation involves generating videos from a character photo, allowing user control and unlocking potential for video and movie production. While recent approaches yield impressive results using high-quality training data, the inaccessibility of these datasets hampers fair and transparent benchmarking. Moreover, these approaches prioritize 2D human motion and overlook the significance of camera motions in videos, leading to limited control and unstable video generation.To demystify the training data, we present HumanVid, the first large-scale high-quality dataset tailored for human image animation, which combines crafted real-world and synthetic data. For the real-world data, we compile a vast collection of copyright-free real-world videos from the internet. Through a carefully designed rule-based filtering strategy, we ensure the inclusion of high-quality videos, resulting in a collection of 20K human-centric videos in 1080P resolution. Human and camera motion annotation is accomplished using a 2D pose estimator and a SLAM-based method. For the synthetic data, we gather 2,300 copyright-free 3D avatar assets to augment existing available 3D assets. Notably, we introduce a rule-based camera trajectory generation method, enabling the synthetic pipeline to incorporate diverse and precise camera motion annotation, which can rarely be found in real-world data. To verify the effectiveness of HumanVid, we establish a baseline model named CamAnimate, short for Camera-controllable Human Animation, that considers both human and camera motions as conditions. Through extensive experimentation, we demonstrate that such simple baseline training on our HumanVid achieves state-of-the-art performance in controlling both human pose and camera motions, setting a new benchmark. Code and data will be publicly available at https://github.com/zhenzhiwang/HumanVid/.
Gen4Gen: Generative Data Pipeline for Generative Multi-Concept Composition
Recent text-to-image diffusion models are able to learn and synthesize images containing novel, personalized concepts (e.g., their own pets or specific items) with just a few examples for training. This paper tackles two interconnected issues within this realm of personalizing text-to-image diffusion models. First, current personalization techniques fail to reliably extend to multiple concepts -- we hypothesize this to be due to the mismatch between complex scenes and simple text descriptions in the pre-training dataset (e.g., LAION). Second, given an image containing multiple personalized concepts, there lacks a holistic metric that evaluates performance on not just the degree of resemblance of personalized concepts, but also whether all concepts are present in the image and whether the image accurately reflects the overall text description. To address these issues, we introduce Gen4Gen, a semi-automated dataset creation pipeline utilizing generative models to combine personalized concepts into complex compositions along with text-descriptions. Using this, we create a dataset called MyCanvas, that can be used to benchmark the task of multi-concept personalization. In addition, we design a comprehensive metric comprising two scores (CP-CLIP and TI-CLIP) for better quantifying the performance of multi-concept, personalized text-to-image diffusion methods. We provide a simple baseline built on top of Custom Diffusion with empirical prompting strategies for future researchers to evaluate on MyCanvas. We show that by improving data quality and prompting strategies, we can significantly increase multi-concept personalized image generation quality, without requiring any modifications to model architecture or training algorithms.
Mining Fine-Grained Image-Text Alignment for Zero-Shot Captioning via Text-Only Training
Image captioning aims at generating descriptive and meaningful textual descriptions of images, enabling a broad range of vision-language applications. Prior works have demonstrated that harnessing the power of Contrastive Image Language Pre-training (CLIP) offers a promising approach to achieving zero-shot captioning, eliminating the need for expensive caption annotations. However, the widely observed modality gap in the latent space of CLIP harms the performance of zero-shot captioning by breaking the alignment between paired image-text features. To address this issue, we conduct an analysis on the CLIP latent space which leads to two findings. Firstly, we observe that the CLIP's visual feature of image subregions can achieve closer proximity to the paired caption due to the inherent information loss in text descriptions. In addition, we show that the modality gap between a paired image-text can be empirically modeled as a zero-mean Gaussian distribution. Motivated by the findings, we propose a novel zero-shot image captioning framework with text-only training to reduce the modality gap. In particular, we introduce a subregion feature aggregation to leverage local region information, which produces a compact visual representation for matching text representation. Moreover, we incorporate a noise injection and CLIP reranking strategy to boost captioning performance. We also extend our framework to build a zero-shot VQA pipeline, demonstrating its generality. Through extensive experiments on common captioning and VQA datasets such as MSCOCO, Flickr30k and VQAV2, we show that our method achieves remarkable performance improvements. Code is available at https://github.com/Artanic30/MacCap.
Optimizing Distributed Training on Frontier for Large Language Models
Large language models (LLMs) have demonstrated remarkable success as foundational models, benefiting various downstream applications through fine-tuning. Recent studies on loss scaling have demonstrated the superior performance of larger LLMs compared to their smaller counterparts. Nevertheless, training LLMs with billions of parameters poses significant challenges and requires considerable computational resources. For example, training a one trillion parameter GPT-style model on 20 trillion tokens requires a staggering 120 million exaflops of computation. This research explores efficient distributed training strategies to extract this computation from Frontier, the world's first exascale supercomputer dedicated to open science. We enable and investigate various model and data parallel training techniques, such as tensor parallelism, pipeline parallelism, and sharded data parallelism, to facilitate training a trillion-parameter model on Frontier. We empirically assess these techniques and their associated parameters to determine their impact on memory footprint, communication latency, and GPU's computational efficiency. We analyze the complex interplay among these techniques and find a strategy to combine them to achieve high throughput through hyperparameter tuning. We have identified efficient strategies for training large LLMs of varying sizes through empirical analysis and hyperparameter tuning. For 22 Billion, 175 Billion, and 1 Trillion parameters, we achieved GPU throughputs of 38.38%, 36.14%, and 31.96%, respectively. For the training of the 175 Billion parameter model and the 1 Trillion parameter model, we achieved 100% weak scaling efficiency on 1024 and 3072 MI250X GPUs, respectively. We also achieved strong scaling efficiencies of 89% and 87% for these two models.
MAS-GPT: Training LLMs to Build LLM-based Multi-Agent Systems
LLM-based multi-agent systems (MAS) have shown significant potential in tackling diverse tasks. However, to design effective MAS, existing approaches heavily rely on manual configurations or multiple calls of advanced LLMs, resulting in inadaptability and high inference costs. In this paper, we simplify the process of building an MAS by reframing it as a generative language task, where the input is a user query and the output is a corresponding MAS. To address this novel task, we unify the representation of MAS as executable code and propose a consistency-oriented data construction pipeline to create a high-quality dataset comprising coherent and consistent query-MAS pairs. Using this dataset, we train MAS-GPT, an open-source medium-sized LLM that is capable of generating query-adaptive MAS within a single LLM inference. The generated MAS can be seamlessly applied to process user queries and deliver high-quality responses. Extensive experiments on 9 benchmarks and 5 LLMs show that the proposed MAS-GPT consistently outperforms 10+ baseline MAS methods on diverse settings, indicating MAS-GPT's high effectiveness, efficiency and strong generalization ability. Code will be available at https://github.com/rui-ye/MAS-GPT.
FSMoE: A Flexible and Scalable Training System for Sparse Mixture-of-Experts Models
Recent large language models (LLMs) have tended to leverage sparsity to reduce computations, employing the sparsely activated mixture-of-experts (MoE) technique. MoE introduces four modules, including token routing, token communication, expert computation, and expert parallelism, that impact model quality and training efficiency. To enable versatile usage of MoE models, we introduce FSMoE, a flexible training system optimizing task scheduling with three novel techniques: 1) Unified abstraction and online profiling of MoE modules for task scheduling across various MoE implementations. 2) Co-scheduling intra-node and inter-node communications with computations to minimize communication overheads. 3) To support near-optimal task scheduling, we design an adaptive gradient partitioning method for gradient aggregation and a schedule to adaptively pipeline communications and computations. We conduct extensive experiments with configured MoE layers and real-world MoE models on two GPU clusters. Experimental results show that 1) our FSMoE supports four popular types of MoE routing functions and is more efficient than existing implementations (with up to a 1.42times speedup), and 2) FSMoE outperforms the state-of-the-art MoE training systems (DeepSpeed-MoE and Tutel) by 1.18times-1.22times on 1458 MoE layers and 1.19times-3.01times on real-world MoE models based on GPT-2 and Mixtral using a popular routing function.
A Comprehensive Dataset and Automated Pipeline for Nailfold Capillary Analysis
Nailfold capillaroscopy is a well-established method for assessing health conditions, but the untapped potential of automated medical image analysis using machine learning remains despite recent advancements. In this groundbreaking study, we present a pioneering effort in constructing a comprehensive dataset-321 images, 219 videos, 68 clinic reports, with expert annotations-that serves as a crucial resource for training deep-learning models. Leveraging this dataset, we propose an end-to-end nailfold capillary analysis pipeline capable of automatically detecting and measuring diverse morphological and dynamic features. Experimental results demonstrate sub-pixel measurement accuracy and 90% accuracy in predicting abnormality portions, highlighting its potential for advancing quantitative medical research and enabling pervasive computing in healthcare. We've shared our open-source codes and data (available at https://github.com/THU-CS-PI-LAB/ANFC-Automated-Nailfold-Capillary) to contribute to transformative progress in computational medical image analysis.
Vision-by-Language for Training-Free Compositional Image Retrieval
Given an image and a target modification (e.g an image of the Eiffel tower and the text "without people and at night-time"), Compositional Image Retrieval (CIR) aims to retrieve the relevant target image in a database. While supervised approaches rely on annotating triplets that is costly (i.e. query image, textual modification, and target image), recent research sidesteps this need by using large-scale vision-language models (VLMs), performing Zero-Shot CIR (ZS-CIR). However, state-of-the-art approaches in ZS-CIR still require training task-specific, customized models over large amounts of image-text pairs. In this work, we propose to tackle CIR in a training-free manner via our Compositional Image Retrieval through Vision-by-Language (CIReVL), a simple, yet human-understandable and scalable pipeline that effectively recombines large-scale VLMs with large language models (LLMs). By captioning the reference image using a pre-trained generative VLM and asking a LLM to recompose the caption based on the textual target modification for subsequent retrieval via e.g. CLIP, we achieve modular language reasoning. In four ZS-CIR benchmarks, we find competitive, in-part state-of-the-art performance - improving over supervised methods. Moreover, the modularity of CIReVL offers simple scalability without re-training, allowing us to both investigate scaling laws and bottlenecks for ZS-CIR while easily scaling up to in parts more than double of previously reported results. Finally, we show that CIReVL makes CIR human-understandable by composing image and text in a modular fashion in the language domain, thereby making it intervenable, allowing to post-hoc re-align failure cases. Code will be released upon acceptance.
Domino: Eliminating Communication in LLM Training via Generic Tensor Slicing and Overlapping
Given the popularity of generative AI, Large Language Models (LLMs) often consume hundreds or thousands of GPUs for parallelizing and accelerating the training process. Communication overhead becomes more pronounced when training LLMs at scale. To eliminate communication overhead in distributed LLM training, we propose Domino, which provides a generic scheme to hide communication behind computation. By breaking data dependency of a single batch training into smaller independent pieces, Domino pipelines these independent pieces training and provides generic strategy of fine-grained communication and computation overlapping. Extensive results show that, comparing with Megatron-LM, Domino achieves up to 1.3x speedup for LLM training on Nvidia DGX-H100 GPUs.
Robust low-rank training via approximate orthonormal constraints
With the growth of model and data sizes, a broad effort has been made to design pruning techniques that reduce the resource demand of deep learning pipelines, while retaining model performance. In order to reduce both inference and training costs, a prominent line of work uses low-rank matrix factorizations to represent the network weights. Although able to retain accuracy, we observe that low-rank methods tend to compromise model robustness against adversarial perturbations. By modeling robustness in terms of the condition number of the neural network, we argue that this loss of robustness is due to the exploding singular values of the low-rank weight matrices. Thus, we introduce a robust low-rank training algorithm that maintains the network's weights on the low-rank matrix manifold while simultaneously enforcing approximate orthonormal constraints. The resulting model reduces both training and inference costs while ensuring well-conditioning and thus better adversarial robustness, without compromising model accuracy. This is shown by extensive numerical evidence and by our main approximation theorem that shows the computed robust low-rank network well-approximates the ideal full model, provided a highly performing low-rank sub-network exists.
Rethinking Privacy in Machine Learning Pipelines from an Information Flow Control Perspective
Modern machine learning systems use models trained on ever-growing corpora. Typically, metadata such as ownership, access control, or licensing information is ignored during training. Instead, to mitigate privacy risks, we rely on generic techniques such as dataset sanitization and differentially private model training, with inherent privacy/utility trade-offs that hurt model performance. Moreover, these techniques have limitations in scenarios where sensitive information is shared across multiple participants and fine-grained access control is required. By ignoring metadata, we therefore miss an opportunity to better address security, privacy, and confidentiality challenges. In this paper, we take an information flow control perspective to describe machine learning systems, which allows us to leverage metadata such as access control policies and define clear-cut privacy and confidentiality guarantees with interpretable information flows. Under this perspective, we contrast two different approaches to achieve user-level non-interference: 1) fine-tuning per-user models, and 2) retrieval augmented models that access user-specific datasets at inference time. We compare these two approaches to a trivially non-interfering zero-shot baseline using a public model and to a baseline that fine-tunes this model on the whole corpus. We evaluate trained models on two datasets of scientific articles and demonstrate that retrieval augmented architectures deliver the best utility, scalability, and flexibility while satisfying strict non-interference guarantees.
Redco: A Lightweight Tool to Automate Distributed Training of LLMs on Any GPU/TPUs
The recent progress of AI can be largely attributed to large language models (LLMs). However, their escalating memory requirements introduce challenges for machine learning (ML) researchers and engineers. Addressing this requires developers to partition a large model to distribute it across multiple GPUs or TPUs. This necessitates considerable coding and intricate configuration efforts with existing model parallel tools, such as Megatron-LM, DeepSpeed, and Alpa. These tools require users' expertise in machine learning systems (MLSys), creating a bottleneck in LLM development, particularly for developers without MLSys background. In this work, we present Redco, a lightweight and user-friendly tool crafted to automate distributed training and inference for LLMs, as well as to simplify ML pipeline development. The design of Redco emphasizes two key aspects. Firstly, to automate model parallism, our study identifies two straightforward rules to generate tensor parallel strategies for any given LLM. Integrating these rules into Redco facilitates effortless distributed LLM training and inference, eliminating the need of additional coding or complex configurations. We demonstrate the effectiveness by applying Redco on a set of LLM architectures, such as GPT-J, LLaMA, T5, and OPT, up to the size of 66B. Secondly, we propose a mechanism that allows for the customization of diverse ML pipelines through the definition of merely three functions, eliminating redundant and formulaic code like multi-host related processing. This mechanism proves adaptable across a spectrum of ML algorithms, from foundational language modeling to complex algorithms like meta-learning and reinforcement learning. Consequently, Redco implementations exhibit much fewer code lines compared to their official counterparts.
On building machine learning pipelines for Android malware detection: a procedural survey of practices, challenges and opportunities
As the smartphone market leader, Android has been a prominent target for malware attacks. The number of malicious applications (apps) identified for it has increased continually over the past decade, creating an immense challenge for all parties involved. For market holders and researchers, in particular, the large number of samples has made manual malware detection unfeasible, leading to an influx of research that investigate Machine Learning (ML) approaches to automate this process. However, while some of the proposed approaches achieve high performance, rapidly evolving Android malware has made them unable to maintain their accuracy over time. This has created a need in the community to conduct further research, and build more flexible ML pipelines. Doing so, however, is currently hindered by a lack of systematic overview of the existing literature, to learn from and improve upon the existing solutions. Existing survey papers often focus only on parts of the ML process (e.g., data collection or model deployment), while omitting other important stages, such as model evaluation and explanation. In this paper, we address this problem with a review of 42 highly-cited papers, spanning a decade of research (from 2011 to 2021). We introduce a novel procedural taxonomy of the published literature, covering how they have used ML algorithms, what features they have engineered, which dimensionality reduction techniques they have employed, what datasets they have employed for training, and what their evaluation and explanation strategies are. Drawing from this taxonomy, we also identify gaps in knowledge and provide ideas for improvement and future work.
Unsupervised Corpus Aware Language Model Pre-training for Dense Passage Retrieval
Recent research demonstrates the effectiveness of using fine-tuned language models~(LM) for dense retrieval. However, dense retrievers are hard to train, typically requiring heavily engineered fine-tuning pipelines to realize their full potential. In this paper, we identify and address two underlying problems of dense retrievers: i)~fragility to training data noise and ii)~requiring large batches to robustly learn the embedding space. We use the recently proposed Condenser pre-training architecture, which learns to condense information into the dense vector through LM pre-training. On top of it, we propose coCondenser, which adds an unsupervised corpus-level contrastive loss to warm up the passage embedding space. Retrieval experiments on MS-MARCO, Natural Question, and Trivia QA datasets show that coCondenser removes the need for heavy data engineering such as augmentation, synthesis, or filtering, as well as the need for large batch training. It shows comparable performance to RocketQA, a state-of-the-art, heavily engineered system, using simple small batch fine-tuning.
Joint Demosaicking and Denoising in the Wild: The Case of Training Under Ground Truth Uncertainty
Image demosaicking and denoising are the two key fundamental steps in digital camera pipelines, aiming to reconstruct clean color images from noisy luminance readings. In this paper, we propose and study Wild-JDD, a novel learning framework for joint demosaicking and denoising in the wild. In contrast to previous works which generally assume the ground truth of training data is a perfect reflection of the reality, we consider here the more common imperfect case of ground truth uncertainty in the wild. We first illustrate its manifestation as various kinds of artifacts including zipper effect, color moire and residual noise. Then we formulate a two-stage data degradation process to capture such ground truth uncertainty, where a conjugate prior distribution is imposed upon a base distribution. After that, we derive an evidence lower bound (ELBO) loss to train a neural network that approximates the parameters of the conjugate prior distribution conditioned on the degraded input. Finally, to further enhance the performance for out-of-distribution input, we design a simple but effective fine-tuning strategy by taking the input as a weakly informative prior. Taking into account ground truth uncertainty, Wild-JDD enjoys good interpretability during optimization. Extensive experiments validate that it outperforms state-of-the-art schemes on joint demosaicking and denoising tasks on both synthetic and realistic raw datasets.
Text-to-Text Pre-Training for Data-to-Text Tasks
We study the pre-train + fine-tune strategy for data-to-text tasks. Our experiments indicate that text-to-text pre-training in the form of T5, enables simple, end-to-end transformer based models to outperform pipelined neural architectures tailored for data-to-text generation, as well as alternative language model based pre-training techniques such as BERT and GPT-2. Importantly, T5 pre-training leads to better generalization, as evidenced by large improvements on out-of-domain test sets. We hope our work serves as a useful baseline for future research, as transfer learning becomes ever more prevalent for data-to-text tasks.
MegaScale: Scaling Large Language Model Training to More Than 10,000 GPUs
We present the design, implementation and engineering experience in building and deploying MegaScale, a production system for training large language models (LLMs) at the scale of more than 10,000 GPUs. Training LLMs at this scale brings unprecedented challenges to training efficiency and stability. We take a full-stack approach that co-designs the algorithmic and system components across model block and optimizer design, computation and communication overlapping, operator optimization, data pipeline, and network performance tuning. Maintaining high efficiency throughout the training process (i.e., stability) is an important consideration in production given the long extent of LLM training jobs. Many hard stability issues only emerge at large scale, and in-depth observability is the key to address them. We develop a set of diagnosis tools to monitor system components and events deep in the stack, identify root causes, and derive effective techniques to achieve fault tolerance and mitigate stragglers. MegaScale achieves 55.2% Model FLOPs Utilization (MFU) when training a 175B LLM model on 12,288 GPUs, improving the MFU by 1.34x compared to Megatron-LM. We share our operational experience in identifying and fixing failures and stragglers. We hope by articulating the problems and sharing our experience from a systems perspective, this work can inspire future LLM systems research.
DeepSpeed Ulysses: System Optimizations for Enabling Training of Extreme Long Sequence Transformer Models
Computation in a typical Transformer-based large language model (LLM) can be characterized by batch size, hidden dimension, number of layers, and sequence length. Until now, system works for accelerating LLM training have focused on the first three dimensions: data parallelism for batch size, tensor parallelism for hidden size and pipeline parallelism for model depth or layers. These widely studied forms of parallelism are not targeted or optimized for long sequence Transformer models. Given practical application needs for long sequence LLM, renewed attentions are being drawn to sequence parallelism. However, existing works in sequence parallelism are constrained by memory-communication inefficiency, limiting their scalability to long sequence large models. In this work, we introduce DeepSpeed-Ulysses, a novel, portable and effective methodology for enabling highly efficient and scalable LLM training with extremely long sequence length. DeepSpeed-Ulysses at its core partitions input data along the sequence dimension and employs an efficient all-to-all collective communication for attention computation. Theoretical communication analysis shows that whereas other methods incur communication overhead as sequence length increases, DeepSpeed-Ulysses maintains constant communication volume when sequence length and compute devices are increased proportionally. Furthermore, experimental evaluations show that DeepSpeed-Ulysses trains 2.5X faster with 4X longer sequence length than the existing method SOTA baseline.
FastSR-NeRF: Improving NeRF Efficiency on Consumer Devices with A Simple Super-Resolution Pipeline
Super-resolution (SR) techniques have recently been proposed to upscale the outputs of neural radiance fields (NeRF) and generate high-quality images with enhanced inference speeds. However, existing NeRF+SR methods increase training overhead by using extra input features, loss functions, and/or expensive training procedures such as knowledge distillation. In this paper, we aim to leverage SR for efficiency gains without costly training or architectural changes. Specifically, we build a simple NeRF+SR pipeline that directly combines existing modules, and we propose a lightweight augmentation technique, random patch sampling, for training. Compared to existing NeRF+SR methods, our pipeline mitigates the SR computing overhead and can be trained up to 23x faster, making it feasible to run on consumer devices such as the Apple MacBook. Experiments show our pipeline can upscale NeRF outputs by 2-4x while maintaining high quality, increasing inference speeds by up to 18x on an NVIDIA V100 GPU and 12.8x on an M1 Pro chip. We conclude that SR can be a simple but effective technique for improving the efficiency of NeRF models for consumer devices.
Deep Optimizer States: Towards Scalable Training of Transformer Models Using Interleaved Offloading
Transformers and large language models~(LLMs) have seen rapid adoption in all domains. Their sizes have exploded to hundreds of billions of parameters and keep increasing. Under these circumstances, the training of transformers is very expensive and often hits a ``memory wall'', i.e., even when using 3D parallelism (pipeline, tensor, data) and aggregating the memory of many GPUs, it is still not enough to hold the necessary data structures (model parameters, optimizer state, gradients, activations) in GPU memory. To compensate, state-of-the-art approaches offload the optimizer state, at least partially, to the host memory and perform hybrid CPU-GPU computations. However, the management of the combined host-GPU memory is often suboptimal and results in poor overlapping between data movements and computations. This leads to missed opportunities to simultaneously leverage the interconnect bandwidth and computational capabilities of CPUs and GPUs. In this paper, we leverage a key observation that the interleaving of the forward, backward and update phases generate fluctuations in the GPU memory utilization, which can be exploited to dynamically move a part of the optimizer state between the host and the GPU memory at each iteration. To this end, we design and implement \proj, a novel technique to split the LLM into subgroups, whose update phase is scheduled on either the CPU or the GPU based on our proposed performance model that addresses the trade-off between data movement cost, acceleration on the GPUs vs the CPUs, and competition for shared resources. We integrate our approach with DeepSpeed and demonstrate 2.5times faster iterations over state-of-the-art approaches using extensive experiments.
Efficient Parallelization Layouts for Large-Scale Distributed Model Training
Efficiently training large language models requires parallelizing across hundreds of hardware accelerators and invoking various compute and memory optimizations. When combined, many of these strategies have complex interactions regarding the final training efficiency. Prior work tackling this problem did not have access to the latest set of optimizations, such as FlashAttention or sequence parallelism. In this work, we conduct a comprehensive ablation study of possible training configurations for large language models. We distill this large study into several key recommendations for the most efficient training. For instance, we find that using a micro-batch size of 1 usually enables the most efficient training layouts. Larger micro-batch sizes necessitate activation checkpointing or higher degrees of model parallelism and also lead to larger pipeline bubbles. Our most efficient configurations enable us to achieve state-of-the-art training efficiency results over a range of model sizes, most notably a Model FLOPs utilization of 70.5% when training a Llama 13B model.
Towards All-in-one Pre-training via Maximizing Multi-modal Mutual Information
To effectively exploit the potential of large-scale models, various pre-training strategies supported by massive data from different sources are proposed, including supervised pre-training, weakly-supervised pre-training, and self-supervised pre-training. It has been proved that combining multiple pre-training strategies and data from various modalities/sources can greatly boost the training of large-scale models. However, current works adopt a multi-stage pre-training system, where the complex pipeline may increase the uncertainty and instability of the pre-training. It is thus desirable that these strategies can be integrated in a single-stage manner. In this paper, we first propose a general multi-modal mutual information formula as a unified optimization target and demonstrate that all existing approaches are special cases of our framework. Under this unified perspective, we propose an all-in-one single-stage pre-training approach, named Maximizing Multi-modal Mutual Information Pre-training (M3I Pre-training). Our approach achieves better performance than previous pre-training methods on various vision benchmarks, including ImageNet classification, COCO object detection, LVIS long-tailed object detection, and ADE20k semantic segmentation. Notably, we successfully pre-train a billion-level parameter image backbone and achieve state-of-the-art performance on various benchmarks. Code shall be released at https://github.com/OpenGVLab/M3I-Pretraining.
Conceptual 12M: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual Concepts
The availability of large-scale image captioning and visual question answering datasets has contributed significantly to recent successes in vision-and-language pre-training. However, these datasets are often collected with overrestrictive requirements inherited from their original target tasks (e.g., image caption generation), which limit the resulting dataset scale and diversity. We take a step further in pushing the limits of vision-and-language pre-training data by relaxing the data collection pipeline used in Conceptual Captions 3M (CC3M) [Sharma et al. 2018] and introduce the Conceptual 12M (CC12M), a dataset with 12 million image-text pairs specifically meant to be used for vision-and-language pre-training. We perform an analysis of this dataset and benchmark its effectiveness against CC3M on multiple downstream tasks with an emphasis on long-tail visual recognition. Our results clearly illustrate the benefit of scaling up pre-training data for vision-and-language tasks, as indicated by the new state-of-the-art results on both the nocaps and Conceptual Captions benchmarks.
All You Need is RAW: Defending Against Adversarial Attacks with Camera Image Pipelines
Existing neural networks for computer vision tasks are vulnerable to adversarial attacks: adding imperceptible perturbations to the input images can fool these methods to make a false prediction on an image that was correctly predicted without the perturbation. Various defense methods have proposed image-to-image mapping methods, either including these perturbations in the training process or removing them in a preprocessing denoising step. In doing so, existing methods often ignore that the natural RGB images in today's datasets are not captured but, in fact, recovered from RAW color filter array captures that are subject to various degradations in the capture. In this work, we exploit this RAW data distribution as an empirical prior for adversarial defense. Specifically, we proposed a model-agnostic adversarial defensive method, which maps the input RGB images to Bayer RAW space and back to output RGB using a learned camera image signal processing (ISP) pipeline to eliminate potential adversarial patterns. The proposed method acts as an off-the-shelf preprocessing module and, unlike model-specific adversarial training methods, does not require adversarial images to train. As a result, the method generalizes to unseen tasks without additional retraining. Experiments on large-scale datasets (e.g., ImageNet, COCO) for different vision tasks (e.g., classification, semantic segmentation, object detection) validate that the method significantly outperforms existing methods across task domains.
Revisit Large-Scale Image-Caption Data in Pre-training Multimodal Foundation Models
Recent advancements in multimodal models highlight the value of rewritten captions for improving performance, yet key challenges remain. For example, while synthetic captions often provide superior quality and image-text alignment, it is not clear whether they can fully replace AltTexts: the role of synthetic captions and their interaction with original web-crawled AltTexts in pre-training is still not well understood. Moreover, different multimodal foundation models may have unique preferences for specific caption formats, but efforts to identify the optimal captions for each model remain limited. In this work, we propose a novel, controllable, and scalable captioning pipeline designed to generate diverse caption formats tailored to various multimodal models. By examining Short Synthetic Captions (SSC) towards Dense Synthetic Captions (DSC+) as case studies, we systematically explore their effects and interactions with AltTexts across models such as CLIP, multimodal LLMs, and diffusion models. Our findings reveal that a hybrid approach that keeps both synthetic captions and AltTexts can outperform the use of synthetic captions alone, improving both alignment and performance, with each model demonstrating preferences for particular caption formats. This comprehensive analysis provides valuable insights into optimizing captioning strategies, thereby advancing the pre-training of multimodal foundation models.
Rethinking Token Reduction in MLLMs: Towards a Unified Paradigm for Training-Free Acceleration
To accelerate the inference of heavy Multimodal Large Language Models (MLLMs), this study rethinks the current landscape of training-free token reduction research. We regret to find that the critical components of existing methods are tightly intertwined, with their interconnections and effects remaining unclear for comparison, transfer, and expansion. Therefore, we propose a unified ''filter-correlate-compress'' paradigm that decomposes the token reduction into three distinct stages within a pipeline, maintaining consistent design objectives and elements while allowing for unique implementations. We additionally demystify the popular works and subsume them into our paradigm to showcase its universality. Finally, we offer a suite of methods grounded in the paradigm, striking a balance between speed and accuracy throughout different phases of the inference. Experimental results across 10 benchmarks indicate that our methods can achieve up to an 82.4% reduction in FLOPs with a minimal impact on performance, simultaneously surpassing state-of-the-art training-free methods. Our project page is at https://ficoco-accelerate.github.io/.
Check, Locate, Rectify: A Training-Free Layout Calibration System for Text-to-Image Generation
Diffusion models have recently achieved remarkable progress in generating realistic images. However, challenges remain in accurately understanding and synthesizing the layout requirements in the textual prompts. To align the generated image with layout instructions, we present a training-free layout calibration system SimM that intervenes in the generative process on the fly during inference time. Specifically, following a "check-locate-rectify" pipeline, the system first analyses the prompt to generate the target layout and compares it with the intermediate outputs to automatically detect errors. Then, by moving the located activations and making intra- and inter-map adjustments, the rectification process can be performed with negligible computational overhead. To evaluate SimM over a range of layout requirements, we present a benchmark SimMBench that compensates for the lack of superlative spatial relations in existing datasets. And both quantitative and qualitative results demonstrate the effectiveness of the proposed SimM in calibrating the layout inconsistencies. Our project page is at https://simm-t2i.github.io/SimM.
SCP-116K: A High-Quality Problem-Solution Dataset and a Generalized Pipeline for Automated Extraction in the Higher Education Science Domain
Recent breakthroughs in large language models (LLMs) exemplified by the impressive mathematical and scientific reasoning capabilities of the o1 model have spotlighted the critical importance of high-quality training data in advancing LLM performance across STEM disciplines. While the mathematics community has benefited from a growing body of curated datasets, the scientific domain at the higher education level has long suffered from a scarcity of comparable resources. To address this gap, we present SCP-116K, a new large-scale dataset of 116,756 high-quality problem-solution pairs, automatically extracted from heterogeneous sources using a streamlined and highly generalizable pipeline. Our approach involves stringent filtering to ensure the scientific rigor and educational level of the extracted materials, while maintaining adaptability for future expansions or domain transfers. By openly releasing both the dataset and the extraction pipeline, we seek to foster research on scientific reasoning, enable comprehensive performance evaluations of new LLMs, and lower the barrier to replicating the successes of advanced models like o1 in the broader science community. We believe SCP-116K will serve as a critical resource, catalyzing progress in high-level scientific reasoning tasks and promoting further innovations in LLM development. The dataset and code are publicly available at https://github.com/AQA6666/SCP-116K-open.
Coupling AI and Citizen Science in Creation of Enhanced Training Dataset for Medical Image Segmentation
Recent advancements in medical imaging and artificial intelligence (AI) have greatly enhanced diagnostic capabilities, but the development of effective deep learning (DL) models is still constrained by the lack of high-quality annotated datasets. The traditional manual annotation process by medical experts is time- and resource-intensive, limiting the scalability of these datasets. In this work, we introduce a robust and versatile framework that combines AI and crowdsourcing to improve both the quality and quantity of medical image datasets across different modalities. Our approach utilises a user-friendly online platform that enables a diverse group of crowd annotators to label medical images efficiently. By integrating the MedSAM segmentation AI with this platform, we accelerate the annotation process while maintaining expert-level quality through an algorithm that merges crowd-labelled images. Additionally, we employ pix2pixGAN, a generative AI model, to expand the training dataset with synthetic images that capture realistic morphological features. These methods are combined into a cohesive framework designed to produce an enhanced dataset, which can serve as a universal pre-processing pipeline to boost the training of any medical deep learning segmentation model. Our results demonstrate that this framework significantly improves model performance, especially when training data is limited.
From CAD models to soft point cloud labels: An automatic annotation pipeline for cheaply supervised 3D semantic segmentation
We propose a fully automatic annotation scheme that takes a raw 3D point cloud with a set of fitted CAD models as input and outputs convincing point-wise labels that can be used as cheap training data for point cloud segmentation. Compared with manual annotations, we show that our automatic labels are accurate while drastically reducing the annotation time and eliminating the need for manual intervention or dataset-specific parameters. Our labeling pipeline outputs semantic classes and soft point-wise object scores, which can either be binarized into standard one-hot-encoded labels, thresholded into weak labels with ambiguous points left unlabeled, or used directly as soft labels during training. We evaluate the label quality and segmentation performance of PointNet++ on a dataset of real industrial point clouds and Scan2CAD, a public dataset of indoor scenes. Our results indicate that reducing supervision in areas that are more difficult to label automatically is beneficial compared with the conventional approach of naively assigning a hard "best guess" label to every point.
Robotic Offline RL from Internet Videos via Value-Function Pre-Training
Pre-training on Internet data has proven to be a key ingredient for broad generalization in many modern ML systems. What would it take to enable such capabilities in robotic reinforcement learning (RL)? Offline RL methods, which learn from datasets of robot experience, offer one way to leverage prior data into the robotic learning pipeline. However, these methods have a "type mismatch" with video data (such as Ego4D), the largest prior datasets available for robotics, since video offers observation-only experience without the action or reward annotations needed for RL methods. In this paper, we develop a system for leveraging large-scale human video datasets in robotic offline RL, based entirely on learning value functions via temporal-difference learning. We show that value learning on video datasets learns representations that are more conducive to downstream robotic offline RL than other approaches for learning from video data. Our system, called V-PTR, combines the benefits of pre-training on video data with robotic offline RL approaches that train on diverse robot data, resulting in value functions and policies for manipulation tasks that perform better, act robustly, and generalize broadly. On several manipulation tasks on a real WidowX robot, our framework produces policies that greatly improve over prior methods. Our video and additional details can be found at https://dibyaghosh.com/vptr/
DocGenome: An Open Large-scale Scientific Document Benchmark for Training and Testing Multi-modal Large Language Models
Scientific documents record research findings and valuable human knowledge, comprising a vast corpus of high-quality data. Leveraging multi-modality data extracted from these documents and assessing large models' abilities to handle scientific document-oriented tasks is therefore meaningful. Despite promising advancements, large models still perform poorly on multi-page scientific document extraction and understanding tasks, and their capacity to process within-document data formats such as charts and equations remains under-explored. To address these issues, we present DocGenome, a structured document benchmark constructed by annotating 500K scientific documents from 153 disciplines in the arXiv open-access community, using our custom auto-labeling pipeline. DocGenome features four key characteristics: 1) Completeness: It is the first dataset to structure data from all modalities including 13 layout attributes along with their LaTeX source codes. 2) Logicality: It provides 6 logical relationships between different entities within each scientific document. 3) Diversity: It covers various document-oriented tasks, including document classification, visual grounding, document layout detection, document transformation, open-ended single-page QA and multi-page QA. 4) Correctness: It undergoes rigorous quality control checks conducted by a specialized team. We conduct extensive experiments to demonstrate the advantages of DocGenome and objectively evaluate the performance of large models on our benchmark.
CCI3.0-HQ: a large-scale Chinese dataset of high quality designed for pre-training large language models
We present CCI3.0-HQ (https://huggingface.co/datasets/BAAI/CCI3-HQ), a high-quality 500GB subset of the Chinese Corpora Internet 3.0 (CCI3.0)(https://huggingface.co/datasets/BAAI/CCI3-Data), developed using a novel two-stage hybrid filtering pipeline that significantly enhances data quality. To evaluate its effectiveness, we trained a 0.5B parameter model from scratch on 100B tokens across various datasets, achieving superior performance on 10 benchmarks in a zero-shot setting compared to CCI3.0, SkyPile, and WanjuanV1. The high-quality filtering process effectively distills the capabilities of the Qwen2-72B-instruct model into a compact 0.5B model, attaining optimal F1 scores for Chinese web data classification. We believe this open-access dataset will facilitate broader access to high-quality language models.
Amazon SageMaker Model Parallelism: A General and Flexible Framework for Large Model Training
With deep learning models rapidly growing in size, systems-level solutions for large-model training are required. We present Amazon SageMaker model parallelism, a software library that integrates with PyTorch, and enables easy training of large models using model parallelism and other memory-saving features. In contrast to existing solutions, the implementation of the SageMaker library is much more generic and flexible, in that it can automatically partition and run pipeline parallelism over arbitrary model architectures with minimal code change, and also offers a general and extensible framework for tensor parallelism, which supports a wider range of use cases, and is modular enough to be easily applied to new training scripts. The library also preserves the native PyTorch user experience to a much larger degree, supporting module re-use and dynamic graphs, while giving the user full control over the details of the training step. We evaluate performance over GPT-3, RoBERTa, BERT, and neural collaborative filtering, and demonstrate competitive performance over existing solutions.
UKnow: A Unified Knowledge Protocol for Common-Sense Reasoning and Vision-Language Pre-training
This work presents a unified knowledge protocol, called UKnow, which facilitates knowledge-based studies from the perspective of data. Particularly focusing on visual and linguistic modalities, we categorize data knowledge into five unit types, namely, in-image, in-text, cross-image, cross-text, and image-text, and set up an efficient pipeline to help construct the multimodal knowledge graph from any data collection. Thanks to the logical information naturally contained in knowledge graph, organizing datasets under UKnow format opens up more possibilities of data usage compared to the commonly used image-text pairs. Following UKnow protocol, we collect, from public international news, a large-scale multimodal knowledge graph dataset that consists of 1,388,568 nodes (with 571,791 vision-related ones) and 3,673,817 triplets. The dataset is also annotated with rich event tags, including 11 coarse labels and 9,185 fine labels. Experiments on four benchmarks demonstrate the potential of UKnow in supporting common-sense reasoning and boosting vision-language pre-training with a single dataset, benefiting from its unified form of knowledge organization. Code, dataset, and models will be made publicly available.
LLMs as Workers in Human-Computational Algorithms? Replicating Crowdsourcing Pipelines with LLMs
LLMs have shown promise in replicating human-like behavior in crowdsourcing tasks that were previously thought to be exclusive to human abilities. However, current efforts focus mainly on simple atomic tasks. We explore whether LLMs can replicate more complex crowdsourcing pipelines. We find that modern LLMs can simulate some of crowdworkers' abilities in these "human computation algorithms," but the level of success is variable and influenced by requesters' understanding of LLM capabilities, the specific skills required for sub-tasks, and the optimal interaction modality for performing these sub-tasks. We reflect on human and LLMs' different sensitivities to instructions, stress the importance of enabling human-facing safeguards for LLMs, and discuss the potential of training humans and LLMs with complementary skill sets. Crucially, we show that replicating crowdsourcing pipelines offers a valuable platform to investigate (1) the relative strengths of LLMs on different tasks (by cross-comparing their performances on sub-tasks) and (2) LLMs' potential in complex tasks, where they can complete part of the tasks while leaving others to humans.
Instruct-SkillMix: A Powerful Pipeline for LLM Instruction Tuning
We introduce Instruct-SkillMix, an automated approach for creating diverse, high quality SFT data. The Instruct-SkillMix pipeline involves two stages, each leveraging an existing powerful LLM: (1) Skill extraction: uses the LLM to extract core "skills" for instruction-following, either from existing datasets, or by directly prompting the model; (2) Data generation: uses the powerful LLM to generate (instruction, response) data that exhibit a randomly chosen pair of these skills. Here, the use of random skill combinations promotes diversity and difficulty. Vanilla SFT (i.e., no PPO, DPO, or RL methods) on data generated from Instruct-SkillMix leads to strong gains on instruction following benchmarks such as AlpacaEval 2.0, MT-Bench, and WildBench. With just 4K examples, LLaMA-3-8B-Base achieves 42.76% length-controlled win rate on AlpacaEval 2.0. To our knowledge, this achieves state-of-the-art performance among all models that have only undergone SFT (no RL methods) and competes with proprietary models such as Claude 3 Opus and LLaMA-3.1-405B-Instruct. Ablation studies also suggest plausible reasons for why creating open instruction-tuning datasets via naive crowd-sourcing has proved difficult. Introducing low quality answers ("shirkers") in 20% of Instruct-SkillMix examples causes performance to plummet, sometimes catastrophically. The Instruct-SkillMix pipeline is flexible and is adaptable to other settings.
ImageReward: Learning and Evaluating Human Preferences for Text-to-Image Generation
We present ImageReward -- the first general-purpose text-to-image human preference reward model -- to address various prevalent issues in generative models and align them with human values and preferences. Its training is based on our systematic annotation pipeline that covers both the rating and ranking components, collecting a dataset of 137k expert comparisons to date. In human evaluation, ImageReward outperforms existing scoring methods (e.g., CLIP by 38.6\%), making it a promising automatic metric for evaluating and improving text-to-image synthesis. The reward model is publicly available via the image-reward package at https://github.com/THUDM/ImageReward.
PFGS: High Fidelity Point Cloud Rendering via Feature Splatting
Rendering high-fidelity images from sparse point clouds is still challenging. Existing learning-based approaches suffer from either hole artifacts, missing details, or expensive computations. In this paper, we propose a novel framework to render high-quality images from sparse points. This method first attempts to bridge the 3D Gaussian Splatting and point cloud rendering, which includes several cascaded modules. We first use a regressor to estimate Gaussian properties in a point-wise manner, the estimated properties are used to rasterize neural feature descriptors into 2D planes which are extracted from a multiscale extractor. The projected feature volume is gradually decoded toward the final prediction via a multiscale and progressive decoder. The whole pipeline experiences a two-stage training and is driven by our well-designed progressive and multiscale reconstruction loss. Experiments on different benchmarks show the superiority of our method in terms of rendering qualities and the necessities of our main components.
VDebugger: Harnessing Execution Feedback for Debugging Visual Programs
Visual programs are executable code generated by large language models to address visual reasoning problems. They decompose complex questions into multiple reasoning steps and invoke specialized models for each step to solve the problems. However, these programs are prone to logic errors, with our preliminary evaluation showing that 58% of the total errors are caused by program logic errors. Debugging complex visual programs remains a major bottleneck for visual reasoning. To address this, we introduce VDebugger, a novel critic-refiner framework trained to localize and debug visual programs by tracking execution step by step. VDebugger identifies and corrects program errors leveraging detailed execution feedback, improving interpretability and accuracy. The training data is generated through an automated pipeline that injects errors into correct visual programs using a novel mask-best decoding technique. Evaluations on six datasets demonstrate VDebugger's effectiveness, showing performance improvements of up to 3.2% in downstream task accuracy. Further studies show VDebugger's ability to generalize to unseen tasks, bringing a notable improvement of 2.3% on the unseen COVR task. Code, data and models are made publicly available at https://github.com/shirley-wu/vdebugger/
An Empirical Analysis of Forgetting in Pre-trained Models with Incremental Low-Rank Updates
Broad, open source availability of large pretrained foundation models on the internet through platforms such as HuggingFace has taken the world of practical deep learning by storm. A classical pipeline for neural network training now typically consists of finetuning these pretrained network on a small target dataset instead of training from scratch. In the case of large models this can be done even on modest hardware using a low rank training technique known as Low-Rank Adaptation (LoRA). While Low Rank training has already been studied in the continual learning setting, existing works often consider storing the learned adapter along with the existing model but rarely attempt to modify the weights of the pretrained model by merging the LoRA with the existing weights after finishing the training of each task. In this article we investigate this setting and study the impact of LoRA rank on the forgetting of the pretraining foundation task and on the plasticity and forgetting of subsequent ones. We observe that this rank has an important impact on forgetting of both the pretraining and downstream tasks. We also observe that vision transformers finetuned in that way exhibit a sort of ``contextual'' forgetting, a behaviour that we do not observe for residual networks and that we believe has not been observed yet in previous continual learning works.
2BP: 2-Stage Backpropagation
As Deep Neural Networks (DNNs) grow in size and complexity, they often exceed the memory capacity of a single accelerator, necessitating the sharding of model parameters across multiple accelerators. Pipeline parallelism is a commonly used sharding strategy for training large DNNs. However, current implementations of pipeline parallelism are being unintentionally bottlenecked by the automatic differentiation tools provided by ML frameworks. This paper introduces 2-stage backpropagation (2BP). By splitting the backward propagation step into two separate stages, we can reduce idle compute time. We tested 2BP on various model architectures and pipelining schedules, achieving increases in throughput in all cases. Using 2BP, we were able to achieve a 1.70x increase in throughput compared to traditional methods when training a LLaMa-like transformer with 7 billion parameters across 4 GPUs.
Visual Question Decomposition on Multimodal Large Language Models
Question decomposition has emerged as an effective strategy for prompting Large Language Models (LLMs) to answer complex questions. However, while existing methods primarily focus on unimodal language models, the question decomposition capability of Multimodal Large Language Models (MLLMs) has yet to be explored. To this end, this paper explores visual question decomposition on MLLMs. Specifically, we introduce a systematic evaluation framework including a dataset and several evaluation criteria to assess the quality of the decomposed sub-questions, revealing that existing MLLMs struggle to produce high-quality sub-questions. To address this limitation, we propose a specific finetuning dataset, DecoVQA+, for enhancing the model's question decomposition capability. Aiming at enabling models to perform appropriate selective decomposition, we propose an efficient finetuning pipeline. The finetuning pipeline consists of our proposed dataset and a training objective for selective decomposition. Finetuned MLLMs demonstrate significant improvements in the quality of sub-questions and the policy of selective question decomposition. Additionally, the models also achieve higher accuracy with selective decomposition on VQA benchmark datasets.
YUAN 2.0: A Large Language Model with Localized Filtering-based Attention
In this work, the Localized Filtering-based Attention (LFA) is introduced to incorporate prior knowledge of local dependencies of natural language into Attention. Based on LFA, we develop and release Yuan 2.0, a large language model with parameters ranging from 2.1 billion to 102.6 billion. A data filtering and generation method is presented to build pretraining and fine-tuning dataset in high quality. A distributed training method with non-uniform pipeline parallel, data parallel, and optimizer parallel is proposed, which greatly reduces the bandwidth requirements of intra-node communication, and achieves good performance in large-scale distributed training. Yuan 2.0 models display impressive ability in code generation, math problem-solving, and chat compared with existing models. The latest version of YUAN 2.0, including model weights and source code, is accessible at Github.
Balancing the Budget: Understanding Trade-offs Between Supervised and Preference-Based Finetuning
Post-training of Large Language Models often involves a pipeline of Supervised Finetuning (SFT) followed by Preference Finetuning (PFT) using methods like Direct Preference Optimization. Both stages require annotated data that are very different in structure and costs. We study how to optimally allocate a fixed training data budget between the two stages, through extensive experiments spanning four diverse tasks, multiple model sizes and various data annotation costs. Our findings reveal that just SFT on the base model dominates performance in low-data regimes (<1,000 annotated examples). With larger data-budgets, we observe that a combination of SFT and PFT, often with increasing portions allocated towards preference data yields optimal performance. However, completely eliminating SFT and running PFT directly on the base model yields suboptimal performance, described as the cold start problem on tasks like mathematics. We observe that this is due to the distribution shift arising from using DPO directly on the base model to elicit step-by-step reasoning. This limitation can be effectively addressed by allocating even a small portion (<10%) of the budget to SFT first, resulting in performance improvements of 15-20% on analytical benchmarks like GSM8k. These results provide actionable insights for researchers and practitioners optimizing model development under budget constraints, where high-quality data curation often represents a significant portion of the total costs of model development.
InRanker: Distilled Rankers for Zero-shot Information Retrieval
Despite multi-billion parameter neural rankers being common components of state-of-the-art information retrieval pipelines, they are rarely used in production due to the enormous amount of compute required for inference. In this work, we propose a new method for distilling large rankers into their smaller versions focusing on out-of-domain effectiveness. We introduce InRanker, a version of monoT5 distilled from monoT5-3B with increased effectiveness on out-of-domain scenarios. Our key insight is to use language models and rerankers to generate as much as possible synthetic "in-domain" training data, i.e., data that closely resembles the data that will be seen at retrieval time. The pipeline consists of two distillation phases that do not require additional user queries or manual annotations: (1) training on existing supervised soft teacher labels, and (2) training on teacher soft labels for synthetic queries generated using a large language model. Consequently, models like monoT5-60M and monoT5-220M improved their effectiveness by using the teacher's knowledge, despite being 50x and 13x smaller, respectively. Models and code are available at https://github.com/unicamp-dl/InRanker.
Yet Another ICU Benchmark: A Flexible Multi-Center Framework for Clinical ML
Medical applications of machine learning (ML) have experienced a surge in popularity in recent years. The intensive care unit (ICU) is a natural habitat for ML given the abundance of available data from electronic health records. Models have been proposed to address numerous ICU prediction tasks like the early detection of complications. While authors frequently report state-of-the-art performance, it is challenging to verify claims of superiority. Datasets and code are not always published, and cohort definitions, preprocessing pipelines, and training setups are difficult to reproduce. This work introduces Yet Another ICU Benchmark (YAIB), a modular framework that allows researchers to define reproducible and comparable clinical ML experiments; we offer an end-to-end solution from cohort definition to model evaluation. The framework natively supports most open-access ICU datasets (MIMIC III/IV, eICU, HiRID, AUMCdb) and is easily adaptable to future ICU datasets. Combined with a transparent preprocessing pipeline and extensible training code for multiple ML and deep learning models, YAIB enables unified model development. Our benchmark comes with five predefined established prediction tasks (mortality, acute kidney injury, sepsis, kidney function, and length of stay) developed in collaboration with clinicians. Adding further tasks is straightforward by design. Using YAIB, we demonstrate that the choice of dataset, cohort definition, and preprocessing have a major impact on the prediction performance - often more so than model class - indicating an urgent need for YAIB as a holistic benchmarking tool. We provide our work to the clinical ML community to accelerate method development and enable real-world clinical implementations. Software Repository: https://github.com/rvandewater/YAIB.
Byte-Level Grammatical Error Correction Using Synthetic and Curated Corpora
Grammatical error correction (GEC) is the task of correcting typos, spelling, punctuation and grammatical issues in text. Approaching the problem as a sequence-to-sequence task, we compare the use of a common subword unit vocabulary and byte-level encoding. Initial synthetic training data is created using an error-generating pipeline, and used for finetuning two subword-level models and one byte-level model. Models are then finetuned further on hand-corrected error corpora, including texts written by children, university students, dyslexic and second-language writers, and evaluated over different error types and origins. We show that a byte-level model enables higher correction quality than a subword approach, not only for simple spelling errors, but also for more complex semantic, stylistic and grammatical issues. In particular, initial training on synthetic corpora followed by finetuning on a relatively small parallel corpus of real-world errors helps the byte-level model correct a wide range of commonly occurring errors. Our experiments are run for the Icelandic language but should hold for other similar languages, particularly morphologically rich ones.
Bidirectional Generation of Structure and Properties Through a Single Molecular Foundation Model
The recent success of large foundation models in artificial intelligence has prompted the emergence of chemical pre-trained models. Despite the growing interest in large molecular pre-trained models that provide informative representations for downstream tasks, attempts for multimodal pre-training approaches on the molecule domain were limited. To address this, we present a novel multimodal molecular pre-trained model that incorporates the modalities of structure and biochemical properties, drawing inspiration from recent advances in multimodal learning techniques. Our proposed model pipeline of data handling and training objectives aligns the structure/property features in a common embedding space, which enables the model to regard bidirectional information between the molecules' structure and properties. These contributions emerge synergistic knowledge, allowing us to tackle both multimodal and unimodal downstream tasks through a single model. Through extensive experiments, we demonstrate that our model shows remarkable capabilities in solving various meaningful chemical challenges, including conditional molecule generation, property prediction, molecule classification, and reaction prediction.
A Dataset and Application for Facial Recognition of Individual Gorillas in Zoo Environments
We put forward a video dataset with 5k+ facial bounding box annotations across a troop of 7 western lowland gorillas at Bristol Zoo Gardens. Training on this dataset, we implement and evaluate a standard deep learning pipeline on the task of facially recognising individual gorillas in a zoo environment. We show that a basic YOLOv3-powered application is able to perform identifications at 92% mAP when utilising single frames only. Tracking-by-detection-association and identity voting across short tracklets yields an improved robust performance of 97% mAP. To facilitate easy utilisation for enriching the research capabilities of zoo environments, we publish the code, video dataset, weights, and ground-truth annotations at data.bris.ac.uk.
Grape detection, segmentation and tracking using deep neural networks and three-dimensional association
Agricultural applications such as yield prediction, precision agriculture and automated harvesting need systems able to infer the crop state from low-cost sensing devices. Proximal sensing using affordable cameras combined with computer vision has seen a promising alternative, strengthened after the advent of convolutional neural networks (CNNs) as an alternative for challenging pattern recognition problems in natural images. Considering fruit growing monitoring and automation, a fundamental problem is the detection, segmentation and counting of individual fruits in orchards. Here we show that for wine grapes, a crop presenting large variability in shape, color, size and compactness, grape clusters can be successfully detected, segmented and tracked using state-of-the-art CNNs. In a test set containing 408 grape clusters from images taken on a trellis-system based vineyard, we have reached an F 1 -score up to 0.91 for instance segmentation, a fine separation of each cluster from other structures in the image that allows a more accurate assessment of fruit size and shape. We have also shown as clusters can be identified and tracked along video sequences recording orchard rows. We also present a public dataset containing grape clusters properly annotated in 300 images and a novel annotation methodology for segmentation of complex objects in natural images. The presented pipeline for annotation, training, evaluation and tracking of agricultural patterns in images can be replicated for different crops and production systems. It can be employed in the development of sensing components for several agricultural and environmental applications.
LongVILA: Scaling Long-Context Visual Language Models for Long Videos
Long-context capability is critical for multi-modal foundation models. We introduce LongVILA, a full-stack solution for long-context vision-language models, including system, model training, and dataset development. On the system side, we introduce the first Multi-Modal Sequence Parallelism (MM-SP) system that enables long-context training and inference, enabling 2M context length training on 256 GPUs. MM-SP is also efficient, being 2.1x - 5.7x faster than Ring-Style Sequence Parallelism and 1.1x - 1.4x faster than Megatron-LM in text-only settings. Moreover, it seamlessly integrates with Hugging Face Transformers. For model training, we propose a five-stage pipeline comprising alignment, pre-training, context extension, and long-short joint supervised fine-tuning. Regarding datasets, we meticulously construct large-scale visual language pre-training datasets and long video instruction-following datasets to support our multi-stage training process. The full-stack solution extends the feasible frame number of VILA by a factor of 128 (from 8 to 1024 frames) and improves long video captioning score from 2.00 to 3.26 (1.6x), achieving 99.5% accuracy in 1400-frames video (274k context length) needle in a haystack. LongVILA-8B also demonstrates a consistent improvement in performance on long videos within the VideoMME benchmark as the video frames increase.
Efficient-VQGAN: Towards High-Resolution Image Generation with Efficient Vision Transformers
Vector-quantized image modeling has shown great potential in synthesizing high-quality images. However, generating high-resolution images remains a challenging task due to the quadratic computational overhead of the self-attention process. In this study, we seek to explore a more efficient two-stage framework for high-resolution image generation with improvements in the following three aspects. (1) Based on the observation that the first quantization stage has solid local property, we employ a local attention-based quantization model instead of the global attention mechanism used in previous methods, leading to better efficiency and reconstruction quality. (2) We emphasize the importance of multi-grained feature interaction during image generation and introduce an efficient attention mechanism that combines global attention (long-range semantic consistency within the whole image) and local attention (fined-grained details). This approach results in faster generation speed, higher generation fidelity, and improved resolution. (3) We propose a new generation pipeline incorporating autoencoding training and autoregressive generation strategy, demonstrating a better paradigm for image synthesis. Extensive experiments demonstrate the superiority of our approach in high-quality and high-resolution image reconstruction and generation.
SPRING Lab IITM's submission to Low Resource Indic Language Translation Shared Task
We develop a robust translation model for four low-resource Indic languages: Khasi, Mizo, Manipuri, and Assamese. Our approach includes a comprehensive pipeline from data collection and preprocessing to training and evaluation, leveraging data from WMT task datasets, BPCC, PMIndia, and OpenLanguageData. To address the scarcity of bilingual data, we use back-translation techniques on monolingual datasets for Mizo and Khasi, significantly expanding our training corpus. We fine-tune the pre-trained NLLB 3.3B model for Assamese, Mizo, and Manipuri, achieving improved performance over the baseline. For Khasi, which is not supported by the NLLB model, we introduce special tokens and train the model on our Khasi corpus. Our training involves masked language modelling, followed by fine-tuning for English-to-Indic and Indic-to-English translations.
Lean Workbook: A large-scale Lean problem set formalized from natural language math problems
Large language models have demonstrated impressive capabilities across various natural language processing tasks, especially in solving mathematical problems. However, large language models are not good at math theorem proving using formal languages like Lean. A significant challenge in this area is the scarcity of training data available in these formal languages. To address this issue, we propose a novel pipeline that iteratively generates and filters synthetic data to translate natural language mathematical problems into Lean 4 statements, and vice versa. Our results indicate that the synthetic data pipeline can provide useful training data and improve the performance of LLMs in translating and understanding complex mathematical problems and proofs. Our final dataset contains about 57K formal-informal question pairs along with searched proof from the math contest forum and 21 new IMO questions. We open-source our code at https://github.com/InternLM/InternLM-Math and our data at https://huggingface.co/datasets/InternLM/Lean-Workbook.
WE-GS: An In-the-wild Efficient 3D Gaussian Representation for Unconstrained Photo Collections
Novel View Synthesis (NVS) from unconstrained photo collections is challenging in computer graphics. Recently, 3D Gaussian Splatting (3DGS) has shown promise for photorealistic and real-time NVS of static scenes. Building on 3DGS, we propose an efficient point-based differentiable rendering framework for scene reconstruction from photo collections. Our key innovation is a residual-based spherical harmonic coefficients transfer module that adapts 3DGS to varying lighting conditions and photometric post-processing. This lightweight module can be pre-computed and ensures efficient gradient propagation from rendered images to 3D Gaussian attributes. Additionally, we observe that the appearance encoder and the transient mask predictor, the two most critical parts of NVS from unconstrained photo collections, can be mutually beneficial. We introduce a plug-and-play lightweight spatial attention module to simultaneously predict transient occluders and latent appearance representation for each image. After training and preprocessing, our method aligns with the standard 3DGS format and rendering pipeline, facilitating seamlessly integration into various 3DGS applications. Extensive experiments on diverse datasets show our approach outperforms existing approaches on the rendering quality of novel view and appearance synthesis with high converge and rendering speed.
ID-Animator: Zero-Shot Identity-Preserving Human Video Generation
Generating high fidelity human video with specified identities has attracted significant attention in the content generation community. However, existing techniques struggle to strike a balance between training efficiency and identity preservation, either requiring tedious case-by-case finetuning or usually missing the identity details in video generation process. In this study, we present ID-Animator, a zero-shot human-video generation approach that can perform personalized video generation given single reference facial image without further training. ID-Animator inherits existing diffusion-based video generation backbones with a face adapter to encode the ID-relevant embeddings from learnable facial latent queries. To facilitate the extraction of identity information in video generation, we introduce an ID-oriented dataset construction pipeline, which incorporates decoupled human attribute and action captioning technique from a constructed facial image pool. Based on this pipeline, a random face reference training method is further devised to precisely capture the ID-relevant embeddings from reference images, thus improving the fidelity and generalization capacity of our model for ID-specific video generation. Extensive experiments demonstrate the superiority of ID-Animator to generate personalized human videos over previous models. Moreover, our method is highly compatible with popular pre-trained T2V models like animatediff and various community backbone models, showing high extendability in real-world applications for video generation where identity preservation is highly desired. Our codes and checkpoints will be released at https://github.com/ID-Animator/ID-Animator.
LDL: Line Distance Functions for Panoramic Localization
We introduce LDL, a fast and robust algorithm that localizes a panorama to a 3D map using line segments. LDL focuses on the sparse structural information of lines in the scene, which is robust to illumination changes and can potentially enable efficient computation. While previous line-based localization approaches tend to sacrifice accuracy or computation time, our method effectively observes the holistic distribution of lines within panoramic images and 3D maps. Specifically, LDL matches the distribution of lines with 2D and 3D line distance functions, which are further decomposed along principal directions of lines to increase the expressiveness. The distance functions provide coarse pose estimates by comparing the distributional information, where the poses are further optimized using conventional local feature matching. As our pipeline solely leverages line geometry and local features, it does not require costly additional training of line-specific features or correspondence matching. Nevertheless, our method demonstrates robust performance on challenging scenarios including object layout changes, illumination shifts, and large-scale scenes, while exhibiting fast pose search terminating within a matter of milliseconds. We thus expect our method to serve as a practical solution for line-based localization, and complement the well-established point-based paradigm. The code for LDL is available through the following link: https://github.com/82magnolia/panoramic-localization.
Does CLIP Benefit Visual Question Answering in the Medical Domain as Much as it Does in the General Domain?
Contrastive Language--Image Pre-training (CLIP) has shown remarkable success in learning with cross-modal supervision from extensive amounts of image--text pairs collected online. Thus far, the effectiveness of CLIP has been investigated primarily in general-domain multimodal problems. This work evaluates the effectiveness of CLIP for the task of Medical Visual Question Answering (MedVQA). To this end, we present PubMedCLIP, a fine-tuned version of CLIP for the medical domain based on PubMed articles. Our experiments are conducted on two MedVQA benchmark datasets and investigate two MedVQA methods, MEVF (Mixture of Enhanced Visual Features) and QCR (Question answering via Conditional Reasoning). For each of these, we assess the merits of visual representation learning using PubMedCLIP, the original CLIP, and state-of-the-art MAML (Model-Agnostic Meta-Learning) networks pre-trained only on visual data. We open source the code for our MedVQA pipeline and pre-training PubMedCLIP. CLIP and PubMedCLIP achieve improvements in comparison to MAML's visual encoder. PubMedCLIP achieves the best results with gains in the overall accuracy of up to 3%. Individual examples illustrate the strengths of PubMedCLIP in comparison to the previously widely used MAML networks. Visual representation learning with language supervision in PubMedCLIP leads to noticeable improvements for MedVQA. Our experiments reveal distributional differences in the two MedVQA benchmark datasets that have not been imparted in previous work and cause different back-end visual encoders in PubMedCLIP to exhibit different behavior on these datasets. Moreover, we witness fundamental performance differences of VQA in general versus medical domains.
Underspecification Presents Challenges for Credibility in Modern Machine Learning
ML models often exhibit unexpectedly poor behavior when they are deployed in real-world domains. We identify underspecification as a key reason for these failures. An ML pipeline is underspecified when it can return many predictors with equivalently strong held-out performance in the training domain. Underspecification is common in modern ML pipelines, such as those based on deep learning. Predictors returned by underspecified pipelines are often treated as equivalent based on their training domain performance, but we show here that such predictors can behave very differently in deployment domains. This ambiguity can lead to instability and poor model behavior in practice, and is a distinct failure mode from previously identified issues arising from structural mismatch between training and deployment domains. We show that this problem appears in a wide variety of practical ML pipelines, using examples from computer vision, medical imaging, natural language processing, clinical risk prediction based on electronic health records, and medical genomics. Our results show the need to explicitly account for underspecification in modeling pipelines that are intended for real-world deployment in any domain.
BaichuanSEED: Sharing the Potential of ExtensivE Data Collection and Deduplication by Introducing a Competitive Large Language Model Baseline
The general capabilities of Large Language Models (LLM) highly rely on the composition and selection on extensive pretraining datasets, treated as commercial secrets by several institutions. To mitigate this issue, we open-source the details of a universally applicable data processing pipeline and validate its effectiveness and potential by introducing a competitive LLM baseline. Specifically, the data processing pipeline consists of broad collection to scale up and reweighting to improve quality. We then pretrain a 7B model BaichuanSEED with 3T tokens processed by our pipeline without any deliberate downstream task-related optimization, followed by an easy but effective supervised fine-tuning stage. BaichuanSEED demonstrates consistency and predictability throughout training and achieves comparable performance on comprehensive benchmarks with several commercial advanced large language models, such as Qwen1.5 and Llama3. We also conduct several heuristic experiments to discuss the potential for further optimization of downstream tasks, such as mathematics and coding.
Personalized Visual Instruction Tuning
Recent advancements in multimodal large language models (MLLMs) have demonstrated significant progress; however, these models exhibit a notable limitation, which we refer to as "face blindness". Specifically, they can engage in general conversations but fail to conduct personalized dialogues targeting at specific individuals. This deficiency hinders the application of MLLMs in personalized settings, such as tailored visual assistants on mobile devices, or domestic robots that need to recognize members of the family. In this paper, we introduce Personalized Visual Instruction Tuning (PVIT), a novel data curation and training framework designed to enable MLLMs to identify target individuals within an image and engage in personalized and coherent dialogues. Our approach involves the development of a sophisticated pipeline that autonomously generates training data containing personalized conversations. This pipeline leverages the capabilities of various visual experts, image generation models, and (multi-modal) large language models. To evaluate the personalized potential of MLLMs, we present a benchmark called P-Bench, which encompasses various question types with different levels of difficulty. The experiments demonstrate a substantial personalized performance enhancement after fine-tuning with our curated dataset.
YuLan-Mini: An Open Data-efficient Language Model
Effective pre-training of large language models (LLMs) has been challenging due to the immense resource demands and the complexity of the technical processes involved. This paper presents a detailed technical report on YuLan-Mini, a highly capable base model with 2.42B parameters that achieves top-tier performance among models of similar parameter scale. Our pre-training approach focuses on enhancing training efficacy through three key technical contributions: an elaborate data pipeline combines data cleaning with data schedule strategies, a robust optimization method to mitigate training instability, and an effective annealing approach that incorporates targeted data selection and long context training. Remarkably, YuLan-Mini, trained on 1.08T tokens, achieves performance comparable to industry-leading models that require significantly more data. To facilitate reproduction, we release the full details of the data composition for each training phase. Project details can be accessed at the following link: https://github.com/RUC-GSAI/YuLan-Mini.
GeAR: Generation Augmented Retrieval
Document retrieval techniques form the foundation for the development of large-scale information systems. The prevailing methodology is to construct a bi-encoder and compute the semantic similarity. However, such scalar similarity is difficult to reflect enough information and impedes our comprehension of the retrieval results. In addition, this computational process mainly emphasizes the global semantics and ignores the fine-grained semantic relationship between the query and the complex text in the document. In this paper, we propose a new method called Generation Augmented Retrieval (GeAR) that incorporates well-designed fusion and decoding modules. This enables GeAR to generate the relevant text from documents based on the fused representation of the query and the document, thus learning to "focus on" the fine-grained information. Also when used as a retriever, GeAR does not add any computational burden over bi-encoders. To support the training of the new framework, we have introduced a pipeline to efficiently synthesize high-quality data by utilizing large language models. GeAR exhibits competitive retrieval and localization performance across diverse scenarios and datasets. Moreover, the qualitative analysis and the results generated by GeAR provide novel insights into the interpretation of retrieval results. The code, data, and models will be released after completing technical review to facilitate future research.
A Recipe for Scaling up Text-to-Video Generation with Text-free Videos
Diffusion-based text-to-video generation has witnessed impressive progress in the past year yet still falls behind text-to-image generation. One of the key reasons is the limited scale of publicly available data (e.g., 10M video-text pairs in WebVid10M vs. 5B image-text pairs in LAION), considering the high cost of video captioning. Instead, it could be far easier to collect unlabeled clips from video platforms like YouTube. Motivated by this, we come up with a novel text-to-video generation framework, termed TF-T2V, which can directly learn with text-free videos. The rationale behind is to separate the process of text decoding from that of temporal modeling. To this end, we employ a content branch and a motion branch, which are jointly optimized with weights shared. Following such a pipeline, we study the effect of doubling the scale of training set (i.e., video-only WebVid10M) with some randomly collected text-free videos and are encouraged to observe the performance improvement (FID from 9.67 to 8.19 and FVD from 484 to 441), demonstrating the scalability of our approach. We also find that our model could enjoy sustainable performance gain (FID from 8.19 to 7.64 and FVD from 441 to 366) after reintroducing some text labels for training. Finally, we validate the effectiveness and generalizability of our ideology on both native text-to-video generation and compositional video synthesis paradigms. Code and models will be publicly available at https://tf-t2v.github.io/.
CLAY: A Controllable Large-scale Generative Model for Creating High-quality 3D Assets
In the realm of digital creativity, our potential to craft intricate 3D worlds from imagination is often hampered by the limitations of existing digital tools, which demand extensive expertise and efforts. To narrow this disparity, we introduce CLAY, a 3D geometry and material generator designed to effortlessly transform human imagination into intricate 3D digital structures. CLAY supports classic text or image inputs as well as 3D-aware controls from diverse primitives (multi-view images, voxels, bounding boxes, point clouds, implicit representations, etc). At its core is a large-scale generative model composed of a multi-resolution Variational Autoencoder (VAE) and a minimalistic latent Diffusion Transformer (DiT), to extract rich 3D priors directly from a diverse range of 3D geometries. Specifically, it adopts neural fields to represent continuous and complete surfaces and uses a geometry generative module with pure transformer blocks in latent space. We present a progressive training scheme to train CLAY on an ultra large 3D model dataset obtained through a carefully designed processing pipeline, resulting in a 3D native geometry generator with 1.5 billion parameters. For appearance generation, CLAY sets out to produce physically-based rendering (PBR) textures by employing a multi-view material diffusion model that can generate 2K resolution textures with diffuse, roughness, and metallic modalities. We demonstrate using CLAY for a range of controllable 3D asset creations, from sketchy conceptual designs to production ready assets with intricate details. Even first time users can easily use CLAY to bring their vivid 3D imaginations to life, unleashing unlimited creativity.
Qilin: A Multimodal Information Retrieval Dataset with APP-level User Sessions
User-generated content (UGC) communities, especially those featuring multimodal content, improve user experiences by integrating visual and textual information into results (or items). The challenge of improving user experiences in complex systems with search and recommendation (S\&R) services has drawn significant attention from both academia and industry these years. However, the lack of high-quality datasets has limited the research progress on multimodal S\&R. To address the growing need for developing better S\&R services, we present a novel multimodal information retrieval dataset in this paper, namely Qilin. The dataset is collected from Xiaohongshu, a popular social platform with over 300 million monthly active users and an average search penetration rate of over 70\%. In contrast to existing datasets, Qilin offers a comprehensive collection of user sessions with heterogeneous results like image-text notes, video notes, commercial notes, and direct answers, facilitating the development of advanced multimodal neural retrieval models across diverse task settings. To better model user satisfaction and support the analysis of heterogeneous user behaviors, we also collect extensive APP-level contextual signals and genuine user feedback. Notably, Qilin contains user-favored answers and their referred results for search requests triggering the Deep Query Answering (DQA) module. This allows not only the training \& evaluation of a Retrieval-augmented Generation (RAG) pipeline, but also the exploration of how such a module would affect users' search behavior. Through comprehensive analysis and experiments, we provide interesting findings and insights for further improving S\&R systems. We hope that Qilin will significantly contribute to the advancement of multimodal content platforms with S\&R services in the future.
CAD-MLLM: Unifying Multimodality-Conditioned CAD Generation With MLLM
This paper aims to design a unified Computer-Aided Design (CAD) generation system that can easily generate CAD models based on the user's inputs in the form of textual description, images, point clouds, or even a combination of them. Towards this goal, we introduce the CAD-MLLM, the first system capable of generating parametric CAD models conditioned on the multimodal input. Specifically, within the CAD-MLLM framework, we leverage the command sequences of CAD models and then employ advanced large language models (LLMs) to align the feature space across these diverse multi-modalities data and CAD models' vectorized representations. To facilitate the model training, we design a comprehensive data construction and annotation pipeline that equips each CAD model with corresponding multimodal data. Our resulting dataset, named Omni-CAD, is the first multimodal CAD dataset that contains textual description, multi-view images, points, and command sequence for each CAD model. It contains approximately 450K instances and their CAD construction sequences. To thoroughly evaluate the quality of our generated CAD models, we go beyond current evaluation metrics that focus on reconstruction quality by introducing additional metrics that assess topology quality and surface enclosure extent. Extensive experimental results demonstrate that CAD-MLLM significantly outperforms existing conditional generative methods and remains highly robust to noises and missing points. The project page and more visualizations can be found at: https://cad-mllm.github.io/
Generative Image Layer Decomposition with Visual Effects
Recent advancements in large generative models, particularly diffusion-based methods, have significantly enhanced the capabilities of image editing. However, achieving precise control over image composition tasks remains a challenge. Layered representations, which allow for independent editing of image components, are essential for user-driven content creation, yet existing approaches often struggle to decompose image into plausible layers with accurately retained transparent visual effects such as shadows and reflections. We propose LayerDecomp, a generative framework for image layer decomposition which outputs photorealistic clean backgrounds and high-quality transparent foregrounds with faithfully preserved visual effects. To enable effective training, we first introduce a dataset preparation pipeline that automatically scales up simulated multi-layer data with synthesized visual effects. To further enhance real-world applicability, we supplement this simulated dataset with camera-captured images containing natural visual effects. Additionally, we propose a consistency loss which enforces the model to learn accurate representations for the transparent foreground layer when ground-truth annotations are not available. Our method achieves superior quality in layer decomposition, outperforming existing approaches in object removal and spatial editing tasks across several benchmarks and multiple user studies, unlocking various creative possibilities for layer-wise image editing. The project page is https://rayjryang.github.io/LayerDecomp.
Semmeldetector: Application of Machine Learning in Commercial Bakeries
The Semmeldetector, is a machine learning application that utilizes object detection models to detect, classify and count baked goods in images. Our application allows commercial bakers to track unsold baked goods, which allows them to optimize production and increase resource efficiency. We compiled a dataset comprising 1151 images that distinguishes between 18 different types of baked goods to train our detection models. To facilitate model training, we used a Copy-Paste augmentation pipeline to expand our dataset. We trained the state-of-the-art object detection model YOLOv8 on our detection task. We tested the impact of different training data, model scale, and online image augmentation pipelines on model performance. Our overall best performing model, achieved an AP@0.5 of 89.1% on our test set. Based on our results, we conclude that machine learning can be a valuable tool even for unforeseen industries like bakeries, even with very limited datasets.
Small Language Models Need Strong Verifiers to Self-Correct Reasoning
Self-correction has emerged as a promising solution to boost the reasoning performance of large language models (LLMs), where LLMs refine their solutions using self-generated critiques that pinpoint the errors. This work explores whether smaller-size (<= 13B) language models (LMs) have the ability of self-correction on reasoning tasks with minimal inputs from stronger LMs. We propose a novel pipeline that prompts smaller LMs to collect self-correction data that supports the training of self-refinement abilities. First, we leverage correct solutions to guide the model in critiquing their incorrect responses. Second, the generated critiques, after filtering, are used for supervised fine-tuning of the self-correcting reasoner through solution refinement. Our experimental results show improved self-correction abilities of two models on five datasets spanning math and commonsense reasoning, with notable performance gains when paired with a strong GPT-4-based verifier, though limitations are identified when using a weak self-verifier for determining when to correct.
Retrieval-Augmented Egocentric Video Captioning
Understanding human actions from videos of first-person view poses significant challenges. Most prior approaches explore representation learning on egocentric videos only, while overlooking the potential benefit of exploiting existing large-scale third-person videos. In this paper, (1) we develop EgoInstructor, a retrieval-augmented multimodal captioning model that automatically retrieves semantically relevant third-person instructional videos to enhance the video captioning of egocentric videos. (2) For training the cross-view retrieval module, we devise an automatic pipeline to discover ego-exo video pairs from distinct large-scale egocentric and exocentric datasets. (3) We train the cross-view retrieval module with a novel EgoExoNCE loss that pulls egocentric and exocentric video features closer by aligning them to shared text features that describe similar actions. (4) Through extensive experiments, our cross-view retrieval module demonstrates superior performance across seven benchmarks. Regarding egocentric video captioning, EgoInstructor exhibits significant improvements by leveraging third-person videos as references.
PanGu-$α$: Large-scale Autoregressive Pretrained Chinese Language Models with Auto-parallel Computation
Large-scale Pretrained Language Models (PLMs) have become the new paradigm for Natural Language Processing (NLP). PLMs with hundreds of billions parameters such as GPT-3 have demonstrated strong performances on natural language understanding and generation with few-shot in-context learning. In this work, we present our practice on training large-scale autoregressive language models named PanGu-alpha, with up to 200 billion parameters. PanGu-alpha is developed under the MindSpore and trained on a cluster of 2048 Ascend 910 AI processors. The training parallelism strategy is implemented based on MindSpore Auto-parallel, which composes five parallelism dimensions to scale the training task to 2048 processors efficiently, including data parallelism, op-level model parallelism, pipeline model parallelism, optimizer model parallelism and rematerialization. To enhance the generalization ability of PanGu-alpha, we collect 1.1TB high-quality Chinese data from a wide range of domains to pretrain the model. We empirically test the generation ability of PanGu-alpha in various scenarios including text summarization, question answering, dialogue generation, etc. Moreover, we investigate the effect of model scales on the few-shot performances across a broad range of Chinese NLP tasks. The experimental results demonstrate the superior capabilities of PanGu-alpha in performing various tasks under few-shot or zero-shot settings.
SplatFlow: Multi-View Rectified Flow Model for 3D Gaussian Splatting Synthesis
Text-based generation and editing of 3D scenes hold significant potential for streamlining content creation through intuitive user interactions. While recent advances leverage 3D Gaussian Splatting (3DGS) for high-fidelity and real-time rendering, existing methods are often specialized and task-focused, lacking a unified framework for both generation and editing. In this paper, we introduce SplatFlow, a comprehensive framework that addresses this gap by enabling direct 3DGS generation and editing. SplatFlow comprises two main components: a multi-view rectified flow (RF) model and a Gaussian Splatting Decoder (GSDecoder). The multi-view RF model operates in latent space, generating multi-view images, depths, and camera poses simultaneously, conditioned on text prompts, thus addressing challenges like diverse scene scales and complex camera trajectories in real-world settings. Then, the GSDecoder efficiently translates these latent outputs into 3DGS representations through a feed-forward 3DGS method. Leveraging training-free inversion and inpainting techniques, SplatFlow enables seamless 3DGS editing and supports a broad range of 3D tasks-including object editing, novel view synthesis, and camera pose estimation-within a unified framework without requiring additional complex pipelines. We validate SplatFlow's capabilities on the MVImgNet and DL3DV-7K datasets, demonstrating its versatility and effectiveness in various 3D generation, editing, and inpainting-based tasks.
TouchTTS: An Embarrassingly Simple TTS Framework that Everyone Can Touch
It is well known that LLM-based systems are data-hungry. Recent LLM-based TTS works typically employ complex data processing pipelines to obtain high-quality training data. These sophisticated pipelines require excellent models at each stage (e.g., speech denoising, speech enhancement, speaker diarization, and punctuation models), which themselves demand high-quality training data and are rarely open-sourced. Even with state-of-the-art models, issues persist, such as incomplete background noise removal and misalignment between punctuation and actual speech pauses. Moreover, the stringent filtering strategies often retain only 10-30\% of the original data, significantly impeding data scaling efforts. In this work, we leverage a noise-robust audio tokenizer (S3Tokenizer) to design a simplified yet effective TTS data processing pipeline that maintains data quality while substantially reducing data acquisition costs, achieving a data retention rate of over 50\%. Beyond data scaling challenges, LLM-based TTS systems also incur higher deployment costs compared to conventional approaches. Current systems typically use LLMs solely for text-to-token generation, while requiring separate models (e.g., flow matching models) for token-to-waveform generation, which cannot be directly executed by LLM inference engines, further complicating deployment. To address these challenges, we eliminate redundant modules in both LLM and flow components, replacing the flow model backbone with an LLM architecture. Building upon this simplified flow backbone, we propose a unified architecture for both streaming and non-streaming inference, significantly reducing deployment costs. Finally, we explore the feasibility of unifying TTS and ASR tasks using the same data for training, thanks to the simplified pipeline and the S3Tokenizer that reduces the quality requirements for TTS training data.
Careful with that Scalpel: Improving Gradient Surgery with an EMA
Beyond minimizing a single training loss, many deep learning estimation pipelines rely on an auxiliary objective to quantify and encourage desirable properties of the model (e.g. performance on another dataset, robustness, agreement with a prior). Although the simplest approach to incorporating an auxiliary loss is to sum it with the training loss as a regularizer, recent works have shown that one can improve performance by blending the gradients beyond a simple sum; this is known as gradient surgery. We cast the problem as a constrained minimization problem where the auxiliary objective is minimized among the set of minimizers of the training loss. To solve this bilevel problem, we follow a parameter update direction that combines the training loss gradient and the orthogonal projection of the auxiliary gradient to the training gradient. In a setting where gradients come from mini-batches, we explain how, using a moving average of the training loss gradients, we can carefully maintain this critical orthogonality property. We demonstrate that our method, Bloop, can lead to much better performances on NLP and vision experiments than other gradient surgery methods without EMA.
Cosmos World Foundation Model Platform for Physical AI
Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make our platform open-source and our models open-weight with permissive licenses available via https://github.com/NVIDIA/Cosmos.
TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models
Recent advancements in diffusion techniques have propelled image and video generation to unprece- dented levels of quality, significantly accelerating the deployment and application of generative AI. However, 3D shape generation technology has so far lagged behind, constrained by limitations in 3D data scale, complexity of 3D data process- ing, and insufficient exploration of advanced tech- niques in the 3D domain. Current approaches to 3D shape generation face substantial challenges in terms of output quality, generalization capa- bility, and alignment with input conditions. We present TripoSG, a new streamlined shape diffu- sion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images. Specifically, we propose: 1) A large-scale rectified flow transformer for 3D shape generation, achieving state-of-the-art fidelity through training on extensive, high-quality data. 2) A hybrid supervised training strategy combining SDF, normal, and eikonal losses for 3D VAE, achieving high- quality 3D reconstruction performance. 3) A data processing pipeline to generate 2 million high- quality 3D samples, highlighting the crucial rules for data quality and quantity in training 3D gen- erative models. Through comprehensive experi- ments, we have validated the effectiveness of each component in our new framework. The seamless integration of these parts has enabled TripoSG to achieve state-of-the-art performance in 3D shape generation. The resulting 3D shapes exhibit en- hanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input im- ages. Moreover, TripoSG demonstrates improved versatility in generating 3D models from diverse image styles and contents, showcasing strong gen- eralization capabilities. To foster progress and innovation in the field of 3D generation, we will make our model publicly available.
Prompting Depth Anything for 4K Resolution Accurate Metric Depth Estimation
Prompts play a critical role in unleashing the power of language and vision foundation models for specific tasks. For the first time, we introduce prompting into depth foundation models, creating a new paradigm for metric depth estimation termed Prompt Depth Anything. Specifically, we use a low-cost LiDAR as the prompt to guide the Depth Anything model for accurate metric depth output, achieving up to 4K resolution. Our approach centers on a concise prompt fusion design that integrates the LiDAR at multiple scales within the depth decoder. To address training challenges posed by limited datasets containing both LiDAR depth and precise GT depth, we propose a scalable data pipeline that includes synthetic data LiDAR simulation and real data pseudo GT depth generation. Our approach sets new state-of-the-arts on the ARKitScenes and ScanNet++ datasets and benefits downstream applications, including 3D reconstruction and generalized robotic grasping.
CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes
Recently, 3D Gaussian Splatting (3DGS) has revolutionized radiance field reconstruction, manifesting efficient and high-fidelity novel view synthesis. However, accurately representing surfaces, especially in large and complex scenarios, remains a significant challenge due to the unstructured nature of 3DGS. In this paper, we present CityGaussianV2, a novel approach for large-scale scene reconstruction that addresses critical challenges related to geometric accuracy and efficiency. Building on the favorable generalization capabilities of 2D Gaussian Splatting (2DGS), we address its convergence and scalability issues. Specifically, we implement a decomposed-gradient-based densification and depth regression technique to eliminate blurry artifacts and accelerate convergence. To scale up, we introduce an elongation filter that mitigates Gaussian count explosion caused by 2DGS degeneration. Furthermore, we optimize the CityGaussian pipeline for parallel training, achieving up to 10times compression, at least 25% savings in training time, and a 50% decrease in memory usage. We also established standard geometry benchmarks under large-scale scenes. Experimental results demonstrate that our method strikes a promising balance between visual quality, geometric accuracy, as well as storage and training costs. The project page is available at https://dekuliutesla.github.io/CityGaussianV2/.
GenSim2: Scaling Robot Data Generation with Multi-modal and Reasoning LLMs
Robotic simulation today remains challenging to scale up due to the human efforts required to create diverse simulation tasks and scenes. Simulation-trained policies also face scalability issues as many sim-to-real methods focus on a single task. To address these challenges, this work proposes GenSim2, a scalable framework that leverages coding LLMs with multi-modal and reasoning capabilities for complex and realistic simulation task creation, including long-horizon tasks with articulated objects. To automatically generate demonstration data for these tasks at scale, we propose planning and RL solvers that generalize within object categories. The pipeline can generate data for up to 100 articulated tasks with 200 objects and reduce the required human efforts. To utilize such data, we propose an effective multi-task language-conditioned policy architecture, dubbed proprioceptive point-cloud transformer (PPT), that learns from the generated demonstrations and exhibits strong sim-to-real zero-shot transfer. Combining the proposed pipeline and the policy architecture, we show a promising usage of GenSim2 that the generated data can be used for zero-shot transfer or co-train with real-world collected data, which enhances the policy performance by 20% compared with training exclusively on limited real data.
Generalizable 3D Scene Reconstruction via Divide and Conquer from a Single View
Single-view 3D reconstruction is currently approached from two dominant perspectives: reconstruction of scenes with limited diversity using 3D data supervision or reconstruction of diverse singular objects using large image priors. However, real-world scenarios are far more complex and exceed the capabilities of these methods. We therefore propose a hybrid method following a divide-and-conquer strategy. We first process the scene holistically, extracting depth and semantic information, and then leverage a single-shot object-level method for the detailed reconstruction of individual components. By following a compositional processing approach, the overall framework achieves full reconstruction of complex 3D scenes from a single image. We purposely design our pipeline to be highly modular by carefully integrating specific procedures for each processing step, without requiring an end-to-end training of the whole system. This enables the pipeline to naturally improve as future methods can replace the individual modules. We demonstrate the reconstruction performance of our approach on both synthetic and real-world scenes, comparing favorable against prior works. Project page: https://andreeadogaru.github.io/Gen3DSR.
TopoBenchmarkX: A Framework for Benchmarking Topological Deep Learning
This work introduces TopoBenchmarkX, a modular open-source library designed to standardize benchmarking and accelerate research in Topological Deep Learning (TDL). TopoBenchmarkX maps the TDL pipeline into a sequence of independent and modular components for data loading and processing, as well as model training, optimization, and evaluation. This modular organization provides flexibility for modifications and facilitates the adaptation and optimization of various TDL pipelines. A key feature of TopoBenchmarkX is that it allows for the transformation and lifting between topological domains. This enables, for example, to obtain richer data representations and more fine-grained analyses by mapping the topology and features of a graph to higher-order topological domains such as simplicial and cell complexes. The range of applicability of TopoBenchmarkX is demonstrated by benchmarking several TDL architectures for various tasks and datasets.
AutoML in Heavily Constrained Applications
Optimizing a machine learning pipeline for a task at hand requires careful configuration of various hyperparameters, typically supported by an AutoML system that optimizes the hyperparameters for the given training dataset. Yet, depending on the AutoML system's own second-order meta-configuration, the performance of the AutoML process can vary significantly. Current AutoML systems cannot automatically adapt their own configuration to a specific use case. Further, they cannot compile user-defined application constraints on the effectiveness and efficiency of the pipeline and its generation. In this paper, we propose CAML, which uses meta-learning to automatically adapt its own AutoML parameters, such as the search strategy, the validation strategy, and the search space, for a task at hand. The dynamic AutoML strategy of CAML takes user-defined constraints into account and obtains constraint-satisfying pipelines with high predictive performance.
Community Research Earth Digital Intelligence Twin (CREDIT)
Recent advancements in artificial intelligence (AI) for numerical weather prediction (NWP) have significantly transformed atmospheric modeling. AI NWP models outperform traditional physics-based systems, such as the Integrated Forecast System (IFS), across several global metrics while requiring fewer computational resources. However, existing AI NWP models face limitations related to training datasets and timestep choices, often resulting in artifacts that reduce model performance. To address these challenges, we introduce the Community Research Earth Digital Intelligence Twin (CREDIT) framework, developed at NSF NCAR. CREDIT provides a flexible, scalable, and user-friendly platform for training and deploying AI-based atmospheric models on high-performance computing systems. It offers an end-to-end pipeline for data preprocessing, model training, and evaluation, democratizing access to advanced AI NWP capabilities. We demonstrate CREDIT's potential through WXFormer, a novel deterministic vision transformer designed to predict atmospheric states autoregressively, addressing common AI NWP issues like compounding error growth with techniques such as spectral normalization, padding, and multi-step training. Additionally, to illustrate CREDIT's flexibility and state-of-the-art model comparisons, we train the FUXI architecture within this framework. Our findings show that both FUXI and WXFormer, trained on six-hourly ERA5 hybrid sigma-pressure levels, generally outperform IFS HRES in 10-day forecasts, offering potential improvements in efficiency and forecast accuracy. CREDIT's modular design enables researchers to explore various models, datasets, and training configurations, fostering innovation within the scientific community.
XMainframe: A Large Language Model for Mainframe Modernization
Mainframe operating systems, despite their inception in the 1940s, continue to support critical sectors like finance and government. However, these systems are often viewed as outdated, requiring extensive maintenance and modernization. Addressing this challenge necessitates innovative tools that can understand and interact with legacy codebases. To this end, we introduce XMainframe, a state-of-the-art large language model (LLM) specifically designed with knowledge of mainframe legacy systems and COBOL codebases. Our solution involves the creation of an extensive data collection pipeline to produce high-quality training datasets, enhancing XMainframe's performance in this specialized domain. Additionally, we present MainframeBench, a comprehensive benchmark for assessing mainframe knowledge, including multiple-choice questions, question answering, and COBOL code summarization. Our empirical evaluations demonstrate that XMainframe consistently outperforms existing state-of-the-art LLMs across these tasks. Specifically, XMainframe achieves 30% higher accuracy than DeepSeek-Coder on multiple-choice questions, doubles the BLEU score of Mixtral-Instruct 8x7B on question answering, and scores six times higher than GPT-3.5 on COBOL summarization. Our work highlights the potential of XMainframe to drive significant advancements in managing and modernizing legacy systems, thereby enhancing productivity and saving time for software developers.
ReXTime: A Benchmark Suite for Reasoning-Across-Time in Videos
We introduce ReXTime, a benchmark designed to rigorously test AI models' ability to perform temporal reasoning within video events. Specifically, ReXTime focuses on reasoning across time, i.e. human-like understanding when the question and its corresponding answer occur in different video segments. This form of reasoning, requiring advanced understanding of cause-and-effect relationships across video segments, poses significant challenges to even the frontier multimodal large language models. To facilitate this evaluation, we develop an automated pipeline for generating temporal reasoning question-answer pairs, significantly reducing the need for labor-intensive manual annotations. Our benchmark includes 921 carefully vetted validation samples and 2,143 test samples, each manually curated for accuracy and relevance. Evaluation results show that while frontier large language models outperform academic models, they still lag behind human performance by a significant 14.3% accuracy gap. Additionally, our pipeline creates a training dataset of 9,695 machine generated samples without manual effort, which empirical studies suggest can enhance the across-time reasoning via fine-tuning.
Improving Text-To-Audio Models with Synthetic Captions
It is an open challenge to obtain high quality training data, especially captions, for text-to-audio models. Although prior methods have leveraged text-only language models to augment and improve captions, such methods have limitations related to scale and coherence between audio and captions. In this work, we propose an audio captioning pipeline that uses an audio language model to synthesize accurate and diverse captions for audio at scale. We leverage this pipeline to produce a dataset of synthetic captions for AudioSet, named AF-AudioSet, and then evaluate the benefit of pre-training text-to-audio models on these synthetic captions. Through systematic evaluations on AudioCaps and MusicCaps, we find leveraging our pipeline and synthetic captions leads to significant improvements on audio generation quality, achieving a new state-of-the-art.
MolGrapher: Graph-based Visual Recognition of Chemical Structures
The automatic analysis of chemical literature has immense potential to accelerate the discovery of new materials and drugs. Much of the critical information in patent documents and scientific articles is contained in figures, depicting the molecule structures. However, automatically parsing the exact chemical structure is a formidable challenge, due to the amount of detailed information, the diversity of drawing styles, and the need for training data. In this work, we introduce MolGrapher to recognize chemical structures visually. First, a deep keypoint detector detects the atoms. Second, we treat all candidate atoms and bonds as nodes and put them in a graph. This construct allows a natural graph representation of the molecule. Last, we classify atom and bond nodes in the graph with a Graph Neural Network. To address the lack of real training data, we propose a synthetic data generation pipeline producing diverse and realistic results. In addition, we introduce a large-scale benchmark of annotated real molecule images, USPTO-30K, to spur research on this critical topic. Extensive experiments on five datasets show that our approach significantly outperforms classical and learning-based methods in most settings. Code, models, and datasets are available.
GigaSpeech: An Evolving, Multi-domain ASR Corpus with 10,000 Hours of Transcribed Audio
This paper introduces GigaSpeech, an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised and unsupervised training. Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science, sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable for speech recognition training, and to filter out segments with low-quality transcription. For system training, GigaSpeech provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h. For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage, and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand, are re-processed by professional human transcribers to ensure high transcription quality. Baseline systems are provided for popular speech recognition toolkits, namely Athena, ESPnet, Kaldi and Pika.
Taming Feed-forward Reconstruction Models as Latent Encoders for 3D Generative Models
Recent AI-based 3D content creation has largely evolved along two paths: feed-forward image-to-3D reconstruction approaches and 3D generative models trained with 2D or 3D supervision. In this work, we show that existing feed-forward reconstruction methods can serve as effective latent encoders for training 3D generative models, thereby bridging these two paradigms. By reusing powerful pre-trained reconstruction models, we avoid computationally expensive encoder network training and obtain rich 3D latent features for generative modeling for free. However, the latent spaces of reconstruction models are not well-suited for generative modeling due to their unstructured nature. To enable flow-based model training on these latent features, we develop post-processing pipelines, including protocols to standardize the features and spatial weighting to concentrate on important regions. We further incorporate a 2D image space perceptual rendering loss to handle the high-dimensional latent spaces. Finally, we propose a multi-stream transformer-based rectified flow architecture to achieve linear scaling and high-quality text-conditioned 3D generation. Our framework leverages the advancements of feed-forward reconstruction models to enhance the scalability of 3D generative modeling, achieving both high computational efficiency and state-of-the-art performance in text-to-3D generation.
Policy Gradient-Driven Noise Mask
Deep learning classifiers face significant challenges when dealing with heterogeneous multi-modal and multi-organ biomedical datasets. The low-level feature distinguishability limited to imaging-modality hinders the classifiers' ability to learn high-level semantic relationships, resulting in sub-optimal performance. To address this issue, image augmentation strategies are employed as regularization techniques. While additive noise input during network training is a well-established augmentation as regularization method, modern pipelines often favor more robust techniques such as dropout and weight decay. This preference stems from the observation that combining these established techniques with noise input can adversely affect model performance. In this study, we propose a novel pretraining pipeline that learns to generate conditional noise mask specifically tailored to improve performance on multi-modal and multi-organ datasets. As a reinforcement learning algorithm, our approach employs a dual-component system comprising a very light-weight policy network that learns to sample conditional noise using a differentiable beta distribution as well as a classifier network. The policy network is trained using the reinforce algorithm to generate image-specific noise masks that regularize the classifier during pretraining. A key aspect is that the policy network's role is limited to obtaining an intermediate (or heated) model before fine-tuning. During inference, the policy network is omitted, allowing direct comparison between the baseline and noise-regularized models. We conducted experiments and related analyses on RadImageNet datasets. Results demonstrate that fine-tuning the intermediate models consistently outperforms conventional training algorithms on both classification and generalization to unseen concept tasks.
DataInf: Efficiently Estimating Data Influence in LoRA-tuned LLMs and Diffusion Models
Quantifying the impact of training data points is crucial for understanding the outputs of machine learning models and for improving the transparency of the AI pipeline. The influence function is a principled and popular data attribution method, but its computational cost often makes it challenging to use. This issue becomes more pronounced in the setting of large language models and text-to-image models. In this work, we propose DataInf, an efficient influence approximation method that is practical for large-scale generative AI models. Leveraging an easy-to-compute closed-form expression, DataInf outperforms existing influence computation algorithms in terms of computational and memory efficiency. Our theoretical analysis shows that DataInf is particularly well-suited for parameter-efficient fine-tuning techniques such as LoRA. Through systematic empirical evaluations, we show that DataInf accurately approximates influence scores and is orders of magnitude faster than existing methods. In applications to RoBERTa-large, Llama-2-13B-chat, and stable-diffusion-v1.5 models, DataInf effectively identifies the most influential fine-tuning examples better than other approximate influence scores. Moreover, it can help to identify which data points are mislabeled.
CHiLS: Zero-Shot Image Classification with Hierarchical Label Sets
Open vocabulary models (e.g. CLIP) have shown strong performance on zero-shot classification through their ability generate embeddings for each class based on their (natural language) names. Prior work has focused on improving the accuracy of these models through prompt engineering or by incorporating a small amount of labeled downstream data (via finetuning). However, there has been little focus on improving the richness of the class names themselves, which can pose issues when class labels are coarsely-defined and are uninformative. We propose Classification with Hierarchical Label Sets (or CHiLS), an alternative strategy for zero-shot classification specifically designed for datasets with implicit semantic hierarchies. CHiLS proceeds in three steps: (i) for each class, produce a set of subclasses, using either existing label hierarchies or by querying GPT-3; (ii) perform the standard zero-shot CLIP procedure as though these subclasses were the labels of interest; (iii) map the predicted subclass back to its parent to produce the final prediction. Across numerous datasets with underlying hierarchical structure, CHiLS leads to improved accuracy in situations both with and without ground-truth hierarchical information. CHiLS is simple to implement within existing zero-shot pipelines and requires no additional training cost. Code is available at: https://github.com/acmi-lab/CHILS.
CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large Language Models in 167 Languages
The driving factors behind the development of large language models (LLMs) with impressive learning capabilities are their colossal model sizes and extensive training datasets. Along with the progress in natural language processing, LLMs have been frequently made accessible to the public to foster deeper investigation and applications. However, when it comes to training datasets for these LLMs, especially the recent state-of-the-art models, they are often not fully disclosed. Creating training data for high-performing LLMs involves extensive cleaning and deduplication to ensure the necessary level of quality. The lack of transparency for training data has thus hampered research on attributing and addressing hallucination and bias issues in LLMs, hindering replication efforts and further advancements in the community. These challenges become even more pronounced in multilingual learning scenarios, where the available multilingual text datasets are often inadequately collected and cleaned. Consequently, there is a lack of open-source and readily usable dataset to effectively train LLMs in multiple languages. To overcome this issue, we present CulturaX, a substantial multilingual dataset with 6.3 trillion tokens in 167 languages, tailored for LLM development. Our dataset undergoes meticulous cleaning and deduplication through a rigorous pipeline of multiple stages to accomplish the best quality for model training, including language identification, URL-based filtering, metric-based cleaning, document refinement, and data deduplication. CulturaX is fully released to the public in HuggingFace to facilitate research and advancements in multilingual LLMs: https://huggingface.co/datasets/uonlp/CulturaX.
VideoPainter: Any-length Video Inpainting and Editing with Plug-and-Play Context Control
Video inpainting, which aims to restore corrupted video content, has experienced substantial progress. Despite these advances, existing methods, whether propagating unmasked region pixels through optical flow and receptive field priors, or extending image-inpainting models temporally, face challenges in generating fully masked objects or balancing the competing objectives of background context preservation and foreground generation in one model, respectively. To address these limitations, we propose a novel dual-stream paradigm VideoPainter that incorporates an efficient context encoder (comprising only 6% of the backbone parameters) to process masked videos and inject backbone-aware background contextual cues to any pre-trained video DiT, producing semantically consistent content in a plug-and-play manner. This architectural separation significantly reduces the model's learning complexity while enabling nuanced integration of crucial background context. We also introduce a novel target region ID resampling technique that enables any-length video inpainting, greatly enhancing our practical applicability. Additionally, we establish a scalable dataset pipeline leveraging current vision understanding models, contributing VPData and VPBench to facilitate segmentation-based inpainting training and assessment, the largest video inpainting dataset and benchmark to date with over 390K diverse clips. Using inpainting as a pipeline basis, we also explore downstream applications including video editing and video editing pair data generation, demonstrating competitive performance and significant practical potential. Extensive experiments demonstrate VideoPainter's superior performance in both any-length video inpainting and editing, across eight key metrics, including video quality, mask region preservation, and textual coherence.
Anim-Director: A Large Multimodal Model Powered Agent for Controllable Animation Video Generation
Traditional animation generation methods depend on training generative models with human-labelled data, entailing a sophisticated multi-stage pipeline that demands substantial human effort and incurs high training costs. Due to limited prompting plans, these methods typically produce brief, information-poor, and context-incoherent animations. To overcome these limitations and automate the animation process, we pioneer the introduction of large multimodal models (LMMs) as the core processor to build an autonomous animation-making agent, named Anim-Director. This agent mainly harnesses the advanced understanding and reasoning capabilities of LMMs and generative AI tools to create animated videos from concise narratives or simple instructions. Specifically, it operates in three main stages: Firstly, the Anim-Director generates a coherent storyline from user inputs, followed by a detailed director's script that encompasses settings of character profiles and interior/exterior descriptions, and context-coherent scene descriptions that include appearing characters, interiors or exteriors, and scene events. Secondly, we employ LMMs with the image generation tool to produce visual images of settings and scenes. These images are designed to maintain visual consistency across different scenes using a visual-language prompting method that combines scene descriptions and images of the appearing character and setting. Thirdly, scene images serve as the foundation for producing animated videos, with LMMs generating prompts to guide this process. The whole process is notably autonomous without manual intervention, as the LMMs interact seamlessly with generative tools to generate prompts, evaluate visual quality, and select the best one to optimize the final output.
Nexus-O: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision
Human beings perceive the real world through a spectrum of sensory modalities, encompassing auditory, visual, and linguistic faculties. The journey towards achieving Artificial General Intelligence (AGI) necessitates the development of models that can emulate these multifaceted perceptual capabilities and comprehensively understand these diversified data. To this end, we introduce Nexus-O, an industry-level omni-perceptive and -interactive model capable of efficiently processing Audio, Image, Video, and Text data in any combination and output audio/text in an end-to-end way. We systematically investigate Nexus-O by addressing three key research questions: First, how can models be efficiently designed and trained to achieve tri-modal alignment, understanding and reasoning capabilities across multiple modalities? Second, what approaches can be implemented to evaluate tri-modal model robustness, ensuring reliable performance and applicability in real-world scenarios? Third, what strategies can be employed to curate and obtain high-quality, real-life scenario speech datasets? For the first question, we design and pre-train Nexus-O based on the vision-language model, rather than the language model. By pre-training the model over high-quality synthetic audio data, our model is capable of tri-modal perception and interaction. For the second question, we introduce a new audio testbed, Nexus-O-audio, comprising diverse Automatic Speech Recognition (ASR) samples, spanning various real-world scenarios, such as corporate meetings and live stream. For the third question, we design the speech data synthesis pipeline to obtain high-quality speech training datasets, covering various real-world scenarios. Comprehensive experimentation and an in-depth analysis of tri-modal alignment over latent space demonstrate the advantages of our model on downstream tasks.
Instruction-based Image Manipulation by Watching How Things Move
This paper introduces a novel dataset construction pipeline that samples pairs of frames from videos and uses multimodal large language models (MLLMs) to generate editing instructions for training instruction-based image manipulation models. Video frames inherently preserve the identity of subjects and scenes, ensuring consistent content preservation during editing. Additionally, video data captures diverse, natural dynamics-such as non-rigid subject motion and complex camera movements-that are difficult to model otherwise, making it an ideal source for scalable dataset construction. Using this approach, we create a new dataset to train InstructMove, a model capable of instruction-based complex manipulations that are difficult to achieve with synthetically generated datasets. Our model demonstrates state-of-the-art performance in tasks such as adjusting subject poses, rearranging elements, and altering camera perspectives.
SAGE-RT: Synthetic Alignment data Generation for Safety Evaluation and Red Teaming
We introduce Synthetic Alignment data Generation for Safety Evaluation and Red Teaming (SAGE-RT or SAGE) a novel pipeline for generating synthetic alignment and red-teaming data. Existing methods fall short in creating nuanced and diverse datasets, providing necessary control over the data generation and validation processes, or require large amount of manually generated seed data. SAGE addresses these limitations by using a detailed taxonomy to produce safety-alignment and red-teaming data across a wide range of topics. We generated 51,000 diverse and in-depth prompt-response pairs, encompassing over 1,500 topics of harmfulness and covering variations of the most frequent types of jailbreaking prompts faced by large language models (LLMs). We show that the red-teaming data generated through SAGE jailbreaks state-of-the-art LLMs in more than 27 out of 32 sub-categories, and in more than 58 out of 279 leaf-categories (sub-sub categories). The attack success rate for GPT-4o, GPT-3.5-turbo is 100% over the sub-categories of harmfulness. Our approach avoids the pitfalls of synthetic safety-training data generation such as mode collapse and lack of nuance in the generation pipeline by ensuring a detailed coverage of harmful topics using iterative expansion of the topics and conditioning the outputs on the generated raw-text. This method can be used to generate red-teaming and alignment data for LLM Safety completely synthetically to make LLMs safer or for red-teaming the models over a diverse range of topics.
STAG4D: Spatial-Temporal Anchored Generative 4D Gaussians
Recent progress in pre-trained diffusion models and 3D generation have spurred interest in 4D content creation. However, achieving high-fidelity 4D generation with spatial-temporal consistency remains a challenge. In this work, we propose STAG4D, a novel framework that combines pre-trained diffusion models with dynamic 3D Gaussian splatting for high-fidelity 4D generation. Drawing inspiration from 3D generation techniques, we utilize a multi-view diffusion model to initialize multi-view images anchoring on the input video frames, where the video can be either real-world captured or generated by a video diffusion model. To ensure the temporal consistency of the multi-view sequence initialization, we introduce a simple yet effective fusion strategy to leverage the first frame as a temporal anchor in the self-attention computation. With the almost consistent multi-view sequences, we then apply the score distillation sampling to optimize the 4D Gaussian point cloud. The 4D Gaussian spatting is specially crafted for the generation task, where an adaptive densification strategy is proposed to mitigate the unstable Gaussian gradient for robust optimization. Notably, the proposed pipeline does not require any pre-training or fine-tuning of diffusion networks, offering a more accessible and practical solution for the 4D generation task. Extensive experiments demonstrate that our method outperforms prior 4D generation works in rendering quality, spatial-temporal consistency, and generation robustness, setting a new state-of-the-art for 4D generation from diverse inputs, including text, image, and video.
Zero-shot Composed Text-Image Retrieval
In this paper, we consider the problem of composed image retrieval (CIR), it aims to train a model that can fuse multi-modal information, e.g., text and images, to accurately retrieve images that match the query, extending the user's expression ability. We make the following contributions: (i) we initiate a scalable pipeline to automatically construct datasets for training CIR model, by simply exploiting a large-scale dataset of image-text pairs, e.g., a subset of LAION-5B; (ii) we introduce a transformer-based adaptive aggregation model, TransAgg, which employs a simple yet efficient fusion mechanism, to adaptively combine information from diverse modalities; (iii) we conduct extensive ablation studies to investigate the usefulness of our proposed data construction procedure, and the effectiveness of core components in TransAgg; (iv) when evaluating on the publicly available benckmarks under the zero-shot scenario, i.e., training on the automatically constructed datasets, then directly conduct inference on target downstream datasets, e.g., CIRR and FashionIQ, our proposed approach either performs on par with or significantly outperforms the existing state-of-the-art (SOTA) models. Project page: https://code-kunkun.github.io/ZS-CIR/
You Actually Look Twice At it (YALTAi): using an object detection approach instead of region segmentation within the Kraken engine
Layout Analysis (the identification of zones and their classification) is the first step along line segmentation in Optical Character Recognition and similar tasks. The ability of identifying main body of text from marginal text or running titles makes the difference between extracting the work full text of a digitized book and noisy outputs. We show that most segmenters focus on pixel classification and that polygonization of this output has not been used as a target for the latest competition on historical document (ICDAR 2017 and onwards), despite being the focus in the early 2010s. We propose to shift, for efficiency, the task from a pixel classification-based polygonization to an object detection using isothetic rectangles. We compare the output of Kraken and YOLOv5 in terms of segmentation and show that the later severely outperforms the first on small datasets (1110 samples and below). We release two datasets for training and evaluation on historical documents as well as a new package, YALTAi, which injects YOLOv5 in the segmentation pipeline of Kraken 4.1.
Rethinking the Value of Network Pruning
Network pruning is widely used for reducing the heavy inference cost of deep models in low-resource settings. A typical pruning algorithm is a three-stage pipeline, i.e., training (a large model), pruning and fine-tuning. During pruning, according to a certain criterion, redundant weights are pruned and important weights are kept to best preserve the accuracy. In this work, we make several surprising observations which contradict common beliefs. For all state-of-the-art structured pruning algorithms we examined, fine-tuning a pruned model only gives comparable or worse performance than training that model with randomly initialized weights. For pruning algorithms which assume a predefined target network architecture, one can get rid of the full pipeline and directly train the target network from scratch. Our observations are consistent for multiple network architectures, datasets, and tasks, which imply that: 1) training a large, over-parameterized model is often not necessary to obtain an efficient final model, 2) learned "important" weights of the large model are typically not useful for the small pruned model, 3) the pruned architecture itself, rather than a set of inherited "important" weights, is more crucial to the efficiency in the final model, which suggests that in some cases pruning can be useful as an architecture search paradigm. Our results suggest the need for more careful baseline evaluations in future research on structured pruning methods. We also compare with the "Lottery Ticket Hypothesis" (Frankle & Carbin 2019), and find that with optimal learning rate, the "winning ticket" initialization as used in Frankle & Carbin (2019) does not bring improvement over random initialization.
High-Fidelity Virtual Try-on with Large-Scale Unpaired Learning
Virtual try-on (VTON) transfers a target clothing image to a reference person, where clothing fidelity is a key requirement for downstream e-commerce applications. However, existing VTON methods still fall short in high-fidelity try-on due to the conflict between the high diversity of dressing styles (\eg clothes occluded by pants or distorted by posture) and the limited paired data for training. In this work, we propose a novel framework Boosted Virtual Try-on (BVTON) to leverage the large-scale unpaired learning for high-fidelity try-on. Our key insight is that pseudo try-on pairs can be reliably constructed from vastly available fashion images. Specifically, 1) we first propose a compositional canonicalizing flow that maps on-model clothes into pseudo in-shop clothes, dubbed canonical proxy. Each clothing part (sleeves, torso) is reversely deformed into an in-shop-like shape to compositionally construct the canonical proxy. 2) Next, we design a layered mask generation module that generates accurate semantic layout by training on canonical proxy. We replace the in-shop clothes used in conventional pipelines with the derived canonical proxy to boost the training process. 3) Finally, we propose an unpaired try-on synthesizer by constructing pseudo training pairs with randomly misaligned on-model clothes, where intricate skin texture and clothes boundaries can be generated. Extensive experiments on high-resolution (1024times768) datasets demonstrate the superiority of our approach over state-of-the-art methods both qualitatively and quantitatively. Notably, BVTON shows great generalizability and scalability to various dressing styles and data sources.
DQS3D: Densely-matched Quantization-aware Semi-supervised 3D Detection
In this paper, we study the problem of semi-supervised 3D object detection, which is of great importance considering the high annotation cost for cluttered 3D indoor scenes. We resort to the robust and principled framework of selfteaching, which has triggered notable progress for semisupervised learning recently. While this paradigm is natural for image-level or pixel-level prediction, adapting it to the detection problem is challenged by the issue of proposal matching. Prior methods are based upon two-stage pipelines, matching heuristically selected proposals generated in the first stage and resulting in spatially sparse training signals. In contrast, we propose the first semisupervised 3D detection algorithm that works in the singlestage manner and allows spatially dense training signals. A fundamental issue of this new design is the quantization error caused by point-to-voxel discretization, which inevitably leads to misalignment between two transformed views in the voxel domain. To this end, we derive and implement closed-form rules that compensate this misalignment onthe-fly. Our results are significant, e.g., promoting ScanNet mAP@0.5 from 35.2% to 48.5% using 20% annotation. Codes and data will be publicly available.
PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding
Recent advances in text-to-image generation have made remarkable progress in synthesizing realistic human photos conditioned on given text prompts. However, existing personalized generation methods cannot simultaneously satisfy the requirements of high efficiency, promising identity (ID) fidelity, and flexible text controllability. In this work, we introduce PhotoMaker, an efficient personalized text-to-image generation method, which mainly encodes an arbitrary number of input ID images into a stack ID embedding for preserving ID information. Such an embedding, serving as a unified ID representation, can not only encapsulate the characteristics of the same input ID comprehensively, but also accommodate the characteristics of different IDs for subsequent integration. This paves the way for more intriguing and practically valuable applications. Besides, to drive the training of our PhotoMaker, we propose an ID-oriented data construction pipeline to assemble the training data. Under the nourishment of the dataset constructed through the proposed pipeline, our PhotoMaker demonstrates better ID preservation ability than test-time fine-tuning based methods, yet provides significant speed improvements, high-quality generation results, strong generalization capabilities, and a wide range of applications. Our project page is available at https://photo-maker.github.io/
OminiControl: Minimal and Universal Control for Diffusion Transformer
In this paper, we introduce OminiControl, a highly versatile and parameter-efficient framework that integrates image conditions into pre-trained Diffusion Transformer (DiT) models. At its core, OminiControl leverages a parameter reuse mechanism, enabling the DiT to encode image conditions using itself as a powerful backbone and process them with its flexible multi-modal attention processors. Unlike existing methods, which rely heavily on additional encoder modules with complex architectures, OminiControl (1) effectively and efficiently incorporates injected image conditions with only ~0.1% additional parameters, and (2) addresses a wide range of image conditioning tasks in a unified manner, including subject-driven generation and spatially-aligned conditions such as edges, depth, and more. Remarkably, these capabilities are achieved by training on images generated by the DiT itself, which is particularly beneficial for subject-driven generation. Extensive evaluations demonstrate that OminiControl outperforms existing UNet-based and DiT-adapted models in both subject-driven and spatially-aligned conditional generation. Additionally, we release our training dataset, Subjects200K, a diverse collection of over 200,000 identity-consistent images, along with an efficient data synthesis pipeline to advance research in subject-consistent generation.
You See it, You Got it: Learning 3D Creation on Pose-Free Videos at Scale
Recent 3D generation models typically rely on limited-scale 3D `gold-labels' or 2D diffusion priors for 3D content creation. However, their performance is upper-bounded by constrained 3D priors due to the lack of scalable learning paradigms. In this work, we present See3D, a visual-conditional multi-view diffusion model trained on large-scale Internet videos for open-world 3D creation. The model aims to Get 3D knowledge by solely Seeing the visual contents from the vast and rapidly growing video data -- You See it, You Got it. To achieve this, we first scale up the training data using a proposed data curation pipeline that automatically filters out multi-view inconsistencies and insufficient observations from source videos. This results in a high-quality, richly diverse, large-scale dataset of multi-view images, termed WebVi3D, containing 320M frames from 16M video clips. Nevertheless, learning generic 3D priors from videos without explicit 3D geometry or camera pose annotations is nontrivial, and annotating poses for web-scale videos is prohibitively expensive. To eliminate the need for pose conditions, we introduce an innovative visual-condition - a purely 2D-inductive visual signal generated by adding time-dependent noise to the masked video data. Finally, we introduce a novel visual-conditional 3D generation framework by integrating See3D into a warping-based pipeline for high-fidelity 3D generation. Our numerical and visual comparisons on single and sparse reconstruction benchmarks show that See3D, trained on cost-effective and scalable video data, achieves notable zero-shot and open-world generation capabilities, markedly outperforming models trained on costly and constrained 3D datasets. Please refer to our project page at: https://vision.baai.ac.cn/see3d
Gen2Det: Generate to Detect
Recently diffusion models have shown improvement in synthetic image quality as well as better control in generation. We motivate and present Gen2Det, a simple modular pipeline to create synthetic training data for object detection for free by leveraging state-of-the-art grounded image generation methods. Unlike existing works which generate individual object instances, require identifying foreground followed by pasting on other images, we simplify to directly generating scene-centric images. In addition to the synthetic data, Gen2Det also proposes a suite of techniques to best utilize the generated data, including image-level filtering, instance-level filtering, and better training recipe to account for imperfections in the generation. Using Gen2Det, we show healthy improvements on object detection and segmentation tasks under various settings and agnostic to detection methods. In the long-tailed detection setting on LVIS, Gen2Det improves the performance on rare categories by a large margin while also significantly improving the performance on other categories, e.g. we see an improvement of 2.13 Box AP and 1.84 Mask AP over just training on real data on LVIS with Mask R-CNN. In the low-data regime setting on COCO, Gen2Det consistently improves both Box and Mask AP by 2.27 and 1.85 points. In the most general detection setting, Gen2Det still demonstrates robust performance gains, e.g. it improves the Box and Mask AP on COCO by 0.45 and 0.32 points.
InstructAvatar: Text-Guided Emotion and Motion Control for Avatar Generation
Recent talking avatar generation models have made strides in achieving realistic and accurate lip synchronization with the audio, but often fall short in controlling and conveying detailed expressions and emotions of the avatar, making the generated video less vivid and controllable. In this paper, we propose a novel text-guided approach for generating emotionally expressive 2D avatars, offering fine-grained control, improved interactivity, and generalizability to the resulting video. Our framework, named InstructAvatar, leverages a natural language interface to control the emotion as well as the facial motion of avatars. Technically, we design an automatic annotation pipeline to construct an instruction-video paired training dataset, equipped with a novel two-branch diffusion-based generator to predict avatars with audio and text instructions at the same time. Experimental results demonstrate that InstructAvatar produces results that align well with both conditions, and outperforms existing methods in fine-grained emotion control, lip-sync quality, and naturalness. Our project page is https://wangyuchi369.github.io/InstructAvatar/.
PanSplat: 4K Panorama Synthesis with Feed-Forward Gaussian Splatting
With the advent of portable 360{\deg} cameras, panorama has gained significant attention in applications like virtual reality (VR), virtual tours, robotics, and autonomous driving. As a result, wide-baseline panorama view synthesis has emerged as a vital task, where high resolution, fast inference, and memory efficiency are essential. Nevertheless, existing methods are typically constrained to lower resolutions (512 times 1024) due to demanding memory and computational requirements. In this paper, we present PanSplat, a generalizable, feed-forward approach that efficiently supports resolution up to 4K (2048 times 4096). Our approach features a tailored spherical 3D Gaussian pyramid with a Fibonacci lattice arrangement, enhancing image quality while reducing information redundancy. To accommodate the demands of high resolution, we propose a pipeline that integrates a hierarchical spherical cost volume and Gaussian heads with local operations, enabling two-step deferred backpropagation for memory-efficient training on a single A100 GPU. Experiments demonstrate that PanSplat achieves state-of-the-art results with superior efficiency and image quality across both synthetic and real-world datasets. Code will be available at https://github.com/chengzhag/PanSplat.
OV-DINO: Unified Open-Vocabulary Detection with Language-Aware Selective Fusion
Open-vocabulary detection is a challenging task due to the requirement of detecting objects based on class names, including those not encountered during training. Existing methods have shown strong zero-shot detection capabilities through pre-training on diverse large-scale datasets. However, these approaches still face two primary challenges: (i) how to universally integrate diverse data sources for end-to-end training, and (ii) how to effectively leverage the language-aware capability for region-level cross-modality understanding. To address these challenges, we propose a novel unified open-vocabulary detection method called OV-DINO, which pre-trains on diverse large-scale datasets with language-aware selective fusion in a unified framework. Specifically, we introduce a Unified Data Integration (UniDI) pipeline to enable end-to-end training and eliminate noise from pseudo-label generation by unifying different data sources into detection-centric data. In addition, we propose a Language-Aware Selective Fusion (LASF) module to enable the language-aware ability of the model through a language-aware query selection and fusion process. We evaluate the performance of the proposed OV-DINO on popular open-vocabulary detection benchmark datasets, achieving state-of-the-art results with an AP of 50.6\% on the COCO dataset and 40.0\% on the LVIS dataset in a zero-shot manner, demonstrating its strong generalization ability. Furthermore, the fine-tuned OV-DINO on COCO achieves 58.4\% AP, outperforming many existing methods with the same backbone. The code for OV-DINO will be available at https://github.com/wanghao9610/OV-DINO{https://github.com/wanghao9610/OV-DINO}.
ICON: Incremental CONfidence for Joint Pose and Radiance Field Optimization
Neural Radiance Fields (NeRF) exhibit remarkable performance for Novel View Synthesis (NVS) given a set of 2D images. However, NeRF training requires accurate camera pose for each input view, typically obtained by Structure-from-Motion (SfM) pipelines. Recent works have attempted to relax this constraint, but they still often rely on decent initial poses which they can refine. Here we aim at removing the requirement for pose initialization. We present Incremental CONfidence (ICON), an optimization procedure for training NeRFs from 2D video frames. ICON only assumes smooth camera motion to estimate initial guess for poses. Further, ICON introduces ``confidence": an adaptive measure of model quality used to dynamically reweight gradients. ICON relies on high-confidence poses to learn NeRF, and high-confidence 3D structure (as encoded by NeRF) to learn poses. We show that ICON, without prior pose initialization, achieves superior performance in both CO3D and HO3D versus methods which use SfM pose.
Instruction-guided Multi-Granularity Segmentation and Captioning with Large Multimodal Model
Large Multimodal Models (LMMs) have achieved significant progress by extending large language models. Building on this progress, the latest developments in LMMs demonstrate the ability to generate dense pixel-wise segmentation through the integration of segmentation models.Despite the innovations, the textual responses and segmentation masks of existing works remain at the instance level, showing limited ability to perform fine-grained understanding and segmentation even provided with detailed textual cues.To overcome this limitation, we introduce a Multi-Granularity Large Multimodal Model (MGLMM), which is capable of seamlessly adjusting the granularity of Segmentation and Captioning (SegCap) following user instructions, from panoptic SegCap to fine-grained SegCap. We name such a new task Multi-Granularity Segmentation and Captioning (MGSC). Observing the lack of a benchmark for model training and evaluation over the MGSC task, we establish a benchmark with aligned masks and captions in multi-granularity using our customized automated annotation pipeline. This benchmark comprises 10K images and more than 30K image-question pairs. We will release our dataset along with the implementation of our automated dataset annotation pipeline for further research.Besides, we propose a novel unified SegCap data format to unify heterogeneous segmentation datasets; it effectively facilitates learning to associate object concepts with visual features during multi-task training. Extensive experiments demonstrate that our MGLMM excels at tackling more than eight downstream tasks and achieves state-of-the-art performance in MGSC, GCG, image captioning, referring segmentation, multiple and empty segmentation, and reasoning segmentation tasks. The great performance and versatility of MGLMM underscore its potential impact on advancing multimodal research.
On the Robustness of Arabic Speech Dialect Identification
Arabic dialect identification (ADI) tools are an important part of the large-scale data collection pipelines necessary for training speech recognition models. As these pipelines require application of ADI tools to potentially out-of-domain data, we aim to investigate how vulnerable the tools may be to this domain shift. With self-supervised learning (SSL) models as a starting point, we evaluate transfer learning and direct classification from SSL features. We undertake our evaluation under rich conditions, with a goal to develop ADI systems from pretrained models and ultimately evaluate performance on newly collected data. In order to understand what factors contribute to model decisions, we carry out a careful human study of a subset of our data. Our analysis confirms that domain shift is a major challenge for ADI models. We also find that while self-training does alleviate this challenges, it may be insufficient for realistic conditions.
Demo of the Linguistic Field Data Management and Analysis System -- LiFE
In the proposed demo, we will present a new software - Linguistic Field Data Management and Analysis System - LiFE (https://github.com/kmi-linguistics/life) - an open-source, web-based linguistic data management and analysis application that allows for systematic storage, management, sharing and usage of linguistic data collected from the field. The application allows users to store lexical items, sentences, paragraphs, audio-visual content with rich glossing / annotation; generate interactive and print dictionaries; and also train and use natural language processing tools and models for various purposes using this data. Since its a web-based application, it also allows for seamless collaboration among multiple persons and sharing the data, models, etc with each other. The system uses the Python-based Flask framework and MongoDB in the backend and HTML, CSS and Javascript at the frontend. The interface allows creation of multiple projects that could be shared with the other users. At the backend, the application stores the data in RDF format so as to allow its release as Linked Data over the web using semantic web technologies - as of now it makes use of the OntoLex-Lemon for storing the lexical data and Ligt for storing the interlinear glossed text and then internally linking it to the other linked lexicons and databases such as DBpedia and WordNet. Furthermore it provides support for training the NLP systems using scikit-learn and HuggingFace Transformers libraries as well as make use of any model trained using these libraries - while the user interface itself provides limited options for tuning the system, an externally-trained model could be easily incorporated within the application; similarly the dataset itself could be easily exported into a standard machine-readable format like JSON or CSV that could be consumed by other programs and pipelines.
Soft-NMS -- Improving Object Detection With One Line of Code
Non-maximum suppression is an integral part of the object detection pipeline. First, it sorts all detection boxes on the basis of their scores. The detection box M with the maximum score is selected and all other detection boxes with a significant overlap (using a pre-defined threshold) with M are suppressed. This process is recursively applied on the remaining boxes. As per the design of the algorithm, if an object lies within the predefined overlap threshold, it leads to a miss. To this end, we propose Soft-NMS, an algorithm which decays the detection scores of all other objects as a continuous function of their overlap with M. Hence, no object is eliminated in this process. Soft-NMS obtains consistent improvements for the coco-style mAP metric on standard datasets like PASCAL VOC 2007 (1.7% for both R-FCN and Faster-RCNN) and MS-COCO (1.3% for R-FCN and 1.1% for Faster-RCNN) by just changing the NMS algorithm without any additional hyper-parameters. Using Deformable-RFCN, Soft-NMS improves state-of-the-art in object detection from 39.8% to 40.9% with a single model. Further, the computational complexity of Soft-NMS is the same as traditional NMS and hence it can be efficiently implemented. Since Soft-NMS does not require any extra training and is simple to implement, it can be easily integrated into any object detection pipeline. Code for Soft-NMS is publicly available on GitHub (http://bit.ly/2nJLNMu).
Open-Sora Plan: Open-Source Large Video Generation Model
We introduce Open-Sora Plan, an open-source project that aims to contribute a large generation model for generating desired high-resolution videos with long durations based on various user inputs. Our project comprises multiple components for the entire video generation process, including a Wavelet-Flow Variational Autoencoder, a Joint Image-Video Skiparse Denoiser, and various condition controllers. Moreover, many assistant strategies for efficient training and inference are designed, and a multi-dimensional data curation pipeline is proposed for obtaining desired high-quality data. Benefiting from efficient thoughts, our Open-Sora Plan achieves impressive video generation results in both qualitative and quantitative evaluations. We hope our careful design and practical experience can inspire the video generation research community. All our codes and model weights are publicly available at https://github.com/PKU-YuanGroup/Open-Sora-Plan.
InstanceCap: Improving Text-to-Video Generation via Instance-aware Structured Caption
Text-to-video generation has evolved rapidly in recent years, delivering remarkable results. Training typically relies on video-caption paired data, which plays a crucial role in enhancing generation performance. However, current video captions often suffer from insufficient details, hallucinations and imprecise motion depiction, affecting the fidelity and consistency of generated videos. In this work, we propose a novel instance-aware structured caption framework, termed InstanceCap, to achieve instance-level and fine-grained video caption for the first time. Based on this scheme, we design an auxiliary models cluster to convert original video into instances to enhance instance fidelity. Video instances are further used to refine dense prompts into structured phrases, achieving concise yet precise descriptions. Furthermore, a 22K InstanceVid dataset is curated for training, and an enhancement pipeline that tailored to InstanceCap structure is proposed for inference. Experimental results demonstrate that our proposed InstanceCap significantly outperform previous models, ensuring high fidelity between captions and videos while reducing hallucinations.
RedStone: Curating General, Code, Math, and QA Data for Large Language Models
Pre-training Large Language Models (LLMs) on high-quality, meticulously curated datasets is widely recognized as critical for enhancing their performance and generalization capabilities. This study explores the untapped potential of Common Crawl as a comprehensive and flexible resource for pre-training LLMs, addressing both general-purpose language understanding and specialized domain knowledge. We introduce RedStone, an innovative and scalable pipeline engineered to extract and process data from Common Crawl, facilitating the creation of extensive and varied pre-training datasets. Unlike traditional datasets, which often require expensive curation and domain-specific expertise, RedStone leverages the breadth of Common Crawl to deliver datasets tailored to a wide array of domains. In this work, we exemplify its capability by constructing pre-training datasets across multiple fields, including general language understanding, code, mathematics, and question-answering tasks. The flexibility of RedStone allows for easy adaptation to other specialized domains, significantly lowering the barrier to creating valuable domain-specific datasets. Our findings demonstrate that Common Crawl, when harnessed through effective pipelines like RedStone, can serve as a rich, renewable source of pre-training data, unlocking new avenues for domain adaptation and knowledge discovery in LLMs. This work also underscores the importance of innovative data acquisition strategies and highlights the role of web-scale data as a powerful resource in the continued evolution of LLMs. RedStone code and data samples will be publicly available at https://aka.ms/redstone.
Large Language Models for Expansion of Spoken Language Understanding Systems to New Languages
Spoken Language Understanding (SLU) models are a core component of voice assistants (VA), such as Alexa, Bixby, and Google Assistant. In this paper, we introduce a pipeline designed to extend SLU systems to new languages, utilizing Large Language Models (LLMs) that we fine-tune for machine translation of slot-annotated SLU training data. Our approach improved on the MultiATIS++ benchmark, a primary multi-language SLU dataset, in the cloud scenario using an mBERT model. Specifically, we saw an improvement in the Overall Accuracy metric: from 53% to 62.18%, compared to the existing state-of-the-art method, Fine and Coarse-grained Multi-Task Learning Framework (FC-MTLF). In the on-device scenario (tiny and not pretrained SLU), our method improved the Overall Accuracy from 5.31% to 22.06% over the baseline Global-Local Contrastive Learning Framework (GL-CLeF) method. Contrary to both FC-MTLF and GL-CLeF, our LLM-based machine translation does not require changes in the production architecture of SLU. Additionally, our pipeline is slot-type independent: it does not require any slot definitions or examples.
ReaderLM-v2: Small Language Model for HTML to Markdown and JSON
We present ReaderLM-v2, a compact 1.5 billion parameter language model designed for efficient web content extraction. Our model processes documents up to 512K tokens, transforming messy HTML into clean Markdown or JSON formats with high accuracy -- making it an ideal tool for grounding large language models. The model's effectiveness results from two key innovations: (1) a three-stage data synthesis pipeline that generates high quality, diverse training data by iteratively drafting, refining, and critiquing web content extraction; and (2) a unified training framework combining continuous pre-training with multi-objective optimization. Intensive evaluation demonstrates that ReaderLM-v2 outperforms GPT-4o-2024-08-06 and other larger models by 15-20\% on carefully curated benchmarks, particularly excelling at documents exceeding 100K tokens, while maintaining significantly lower computational requirements.
Advancing Fine-Grained Visual Understanding with Multi-Scale Alignment in Multi-Modal Models
Multi-modal large language models (MLLMs) have achieved remarkable success in fine-grained visual understanding across a range of tasks. However, they often encounter significant challenges due to inadequate alignment for fine-grained knowledge, which restricts their ability to accurately capture local details and attain a comprehensive global perception. While recent advancements have focused on aligning object expressions with grounding information, they typically lack explicit integration of object images, which contain affluent information beyond mere texts or coordinates. To bridge this gap, we introduce a novel fine-grained visual knowledge alignment method that effectively aligns and integrates multi-scale knowledge of objects, including texts, coordinates, and images. This innovative method is underpinned by our multi-scale fine-grained enhancement data synthesis pipeline, which provides over 300K essential training data to enhance alignment and improve overall performance. Furthermore, we present TinyGroundingGPT, a series of compact models optimized for high-level alignments. With a scale of approximately 3B parameters, TinyGroundingGPT achieves outstanding results in grounding tasks while delivering performance comparable to larger MLLMs in complex visual scenarios.
DiffLoRA: Generating Personalized Low-Rank Adaptation Weights with Diffusion
Personalized text-to-image generation has gained significant attention for its capability to generate high-fidelity portraits of specific identities conditioned on user-defined prompts. Existing methods typically involve test-time fine-tuning or instead incorporating an additional pre-trained branch. However, these approaches struggle to simultaneously address the demands of efficiency, identity fidelity, and preserving the model's original generative capabilities. In this paper, we propose DiffLoRA, a novel approach that leverages diffusion models as a hypernetwork to predict personalized low-rank adaptation (LoRA) weights based on the reference images. By integrating these LoRA weights into the text-to-image model, DiffLoRA achieves personalization during inference without further training. Additionally, we propose an identity-oriented LoRA weight construction pipeline to facilitate the training of DiffLoRA. By utilizing the dataset produced by this pipeline, our DiffLoRA consistently generates high-performance and accurate LoRA weights. Extensive evaluations demonstrate the effectiveness of our method, achieving both time efficiency and maintaining identity fidelity throughout the personalization process.
Spectral-Refiner: Fine-Tuning of Accurate Spatiotemporal Neural Operator for Turbulent Flows
Recent advancements in operator-type neural networks have shown promising results in approximating the solutions of spatiotemporal Partial Differential Equations (PDEs). However, these neural networks often entail considerable training expenses, and may not always achieve the desired accuracy required in many scientific and engineering disciplines. In this paper, we propose a new Spatiotemporal Fourier Neural Operator (SFNO) that learns maps between Bochner spaces, and a new learning framework to address these issues. This new paradigm leverages wisdom from traditional numerical PDE theory and techniques to refine the pipeline of commonly adopted end-to-end neural operator training and evaluations. Specifically, in the learning problems for the turbulent flow modeling by the Navier-Stokes Equations (NSE), the proposed architecture initiates the training with a few epochs for SFNO, concluding with the freezing of most model parameters. Then, the last linear spectral convolution layer is fine-tuned without the frequency truncation. The optimization uses a negative Sobolev norm for the first time as the loss in operator learning, defined through a reliable functional-type a posteriori error estimator whose evaluation is almost exact thanks to the Parseval identity. This design allows the neural operators to effectively tackle low-frequency errors while the relief of the de-aliasing filter addresses high-frequency errors. Numerical experiments on commonly used benchmarks for the 2D NSE demonstrate significant improvements in both computational efficiency and accuracy, compared to end-to-end evaluation and traditional numerical PDE solvers.
Comparative Study of Large Language Model Architectures on Frontier
Large language models (LLMs) have garnered significant attention in both the AI community and beyond. Among these, the Generative Pre-trained Transformer (GPT) has emerged as the dominant architecture, spawning numerous variants. However, these variants have undergone pre-training under diverse conditions, including variations in input data, data preprocessing, and training methodologies, resulting in a lack of controlled comparative studies. Here we meticulously examine two prominent open-sourced GPT architectures, GPT-NeoX and LLaMA, leveraging the computational power of Frontier, the world's first Exascale supercomputer. Employing the same materials science text corpus and a comprehensive end-to-end pipeline, we conduct a comparative analysis of their training and downstream performance. Our efforts culminate in achieving state-of-the-art performance on a challenging materials science benchmark. Furthermore, we investigate the computation and energy efficiency, and propose a computationally efficient method for architecture design. To our knowledge, these pre-trained models represent the largest available for materials science. Our findings provide practical guidance for building LLMs on HPC platforms.
KS-APR: Keyframe Selection for Robust Absolute Pose Regression
Markerless Mobile Augmented Reality (AR) aims to anchor digital content in the physical world without using specific 2D or 3D objects. Absolute Pose Regressors (APR) are end-to-end machine learning solutions that infer the device's pose from a single monocular image. Thanks to their low computation cost, they can be directly executed on the constrained hardware of mobile AR devices. However, APR methods tend to yield significant inaccuracies for input images that are too distant from the training set. This paper introduces KS-APR, a pipeline that assesses the reliability of an estimated pose with minimal overhead by combining the inference results of the APR and the prior images in the training set. Mobile AR systems tend to rely upon visual-inertial odometry to track the relative pose of the device during the experience. As such, KS-APR favours reliability over frequency, discarding unreliable poses. This pipeline can integrate most existing APR methods to improve accuracy by filtering unreliable images with their pose estimates. We implement the pipeline on three types of APR models on indoor and outdoor datasets. The median error on position and orientation is reduced for all models, and the proportion of large errors is minimized across datasets. Our method enables state-of-the-art APRs such as DFNetdm to outperform single-image and sequential APR methods. These results demonstrate the scalability and effectiveness of KS-APR for visual localization tasks that do not require one-shot decisions.
Spacetime Gaussian Feature Splatting for Real-Time Dynamic View Synthesis
Novel view synthesis of dynamic scenes has been an intriguing yet challenging problem. Despite recent advancements, simultaneously achieving high-resolution photorealistic results, real-time rendering, and compact storage remains a formidable task. To address these challenges, we propose Spacetime Gaussian Feature Splatting as a novel dynamic scene representation, composed of three pivotal components. First, we formulate expressive Spacetime Gaussians by enhancing 3D Gaussians with temporal opacity and parametric motion/rotation. This enables Spacetime Gaussians to capture static, dynamic, as well as transient content within a scene. Second, we introduce splatted feature rendering, which replaces spherical harmonics with neural features. These features facilitate the modeling of view- and time-dependent appearance while maintaining small size. Third, we leverage the guidance of training error and coarse depth to sample new Gaussians in areas that are challenging to converge with existing pipelines. Experiments on several established real-world datasets demonstrate that our method achieves state-of-the-art rendering quality and speed, while retaining compact storage. At 8K resolution, our lite-version model can render at 60 FPS on an Nvidia RTX 4090 GPU.
InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning
General-purpose language models that can solve various language-domain tasks have emerged driven by the pre-training and instruction-tuning pipeline. However, building general-purpose vision-language models is challenging due to the increased task discrepancy introduced by the additional visual input. Although vision-language pre-training has been widely studied, vision-language instruction tuning remains relatively less explored. In this paper, we conduct a systematic and comprehensive study on vision-language instruction tuning based on the pre-trained BLIP-2 models. We gather a wide variety of 26 publicly available datasets, transform them into instruction tuning format and categorize them into two clusters for held-in instruction tuning and held-out zero-shot evaluation. Additionally, we introduce instruction-aware visual feature extraction, a crucial method that enables the model to extract informative features tailored to the given instruction. The resulting InstructBLIP models achieve state-of-the-art zero-shot performance across all 13 held-out datasets, substantially outperforming BLIP-2 and the larger Flamingo. Our models also lead to state-of-the-art performance when finetuned on individual downstream tasks (e.g., 90.7% accuracy on ScienceQA IMG). Furthermore, we qualitatively demonstrate the advantages of InstructBLIP over concurrent multimodal models. All InstructBLIP models have been open-sourced at https://github.com/salesforce/LAVIS/tree/main/projects/instructblip.
TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data
In this work, we address question answering (QA) over a hybrid of tabular and textual data that are very common content on the Web (e.g. SEC filings), where discrete reasoning capabilities are often required. Recently, large language models (LLMs) like GPT-4 have demonstrated strong multi-step reasoning capabilities. We then consider harnessing the amazing power of LLMs to solve our task. We abstract a Step-wise Pipeline for tabular and textual QA, which consists of three key steps, including Extractor, Reasoner and Executor, and initially design an instruction to instantiate the pipeline and validate that GPT-4 outperforms all existing methods. However, utilizing an online LLM like GPT-4 holds various challenges in terms of cost, latency, and data security risk, which motivates us to specialize smaller LLMs in this task. We develop a TAT-LLM language model by fine-tuning LLaMA 2 with the training data generated automatically from existing expert-annotated datasets following the Step-wise Pipeline. The experimental results have verified that our TAT-LLM model can outperform all baseline models, including the previous best fine-tuned models and very large-scale LLMs like GPT-4 on FinQA, TAT-QA and TAT-DQA benchmarks. We hope our work can serve as a pioneering example of specializing smaller language models for specific tasks.
Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models
Large Language Models (LLMs) have the unique capability to understand and generate human-like text from input queries. When fine-tuned, these models show enhanced performance on domain-specific queries. OpenAI highlights the process of fine-tuning, stating: "To fine-tune a model, you are required to provide at least 10 examples. We typically see clear improvements from fine-tuning on 50 to 100 training examples, but the right number varies greatly based on the exact use case." This study extends this concept to the integration of LLMs within Retrieval-Augmented Generation (RAG) pipelines, which aim to improve accuracy and relevance by leveraging external corpus data for information retrieval. However, RAG's promise of delivering optimal responses often falls short in complex query scenarios. This study aims to specifically examine the effects of fine-tuning LLMs on their ability to extract and integrate contextual data to enhance the performance of RAG systems across multiple domains. We evaluate the impact of fine-tuning on the LLMs' capacity for data extraction and contextual understanding by comparing the accuracy and completeness of fine-tuned models against baseline performances across datasets from multiple domains. Our findings indicate that fine-tuning resulted in a decline in performance compared to the baseline models, contrary to the improvements observed in standalone LLM applications as suggested by OpenAI. This study highlights the need for vigorous investigation and validation of fine-tuned models for domain-specific tasks.
Vakyansh: ASR Toolkit for Low Resource Indic languages
We present Vakyansh, an end to end toolkit for Speech Recognition in Indic languages. India is home to almost 121 languages and around 125 crore speakers. Yet most of the languages are low resource in terms of data and pretrained models. Through Vakyansh, we introduce automatic data pipelines for data creation, model training, model evaluation and deployment. We create 14,000 hours of speech data in 23 Indic languages and train wav2vec 2.0 based pretrained models. These pretrained models are then finetuned to create state of the art speech recognition models for 18 Indic languages which are followed by language models and punctuation restoration models. We open source all these resources with a mission that this will inspire the speech community to develop speech first applications using our ASR models in Indic languages.
Fighting Fake News: Image Splice Detection via Learned Self-Consistency
Advances in photo editing and manipulation tools have made it significantly easier to create fake imagery. Learning to detect such manipulations, however, remains a challenging problem due to the lack of sufficient amounts of manipulated training data. In this paper, we propose a learning algorithm for detecting visual image manipulations that is trained only using a large dataset of real photographs. The algorithm uses the automatically recorded photo EXIF metadata as supervisory signal for training a model to determine whether an image is self-consistent -- that is, whether its content could have been produced by a single imaging pipeline. We apply this self-consistency model to the task of detecting and localizing image splices. The proposed method obtains state-of-the-art performance on several image forensics benchmarks, despite never seeing any manipulated images at training. That said, it is merely a step in the long quest for a truly general purpose visual forensics tool.
FlexControl: Computation-Aware ControlNet with Differentiable Router for Text-to-Image Generation
ControlNet offers a powerful way to guide diffusion-based generative models, yet most implementations rely on ad-hoc heuristics to choose which network blocks to control-an approach that varies unpredictably with different tasks. To address this gap, we propose FlexControl, a novel framework that copies all diffusion blocks during training and employs a trainable gating mechanism to dynamically select which blocks to activate at each denoising step. With introducing a computation-aware loss, we can encourage control blocks only to activate when it benefit the generation quality. By eliminating manual block selection, FlexControl enhances adaptability across diverse tasks and streamlines the design pipeline, with computation-aware training loss in an end-to-end training manner. Through comprehensive experiments on both UNet (e.g., SD1.5) and DiT (e.g., SD3.0), we show that our method outperforms existing ControlNet variants in certain key aspects of interest. As evidenced by both quantitative and qualitative evaluations, FlexControl preserves or enhances image fidelity while also reducing computational overhead by selectively activating the most relevant blocks. These results underscore the potential of a flexible, data-driven approach for controlled diffusion and open new avenues for efficient generative model design.
CursorCore: Assist Programming through Aligning Anything
Large language models have been successfully applied to programming assistance tasks, such as code completion, code insertion, and instructional code editing. However, these applications remain insufficiently automated and struggle to effectively integrate various types of information during the programming process, including coding history, current code, and user instructions. In this work, we propose a new conversational framework that comprehensively integrates these information sources, collect data to train our models and evaluate their performance. Firstly, to thoroughly evaluate how well models align with different types of information and the quality of their outputs, we introduce a new benchmark, APEval (Assist Programming Eval), to comprehensively assess the performance of models in programming assistance tasks. Then, for data collection, we develop a data generation pipeline, Programming-Instruct, which synthesizes training data from diverse sources, such as GitHub and online judge platforms. This pipeline can automatically generate various types of messages throughout the programming process. Finally, using this pipeline, we generate 219K samples, fine-tune multiple models, and develop the CursorCore series. We show that CursorCore outperforms other models of comparable size. This framework unifies applications such as inline chat and automated editing, contributes to the advancement of coding assistants. Code, models and data are freely available at https://github.com/TechxGenus/CursorCore.
Remember, Retrieve and Generate: Understanding Infinite Visual Concepts as Your Personalized Assistant
The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://github.com/Hoar012/RAP-MLLM.
Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement
In this report, we present a series of math-specific large language models: Qwen2.5-Math and Qwen2.5-Math-Instruct-1.5B/7B/72B. The core innovation of the Qwen2.5 series lies in integrating the philosophy of self-improvement throughout the entire pipeline, from pre-training and post-training to inference: (1) During the pre-training phase, Qwen2-Math-Instruct is utilized to generate large-scale, high-quality mathematical data. (2) In the post-training phase, we develop a reward model (RM) by conducting massive sampling from Qwen2-Math-Instruct. This RM is then applied to the iterative evolution of data in supervised fine-tuning (SFT). With a stronger SFT model, it's possible to iteratively train and update the RM, which in turn guides the next round of SFT data iteration. On the final SFT model, we employ the ultimate RM for reinforcement learning, resulting in the Qwen2.5-Math-Instruct. (3) Furthermore, during the inference stage, the RM is used to guide sampling, optimizing the model's performance. Qwen2.5-Math-Instruct supports both Chinese and English, and possess advanced mathematical reasoning capabilities, including Chain-of-Thought (CoT) and Tool-Integrated Reasoning (TIR). We evaluate our models on 10 mathematics datasets in both English and Chinese, such as GSM8K, MATH, GaoKao, AMC23, and AIME24, covering a range of difficulties from grade school level to math competition problems.
Emilia: An Extensive, Multilingual, and Diverse Speech Dataset for Large-Scale Speech Generation
Recently, speech generation models have made significant progress by using large-scale training data. However, the research community struggle to produce highly spontaneous and human-like speech due to the lack of large-scale, diverse, and spontaneous speech data. This paper presents Emilia, the first multilingual speech generation dataset from in-the-wild speech data, and Emilia-Pipe, the first open-source preprocessing pipeline designed to transform in-the-wild speech data into high-quality training data with annotations for speech generation. Emilia starts with over 101k hours of speech in six languages and features diverse speech with varied speaking styles. To facilitate the scale-up of Emilia, the open-source pipeline Emilia-Pipe can process one hour of raw speech data ready for model training in a few mins, which enables the research community to collaborate on large-scale speech generation research. Experimental results validate the effectiveness of Emilia. Demos are available at: https://emilia-dataset.github.io/Emilia-Demo-Page/.
RegionGPT: Towards Region Understanding Vision Language Model
Vision language models (VLMs) have experienced rapid advancements through the integration of large language models (LLMs) with image-text pairs, yet they struggle with detailed regional visual understanding due to limited spatial awareness of the vision encoder, and the use of coarse-grained training data that lacks detailed, region-specific captions. To address this, we introduce RegionGPT (short as RGPT), a novel framework designed for complex region-level captioning and understanding. RGPT enhances the spatial awareness of regional representation with simple yet effective modifications to existing visual encoders in VLMs. We further improve performance on tasks requiring a specific output scope by integrating task-guided instruction prompts during both training and inference phases, while maintaining the model's versatility for general-purpose tasks. Additionally, we develop an automated region caption data generation pipeline, enriching the training set with detailed region-level captions. We demonstrate that a universal RGPT model can be effectively applied and significantly enhancing performance across a range of region-level tasks, including but not limited to complex region descriptions, reasoning, object classification, and referring expressions comprehension.
ADCNet: Learning from Raw Radar Data via Distillation
As autonomous vehicles and advanced driving assistance systems have entered wider deployment, there is an increased interest in building robust perception systems using radars. Radar-based systems are lower cost and more robust to adverse weather conditions than their LiDAR-based counterparts; however the point clouds produced are typically noisy and sparse by comparison. In order to combat these challenges, recent research has focused on consuming the raw radar data, instead of the final radar point cloud. We build on this line of work and demonstrate that by bringing elements of the signal processing pipeline into our network and then pre-training on the signal processing task, we are able to achieve state of the art detection performance on the RADIal dataset. Our method uses expensive offline signal processing algorithms to pseudo-label data and trains a network to distill this information into a fast convolutional backbone, which can then be finetuned for perception tasks. Extensive experiment results corroborate the effectiveness of the proposed techniques.
CoT-based Synthesizer: Enhancing LLM Performance through Answer Synthesis
Current inference scaling methods, such as Self-consistency and Best-of-N, have proven effective in improving the accuracy of LLMs on complex reasoning tasks. However, these methods rely heavily on the quality of candidate responses and are unable to produce correct answers when all candidates are incorrect. In this paper, we propose a novel inference scaling strategy, CoT-based Synthesizer, which leverages CoT reasoning to synthesize superior answers by analyzing complementary information from multiple candidate responses, even when all candidate responses are flawed. To enable a lightweight and cost-effective implementation, we introduce an automated data generation pipeline that creates diverse training data. This allows smaller LLMs trained on this data to improve the inference accuracy of larger models, including API-based LLMs. Experimental results across four benchmark datasets with seven policy models demonstrate that our method significantly enhances performance, with gains of 11.8% for Llama3-8B and 10.3% for GPT-4o on the MATH dataset. The corresponding training data and code are publicly available on https://github.com/RUCKBReasoning/CoT-based-Synthesizer.
EditRoom: LLM-parameterized Graph Diffusion for Composable 3D Room Layout Editing
Given the steep learning curve of professional 3D software and the time-consuming process of managing large 3D assets, language-guided 3D scene editing has significant potential in fields such as virtual reality, augmented reality, and gaming. However, recent approaches to language-guided 3D scene editing either require manual interventions or focus only on appearance modifications without supporting comprehensive scene layout changes. In response, we propose Edit-Room, a unified framework capable of executing a variety of layout edits through natural language commands, without requiring manual intervention. Specifically, EditRoom leverages Large Language Models (LLMs) for command planning and generates target scenes using a diffusion-based method, enabling six types of edits: rotate, translate, scale, replace, add, and remove. To address the lack of data for language-guided 3D scene editing, we have developed an automatic pipeline to augment existing 3D scene synthesis datasets and introduced EditRoom-DB, a large-scale dataset with 83k editing pairs, for training and evaluation. Our experiments demonstrate that our approach consistently outperforms other baselines across all metrics, indicating higher accuracy and coherence in language-guided scene layout editing.
Fine-Tuning and Prompt Optimization: Two Great Steps that Work Better Together
Natural Language Processing (NLP) systems are increasingly taking the form of multi-stage pipelines involving multiple distinct language models (LMs) and prompting strategies. Here we address the question of how to fine-tune such systems to improve their performance. We cast this as a problem of optimizing the underlying LM weights and the prompting strategies together, and consider a challenging but highly realistic scenario in which we have no gold labels for any intermediate stages in the pipeline. To address this challenge, we evaluate approximate optimization strategies in which we bootstrap training labels for all pipeline stages and use these to optimize the pipeline's prompts and fine-tune its weights alternatingly. In experiments with multi-hop QA, mathematical reasoning, and feature-based classification, we find that simple approaches for optimizing the prompts and weights together outperform directly optimizing weights alone and prompts alone by up to 65% and 5%, respectively, on average across LMs and tasks. We will release our new optimizers in DSPy at http://dspy.ai
Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior
Recent works on text-to-3d generation show that using only 2D diffusion supervision for 3D generation tends to produce results with inconsistent appearances (e.g., faces on the back view) and inaccurate shapes (e.g., animals with extra legs). Existing methods mainly address this issue by retraining diffusion models with images rendered from 3D data to ensure multi-view consistency while struggling to balance 2D generation quality with 3D consistency. In this paper, we present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model. Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach. Moreover, to ensure accurate appearances of different views, we further modulate the output of the 2D diffusion model to the correct patterns of the template views without altering the generated object's style. These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model. Extensive experiments show our method can largely improve the multi-view consistency while retaining fidelity and diversity. Our project page is available at: https://stellarcheng.github.io/Sculpt3D/.
Towards Robust Ranker for Text Retrieval
A ranker plays an indispensable role in the de facto 'retrieval & rerank' pipeline, but its training still lags behind -- learning from moderate negatives or/and serving as an auxiliary module for a retriever. In this work, we first identify two major barriers to a robust ranker, i.e., inherent label noises caused by a well-trained retriever and non-ideal negatives sampled for a high-capable ranker. Thereby, we propose multiple retrievers as negative generators improve the ranker's robustness, where i) involving extensive out-of-distribution label noises renders the ranker against each noise distribution, and ii) diverse hard negatives from a joint distribution are relatively close to the ranker's negative distribution, leading to more challenging thus effective training. To evaluate our robust ranker (dubbed R^2anker), we conduct experiments in various settings on the popular passage retrieval benchmark, including BM25-reranking, full-ranking, retriever distillation, etc. The empirical results verify the new state-of-the-art effectiveness of our model.
From Universal Language Model to Downstream Task: Improving RoBERTa-Based Vietnamese Hate Speech Detection
Natural language processing is a fast-growing field of artificial intelligence. Since the Transformer was introduced by Google in 2017, a large number of language models such as BERT, GPT, and ELMo have been inspired by this architecture. These models were trained on huge datasets and achieved state-of-the-art results on natural language understanding. However, fine-tuning a pre-trained language model on much smaller datasets for downstream tasks requires a carefully-designed pipeline to mitigate problems of the datasets such as lack of training data and imbalanced data. In this paper, we propose a pipeline to adapt the general-purpose RoBERTa language model to a specific text classification task: Vietnamese Hate Speech Detection. We first tune the PhoBERT on our dataset by re-training the model on the Masked Language Model task; then, we employ its encoder for text classification. In order to preserve pre-trained weights while learning new feature representations, we further utilize different training techniques: layer freezing, block-wise learning rate, and label smoothing. Our experiments proved that our proposed pipeline boosts the performance significantly, achieving a new state-of-the-art on Vietnamese Hate Speech Detection campaign with 0.7221 F1 score.
MaRINeR: Enhancing Novel Views by Matching Rendered Images with Nearby References
Rendering realistic images from 3D reconstruction is an essential task of many Computer Vision and Robotics pipelines, notably for mixed-reality applications as well as training autonomous agents in simulated environments. However, the quality of novel views heavily depends of the source reconstruction which is often imperfect due to noisy or missing geometry and appearance. Inspired by the recent success of reference-based super-resolution networks, we propose MaRINeR, a refinement method that leverages information of a nearby mapping image to improve the rendering of a target viewpoint. We first establish matches between the raw rendered image of the scene geometry from the target viewpoint and the nearby reference based on deep features, followed by hierarchical detail transfer. We show improved renderings in quantitative metrics and qualitative examples from both explicit and implicit scene representations. We further employ our method on the downstream tasks of pseudo-ground-truth validation, synthetic data enhancement and detail recovery for renderings of reduced 3D reconstructions.
STAGE: Simplified Text-Attributed Graph Embeddings Using Pre-trained LLMs
We present Simplified Text-Attributed Graph Embeddings (STAGE), a straightforward yet effective method for enhancing node features in Graph Neural Network (GNN) models that encode Text-Attributed Graphs (TAGs). Our approach leverages Large-Language Models (LLMs) to generate embeddings for textual attributes. STAGE achieves competitive results on various node classification benchmarks while also maintaining a simplicity in implementation relative to current state-of-the-art (SoTA) techniques. We show that utilizing pre-trained LLMs as embedding generators provides robust features for ensemble GNN training, enabling pipelines that are simpler than current SoTA approaches which require multiple expensive training and prompting stages. We also implement diffusion-pattern GNNs in an effort to make this pipeline scalable to graphs beyond academic benchmarks.
ATM: Adversarial Tuning Multi-agent System Makes a Robust Retrieval-Augmented Generator
Large language model (LLM) has proven to benefit a lot from retrieval augmentation in alleviating hallucinations confronted with knowledge-intensive questions. Retrieval-augmented generation (RAG) adopts IR-based techniques utilizing semantic-relevant documents as the generator's input context and realizes external knowledge injection. However, on today's Internet which is flooded with content generated by LLMs, there are too many "related yet useless" documents or even fake knowledge fabricated by LLMs, which will introduce extra noise to the generator and distract it from giving correct results. To this end, we regard the training of the RAG generator model as a multi-agent adversarial-defensive system, guiding the generator to have a better taste of whether a specific document helps answer the question through the Adversarial Tuning in a Multi-agent (ATM) system to strengthen the generator's robustness in an RAG pipeline. After rounds of multi-agent iterative tuning, we find that the ATM Generator can eventually discriminate useful documents amongst LLM fabrications and achieve better performance than strong baselines.
Omni-Recon: Harnessing Image-based Rendering for General-Purpose Neural Radiance Fields
Recent breakthroughs in Neural Radiance Fields (NeRFs) have sparked significant demand for their integration into real-world 3D applications. However, the varied functionalities required by different 3D applications often necessitate diverse NeRF models with various pipelines, leading to tedious NeRF training for each target task and cumbersome trial-and-error experiments. Drawing inspiration from the generalization capability and adaptability of emerging foundation models, our work aims to develop one general-purpose NeRF for handling diverse 3D tasks. We achieve this by proposing a framework called Omni-Recon, which is capable of (1) generalizable 3D reconstruction and zero-shot multitask scene understanding, and (2) adaptability to diverse downstream 3D applications such as real-time rendering and scene editing. Our key insight is that an image-based rendering pipeline, with accurate geometry and appearance estimation, can lift 2D image features into their 3D counterparts, thus extending widely explored 2D tasks to the 3D world in a generalizable manner. Specifically, our Omni-Recon features a general-purpose NeRF model using image-based rendering with two decoupled branches: one complex transformer-based branch that progressively fuses geometry and appearance features for accurate geometry estimation, and one lightweight branch for predicting blending weights of source views. This design achieves state-of-the-art (SOTA) generalizable 3D surface reconstruction quality with blending weights reusable across diverse tasks for zero-shot multitask scene understanding. In addition, it can enable real-time rendering after baking the complex geometry branch into meshes, swift adaptation to achieve SOTA generalizable 3D understanding performance, and seamless integration with 2D diffusion models for text-guided 3D editing.
Reliable, Adaptable, and Attributable Language Models with Retrieval
Parametric language models (LMs), which are trained on vast amounts of web data, exhibit remarkable flexibility and capability. However, they still face practical challenges such as hallucinations, difficulty in adapting to new data distributions, and a lack of verifiability. In this position paper, we advocate for retrieval-augmented LMs to replace parametric LMs as the next generation of LMs. By incorporating large-scale datastores during inference, retrieval-augmented LMs can be more reliable, adaptable, and attributable. Despite their potential, retrieval-augmented LMs have yet to be widely adopted due to several obstacles: specifically, current retrieval-augmented LMs struggle to leverage helpful text beyond knowledge-intensive tasks such as question answering, have limited interaction between retrieval and LM components, and lack the infrastructure for scaling. To address these, we propose a roadmap for developing general-purpose retrieval-augmented LMs. This involves a reconsideration of datastores and retrievers, the exploration of pipelines with improved retriever-LM interaction, and significant investment in infrastructure for efficient training and inference.
SEGIC: Unleashing the Emergent Correspondence for In-Context Segmentation
In-context segmentation aims at segmenting novel images using a few labeled example images, termed as "in-context examples", exploring content similarities between examples and the target. The resulting models can be generalized seamlessly to novel segmentation tasks, significantly reducing the labeling and training costs compared with conventional pipelines. However, in-context segmentation is more challenging than classic ones due to its meta-learning nature, requiring the model to learn segmentation rules conditioned on a few samples, not just the segmentation. Unlike previous work with ad-hoc or non-end-to-end designs, we propose SEGIC, an end-to-end segment-in-context framework built upon a single vision foundation model (VFM). In particular, SEGIC leverages the emergent correspondence within VFM to capture dense relationships between target images and in-context samples. As such, information from in-context samples is then extracted into three types of instructions, i.e. geometric, visual, and meta instructions, serving as explicit conditions for the final mask prediction. SEGIC is a straightforward yet effective approach that yields state-of-the-art performance on one-shot segmentation benchmarks. Notably, SEGIC can be easily generalized to diverse tasks, including video object segmentation and open-vocabulary segmentation. Code will be available at https://github.com/MengLcool/SEGIC.
MWE as WSD: Solving Multiword Expression Identification with Word Sense Disambiguation
Recent approaches to word sense disambiguation (WSD) utilize encodings of the sense gloss (definition), in addition to the input context, to improve performance. In this work we demonstrate that this approach can be adapted for use in multiword expression (MWE) identification by training models which use gloss and context information to filter MWE candidates produced by a rule-based extraction pipeline. Our approach substantially improves precision, outperforming the state-of-the-art in MWE identification on the DiMSUM dataset by up to 1.9 F1 points and achieving competitive results on the PARSEME 1.1 English dataset. Our models also retain most of their WSD performance, showing that a single model can be used for both tasks. Finally, building on similar approaches using Bi-encoders for WSD, we introduce a novel Poly-encoder architecture which improves MWE identification performance.
OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs suitable for rigorous scientific investigation, particularly those with reproducible data processing pipelines and transparent training protocols, remain limited. The scarcity is due to various challenges, including resource constraints, ethical considerations, and the competitive advantages of keeping models advanced. To address the gap, we introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an ``open cookbook'' for the research community. Unlike most prior efforts, we release not only model weights and inference code, but also the reproducible training data, complete data processing pipeline, rigorous experimental ablation results, and detailed training protocols for open scientific research. Through this comprehensive release, we identify the key ingredients for building a top-tier code LLM: (1) code optimized heuristic rules for data cleaning and methods for data deduplication, (2) recall of text corpus related to code and (3) high-quality synthetic data in both annealing and supervised fine-tuning stages. By offering this level of openness, we aim to broaden access to all aspects of a top-tier code LLM, with OpenCoder serving as both a powerful model and an open foundation to accelerate research, and enable reproducible advancements in code AI.
MAP-Neo: Highly Capable and Transparent Bilingual Large Language Model Series
Large Language Models (LLMs) have made great strides in recent years to achieve unprecedented performance across different tasks. However, due to commercial interest, the most competitive models like GPT, Gemini, and Claude have been gated behind proprietary interfaces without disclosing the training details. Recently, many institutions have open-sourced several strong LLMs like LLaMA-3, comparable to existing closed-source LLMs. However, only the model's weights are provided with most details (e.g., intermediate checkpoints, pre-training corpus, and training code, etc.) being undisclosed. To improve the transparency of LLMs, the research community has formed to open-source truly open LLMs (e.g., Pythia, Amber, OLMo), where more details (e.g., pre-training corpus and training code) are being provided. These models have greatly advanced the scientific study of these large models including their strengths, weaknesses, biases and risks. However, we observe that the existing truly open LLMs on reasoning, knowledge, and coding tasks are still inferior to existing state-of-the-art LLMs with similar model sizes. To this end, we open-source MAP-Neo, a highly capable and transparent bilingual language model with 7B parameters trained from scratch on 4.5T high-quality tokens. Our MAP-Neo is the first fully open-sourced bilingual LLM with comparable performance compared to existing state-of-the-art LLMs. Moreover, we open-source all details to reproduce our MAP-Neo, where the cleaned pre-training corpus, data cleaning pipeline, checkpoints, and well-optimized training/evaluation framework are provided. Finally, we hope our MAP-Neo will enhance and strengthen the open research community and inspire more innovations and creativities to facilitate the further improvements of LLMs.
Extending Llama-3's Context Ten-Fold Overnight
We extend the context length of Llama-3-8B-Instruct from 8K to 80K via QLoRA fine-tuning. The entire training cycle is super efficient, which takes 8 hours on one 8xA800 (80G) GPU machine. The resulted model exhibits superior performances across a broad range of evaluation tasks, such as NIHS, topic retrieval, and long-context language understanding; meanwhile, it also well preserves the original capability over short contexts. The dramatic context extension is mainly attributed to merely 3.5K synthetic training samples generated by GPT-4 , which indicates the LLMs' inherent (yet largely underestimated) potential to extend its original context length. In fact, the context length could be extended far beyond 80K with more computation resources. Therefore, the team will publicly release the entire resources (including data, model, data generation pipeline, training code) so as to facilitate the future research from the community: https://github.com/FlagOpen/FlagEmbedding.
VideoLLM-online: Online Video Large Language Model for Streaming Video
Recent Large Language Models have been enhanced with vision capabilities, enabling them to comprehend images, videos, and interleaved vision-language content. However, the learning methods of these large multimodal models typically treat videos as predetermined clips, making them less effective and efficient at handling streaming video inputs. In this paper, we propose a novel Learning-In-Video-Stream (LIVE) framework, which enables temporally aligned, long-context, and real-time conversation within a continuous video stream. Our LIVE framework comprises comprehensive approaches to achieve video streaming dialogue, encompassing: (1) a training objective designed to perform language modeling for continuous streaming inputs, (2) a data generation scheme that converts offline temporal annotations into a streaming dialogue format, and (3) an optimized inference pipeline to speed up the model responses in real-world video streams. With our LIVE framework, we built VideoLLM-online model upon Llama-2/Llama-3 and demonstrate its significant advantages in processing streaming videos. For instance, on average, our model can support streaming dialogue in a 5-minute video clip at over 10 FPS on an A100 GPU. Moreover, it also showcases state-of-the-art performance on public offline video benchmarks, such as recognition, captioning, and forecasting. The code, model, data, and demo have been made available at https://showlab.github.io/videollm-online.
Emilia: A Large-Scale, Extensive, Multilingual, and Diverse Dataset for Speech Generation
Recent advancements in speech generation have been driven by the large-scale training datasets. However, current models fall short of capturing the spontaneity and variability inherent in real-world human speech, due to their reliance on audiobook datasets limited to formal read-aloud speech styles. To bridge this gap, we introduce Emilia-Pipe, an open-source preprocessing pipeline to extract high-quality training data from valuable yet underexplored in-the-wild data that capture spontaneous human speech in real-world contexts. By leveraging Emilia-Pipe, we construct Emilia, the first multilingual speech generation dataset derived from in-the-wild speech data. This dataset comprises over 101k hours of speech across six languages: English, Chinese, German, French, Japanese, and Korean. Besides, we expand Emilia to Emilia-Large, a dataset exceeding 216k hours, making it the largest open-source speech generation dataset available. Extensive experiments demonstrate that Emilia significantly outperforms traditional audiobook datasets in generating spontaneous and human-like speech, showcasing superior performance in capturing diverse speaker timbre and speaking styles of real-world human speech. Furthermore, this work underscores the importance of scaling dataset size to advance speech generation research and validates the effectiveness of Emilia for both multilingual and crosslingual speech generation.
SantaCoder: don't reach for the stars!
The BigCode project is an open-scientific collaboration working on the responsible development of large language models for code. This tech report describes the progress of the collaboration until December 2022, outlining the current state of the Personally Identifiable Information (PII) redaction pipeline, the experiments conducted to de-risk the model architecture, and the experiments investigating better preprocessing methods for the training data. We train 1.1B parameter models on the Java, JavaScript, and Python subsets of The Stack and evaluate them on the MultiPL-E text-to-code benchmark. We find that more aggressive filtering of near-duplicates can further boost performance and, surprisingly, that selecting files from repositories with 5+ GitHub stars deteriorates performance significantly. Our best model outperforms previous open-source multilingual code generation models (InCoder-6.7B and CodeGen-Multi-2.7B) in both left-to-right generation and infilling on the Java, JavaScript, and Python portions of MultiPL-E, despite being a substantially smaller model. All models are released under an OpenRAIL license at https://hf.co/bigcode.
Video-RAG: Visually-aligned Retrieval-Augmented Long Video Comprehension
Existing large video-language models (LVLMs) struggle to comprehend long videos correctly due to limited context. To address this problem, fine-tuning long-context LVLMs and employing GPT-based agents have emerged as promising solutions. However, fine-tuning LVLMs would require extensive high-quality data and substantial GPU resources, while GPT-based agents would rely on proprietary models (e.g., GPT-4o). In this paper, we propose Video Retrieval-Augmented Generation (Video-RAG), a training-free and cost-effective pipeline that employs visually-aligned auxiliary texts to help facilitate cross-modality alignment while providing additional information beyond the visual content. Specifically, we leverage open-source external tools to extract visually-aligned information from pure video data (e.g., audio, optical character, and object detection), and incorporate the extracted information into an existing LVLM as auxiliary texts, alongside video frames and queries, in a plug-and-play manner. Our Video-RAG offers several key advantages: (i) lightweight with low computing overhead due to single-turn retrieval; (ii) easy implementation and compatibility with any LVLM; and (iii) significant, consistent performance gains across long video understanding benchmarks, including Video-MME, MLVU, and LongVideoBench. Notably, our model demonstrates superior performance over proprietary models like Gemini-1.5-Pro and GPT-4o when utilized with a 72B model.
AM-RADIO: Agglomerative Model -- Reduce All Domains Into One
A handful of visual foundation models (VFMs) have recently emerged as the backbones for numerous downstream tasks. VFMs like CLIP, DINOv2, SAM are trained with distinct objectives, exhibiting unique characteristics for various downstream tasks. We find that despite their conceptual differences, these models can be effectively merged into a unified model through multi-teacher distillation. We name this approach AM-RADIO (Agglomerative Model -- Reduce All Domains Into One). This integrative approach not only surpasses the performance of individual teacher models but also amalgamates their distinctive features, such as zero-shot vision-language comprehension, detailed pixel-level understanding, and open vocabulary segmentation capabilities. In pursuit of the most hardware-efficient backbone, we evaluated numerous architectures in our multi-teacher distillation pipeline using the same training recipe. This led to the development of a novel architecture (E-RADIO) that exceeds the performance of its predecessors and is at least 7x faster than the teacher models. Our comprehensive benchmarking process covers downstream tasks including ImageNet classification, ADE20k semantic segmentation, COCO object detection and LLaVa-1.5 framework. Code: https://github.com/NVlabs/RADIO
High-fidelity Person-centric Subject-to-Image Synthesis
Current subject-driven image generation methods encounter significant challenges in person-centric image generation. The reason is that they learn the semantic scene and person generation by fine-tuning a common pre-trained diffusion, which involves an irreconcilable training imbalance. Precisely, to generate realistic persons, they need to sufficiently tune the pre-trained model, which inevitably causes the model to forget the rich semantic scene prior and makes scene generation over-fit to the training data. Moreover, even with sufficient fine-tuning, these methods can still not generate high-fidelity persons since joint learning of the scene and person generation also lead to quality compromise. In this paper, we propose Face-diffuser, an effective collaborative generation pipeline to eliminate the above training imbalance and quality compromise. Specifically, we first develop two specialized pre-trained diffusion models, i.e., Text-driven Diffusion Model (TDM) and Subject-augmented Diffusion Model (SDM), for scene and person generation, respectively. The sampling process is divided into three sequential stages, i.e., semantic scene construction, subject-scene fusion, and subject enhancement. The first and last stages are performed by TDM and SDM respectively. The subject-scene fusion stage, that is the collaboration achieved through a novel and highly effective mechanism, Saliency-adaptive Noise Fusion (SNF). Specifically, it is based on our key observation that there exists a robust link between classifier-free guidance responses and the saliency of generated images. In each time step, SNF leverages the unique strengths of each model and allows for the spatial blending of predicted noises from both models automatically in a saliency-aware manner. Extensive experiments confirm the impressive effectiveness and robustness of the Face-diffuser.
Automated Creation of Digital Cousins for Robust Policy Learning
Training robot policies in the real world can be unsafe, costly, and difficult to scale. Simulation serves as an inexpensive and potentially limitless source of training data, but suffers from the semantics and physics disparity between simulated and real-world environments. These discrepancies can be minimized by training in digital twins, which serve as virtual replicas of a real scene but are expensive to generate and cannot produce cross-domain generalization. To address these limitations, we propose the concept of digital cousins, a virtual asset or scene that, unlike a digital twin, does not explicitly model a real-world counterpart but still exhibits similar geometric and semantic affordances. As a result, digital cousins simultaneously reduce the cost of generating an analogous virtual environment while also facilitating better robustness during sim-to-real domain transfer by providing a distribution of similar training scenes. Leveraging digital cousins, we introduce a novel method for their automated creation, and propose a fully automated real-to-sim-to-real pipeline for generating fully interactive scenes and training robot policies that can be deployed zero-shot in the original scene. We find that digital cousin scenes that preserve geometric and semantic affordances can be produced automatically, and can be used to train policies that outperform policies trained on digital twins, achieving 90% vs. 25% success rates under zero-shot sim-to-real transfer. Additional details are available at https://digital-cousins.github.io/.
Product-Level Try-on: Characteristics-preserving Try-on with Realistic Clothes Shading and Wrinkles
Image-based virtual try-on systems,which fit new garments onto human portraits,are gaining research attention.An ideal pipeline should preserve the static features of clothes(like textures and logos)while also generating dynamic elements(e.g.shadows,folds)that adapt to the model's pose and environment.Previous works fail specifically in generating dynamic features,as they preserve the warped in-shop clothes trivially with predicted an alpha mask by composition.To break the dilemma of over-preserving and textures losses,we propose a novel diffusion-based Product-level virtual try-on pipeline,\ie PLTON, which can preserve the fine details of logos and embroideries while producing realistic clothes shading and wrinkles.The main insights are in three folds:1)Adaptive Dynamic Rendering:We take a pre-trained diffusion model as a generative prior and tame it with image features,training a dynamic extractor from scratch to generate dynamic tokens that preserve high-fidelity semantic information. Due to the strong generative power of the diffusion prior,we can generate realistic clothes shadows and wrinkles.2)Static Characteristics Transformation: High-frequency Map(HF-Map)is our fundamental insight for static representation.PLTON first warps in-shop clothes to the target model pose by a traditional warping network,and uses a high-pass filter to extract an HF-Map for preserving static cloth features.The HF-Map is used to generate modulation maps through our static extractor,which are injected into a fixed U-net to synthesize the final result.To enhance retention,a Two-stage Blended Denoising method is proposed to guide the diffusion process for correct spatial layout and color.PLTON is finetuned only with our collected small-size try-on dataset.Extensive quantitative and qualitative experiments on 1024 768 datasets demonstrate the superiority of our framework in mimicking real clothes dynamics.
Relightful Harmonization: Lighting-aware Portrait Background Replacement
Portrait harmonization aims to composite a subject into a new background, adjusting its lighting and color to ensure harmony with the background scene. Existing harmonization techniques often only focus on adjusting the global color and brightness of the foreground and ignore crucial illumination cues from the background such as apparent lighting direction, leading to unrealistic compositions. We introduce Relightful Harmonization, a lighting-aware diffusion model designed to seamlessly harmonize sophisticated lighting effect for the foreground portrait using any background image. Our approach unfolds in three stages. First, we introduce a lighting representation module that allows our diffusion model to encode lighting information from target image background. Second, we introduce an alignment network that aligns lighting features learned from image background with lighting features learned from panorama environment maps, which is a complete representation for scene illumination. Last, to further boost the photorealism of the proposed method, we introduce a novel data simulation pipeline that generates synthetic training pairs from a diverse range of natural images, which are used to refine the model. Our method outperforms existing benchmarks in visual fidelity and lighting coherence, showing superior generalization in real-world testing scenarios, highlighting its versatility and practicality.
Towards Generalist Robots: A Promising Paradigm via Generative Simulation
This document serves as a position paper that outlines the authors' vision for a potential pathway towards generalist robots. The purpose of this document is to share the excitement of the authors with the community and highlight a promising research direction in robotics and AI. The authors believe the proposed paradigm is a feasible path towards accomplishing the long-standing goal of robotics research: deploying robots, or embodied AI agents more broadly, in various non-factory real-world settings to perform diverse tasks. This document presents a specific idea for mining knowledge in the latest large-scale foundation models for robotics research. Instead of directly using or adapting these models to produce low-level policies and actions, it advocates for a fully automated generative pipeline (termed as generative simulation), which uses these models to generate diversified tasks, scenes and training supervisions at scale, thereby scaling up low-level skill learning and ultimately leading to a foundation model for robotics that empowers generalist robots. The authors are actively pursuing this direction, but in the meantime, they recognize that the ambitious goal of building generalist robots with large-scale policy training demands significant resources such as computing power and hardware, and research groups in academia alone may face severe resource constraints in implementing the entire vision. Therefore, the authors believe sharing their thoughts at this early stage could foster discussions, attract interest towards the proposed pathway and related topics from industry groups, and potentially spur significant technical advancements in the field.
InstantSplat: Unbounded Sparse-view Pose-free Gaussian Splatting in 40 Seconds
While novel view synthesis (NVS) has made substantial progress in 3D computer vision, it typically requires an initial estimation of camera intrinsics and extrinsics from dense viewpoints. This pre-processing is usually conducted via a Structure-from-Motion (SfM) pipeline, a procedure that can be slow and unreliable, particularly in sparse-view scenarios with insufficient matched features for accurate reconstruction. In this work, we integrate the strengths of point-based representations (e.g., 3D Gaussian Splatting, 3D-GS) with end-to-end dense stereo models (DUSt3R) to tackle the complex yet unresolved issues in NVS under unconstrained settings, which encompasses pose-free and sparse view challenges. Our framework, InstantSplat, unifies dense stereo priors with 3D-GS to build 3D Gaussians of large-scale scenes from sparseview & pose-free images in less than 1 minute. Specifically, InstantSplat comprises a Coarse Geometric Initialization (CGI) module that swiftly establishes a preliminary scene structure and camera parameters across all training views, utilizing globally-aligned 3D point maps derived from a pre-trained dense stereo pipeline. This is followed by the Fast 3D-Gaussian Optimization (F-3DGO) module, which jointly optimizes the 3D Gaussian attributes and the initialized poses with pose regularization. Experiments conducted on the large-scale outdoor Tanks & Temples datasets demonstrate that InstantSplat significantly improves SSIM (by 32%) while concurrently reducing Absolute Trajectory Error (ATE) by 80%. These establish InstantSplat as a viable solution for scenarios involving posefree and sparse-view conditions. Project page: instantsplat.github.io.
PiTe: Pixel-Temporal Alignment for Large Video-Language Model
Fueled by the Large Language Models (LLMs) wave, Large Visual-Language Models (LVLMs) have emerged as a pivotal advancement, bridging the gap between image and text. However, video making it challenging for LVLMs to perform adequately due to the complexity of the relationship between language and spatial-temporal data structure. Recent Large Video-Language Models (LVidLMs) align feature of static visual data like image into latent space of language feature, by general multi-modal tasks to leverage abilities of LLMs sufficiently. In this paper, we explore fine-grained alignment approach via object trajectory for different modalities across both spatial and temporal dimensions simultaneously. Thus, we propose a novel LVidLM by trajectory-guided Pixel-Temporal Alignment, dubbed PiTe, that exhibits promising applicable model property. To achieve fine-grained video-language alignment, we curate a multi-modal pre-training dataset PiTe-143k, the dataset provision of moving trajectories in pixel level for all individual objects, that appear and mention in the video and caption both, by our automatic annotation pipeline. Meanwhile, PiTe demonstrates astounding capabilities on myriad video-related multi-modal tasks through beat the state-of-the-art methods by a large margin.
On Robustness and Transferability of Convolutional Neural Networks
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts. However, several recent breakthroughs in transfer learning suggest that these networks can cope with severe distribution shifts and successfully adapt to new tasks from a few training examples. In this work we study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time and investigate the impact of the pre-training data size, the model scale, and the data preprocessing pipeline. We find that increasing both the training set and model sizes significantly improve the distributional shift robustness. Furthermore, we show that, perhaps surprisingly, simple changes in the preprocessing such as modifying the image resolution can significantly mitigate robustness issues in some cases. Finally, we outline the shortcomings of existing robustness evaluation datasets and introduce a synthetic dataset SI-Score we use for a systematic analysis across factors of variation common in visual data such as object size and position.
Large-batch Optimization for Dense Visual Predictions
Training a large-scale deep neural network in a large-scale dataset is challenging and time-consuming. The recent breakthrough of large-batch optimization is a promising way to tackle this challenge. However, although the current advanced algorithms such as LARS and LAMB succeed in classification models, the complicated pipelines of dense visual predictions such as object detection and segmentation still suffer from the heavy performance drop in the large-batch training regime. To address this challenge, we propose a simple yet effective algorithm, named Adaptive Gradient Variance Modulator (AGVM), which can train dense visual predictors with very large batch size, enabling several benefits more appealing than prior arts. Firstly, AGVM can align the gradient variances between different modules in the dense visual predictors, such as backbone, feature pyramid network (FPN), detection, and segmentation heads. We show that training with a large batch size can fail with the gradient variances misaligned among them, which is a phenomenon primarily overlooked in previous work. Secondly, AGVM is a plug-and-play module that generalizes well to many different architectures (e.g., CNNs and Transformers) and different tasks (e.g., object detection, instance segmentation, semantic segmentation, and panoptic segmentation). It is also compatible with different optimizers (e.g., SGD and AdamW). Thirdly, a theoretical analysis of AGVM is provided. Extensive experiments on the COCO and ADE20K datasets demonstrate the superiority of AGVM. For example, it can train Faster R-CNN+ResNet50 in 4 minutes without losing performance. AGVM enables training an object detector with one billion parameters in just 3.5 hours, reducing the training time by 20.9x, whilst achieving 62.2 mAP on COCO. The deliverables are released at https://github.com/Sense-X/AGVM.
Building and better understanding vision-language models: insights and future directions
The field of vision-language models (VLMs), which take images and texts as inputs and output texts, is rapidly evolving and has yet to reach consensus on several key aspects of the development pipeline, including data, architecture, and training methods. This paper can be seen as a tutorial for building a VLM. We begin by providing a comprehensive overview of the current state-of-the-art approaches, highlighting the strengths and weaknesses of each, addressing the major challenges in the field, and suggesting promising research directions for underexplored areas. We then walk through the practical steps to build Idefics3-8B, a powerful VLM that significantly outperforms its predecessor Idefics2-8B, while being trained efficiently, exclusively on open datasets, and using a straightforward pipeline. These steps include the creation of Docmatix, a dataset for improving document understanding capabilities, which is 240 times larger than previously available datasets. We release the model along with the datasets created for its training.
Open-vocabulary Object Segmentation with Diffusion Models
The goal of this paper is to extract the visual-language correspondence from a pre-trained text-to-image diffusion model, in the form of segmentation map, i.e., simultaneously generating images and segmentation masks for the corresponding visual entities described in the text prompt. We make the following contributions: (i) we pair the existing Stable Diffusion model with a novel grounding module, that can be trained to align the visual and textual embedding space of the diffusion model with only a small number of object categories; (ii) we establish an automatic pipeline for constructing a dataset, that consists of {image, segmentation mask, text prompt} triplets, to train the proposed grounding module; (iii) we evaluate the performance of open-vocabulary grounding on images generated from the text-to-image diffusion model and show that the module can well segment the objects of categories beyond seen ones at training time; (iv) we adopt the augmented diffusion model to build a synthetic semantic segmentation dataset, and show that, training a standard segmentation model on such dataset demonstrates competitive performance on the zero-shot segmentation(ZS3) benchmark, which opens up new opportunities for adopting the powerful diffusion model for discriminative tasks.
Scaling Up Models and Data with $\texttt{t5x}$ and $\texttt{seqio}$
Recent neural network-based language models have benefited greatly from scaling up the size of training datasets and the number of parameters in the models themselves. Scaling can be complicated due to various factors including the need to distribute computation on supercomputer clusters (e.g., TPUs), prevent bottlenecks when infeeding data, and ensure reproducible results. In this work, we present two software libraries that ease these issues: t5x simplifies the process of building and training large language models at scale while maintaining ease of use, and seqio provides a task-based API for simple creation of fast and reproducible training data and evaluation pipelines. These open-source libraries have been used to train models with hundreds of billions of parameters on datasets with multiple terabytes of training data. Along with the libraries, we release configurations and instructions for T5-like encoder-decoder models as well as GPT-like decoder-only architectures. t5x and seqio are open source and available at https://github.com/google-research/t5x and https://github.com/google/seqio, respectively.
Intelligent Grimm -- Open-ended Visual Storytelling via Latent Diffusion Models
Generative models have recently exhibited exceptional capabilities in various scenarios, for example, image generation based on text description. In this work, we focus on the task of generating a series of coherent image sequence based on a given storyline, denoted as open-ended visual storytelling. We make the following three contributions: (i) to fulfill the task of visual storytelling, we introduce two modules into a pre-trained stable diffusion model, and construct an auto-regressive image generator, termed as StoryGen, that enables to generate the current frame by conditioning on both a text prompt and a preceding frame; (ii) to train our proposed model, we collect paired image and text samples by sourcing from various online sources, such as videos, E-books, and establish a data processing pipeline for constructing a diverse dataset, named StorySalon, with a far larger vocabulary than existing animation-specific datasets; (iii) we adopt a three-stage curriculum training strategy, that enables style transfer, visual context conditioning, and human feedback alignment, respectively. Quantitative experiments and human evaluation have validated the superiority of our proposed model, in terms of image quality, style consistency, content consistency, and visual-language alignment. We will make the code, model, and dataset publicly available to the research community.
CounTR: Transformer-based Generalised Visual Counting
In this paper, we consider the problem of generalised visual object counting, with the goal of developing a computational model for counting the number of objects from arbitrary semantic categories, using arbitrary number of "exemplars", i.e. zero-shot or few-shot counting. To this end, we make the following four contributions: (1) We introduce a novel transformer-based architecture for generalised visual object counting, termed as Counting Transformer (CounTR), which explicitly capture the similarity between image patches or with given "exemplars" with the attention mechanism;(2) We adopt a two-stage training regime, that first pre-trains the model with self-supervised learning, and followed by supervised fine-tuning;(3) We propose a simple, scalable pipeline for synthesizing training images with a large number of instances or that from different semantic categories, explicitly forcing the model to make use of the given "exemplars";(4) We conduct thorough ablation studies on the large-scale counting benchmark, e.g. FSC-147, and demonstrate state-of-the-art performance on both zero and few-shot settings.
Neural data-to-text generation: A comparison between pipeline and end-to-end architectures
Traditionally, most data-to-text applications have been designed using a modular pipeline architecture, in which non-linguistic input data is converted into natural language through several intermediate transformations. In contrast, recent neural models for data-to-text generation have been proposed as end-to-end approaches, where the non-linguistic input is rendered in natural language with much less explicit intermediate representations in-between. This study introduces a systematic comparison between neural pipeline and end-to-end data-to-text approaches for the generation of text from RDF triples. Both architectures were implemented making use of state-of-the art deep learning methods as the encoder-decoder Gated-Recurrent Units (GRU) and Transformer. Automatic and human evaluations together with a qualitative analysis suggest that having explicit intermediate steps in the generation process results in better texts than the ones generated by end-to-end approaches. Moreover, the pipeline models generalize better to unseen inputs. Data and code are publicly available.
Efficient NLP Model Finetuning via Multistage Data Filtering
As model finetuning is central to the modern NLP, we set to maximize its efficiency. Motivated by redundancy in training examples and the sheer sizes of pretrained models, we exploit a key opportunity: training only on important data. To this end, we set to filter training examples in a streaming fashion, in tandem with training the target model. Our key techniques are two: (1) automatically determine a training loss threshold for skipping backward training passes; (2) run a meta predictor for further skipping forward training passes. We integrate the above techniques in a holistic, three-stage training process. On a diverse set of benchmarks, our method reduces the required training examples by up to 5.3times and training time by up to 6.8times, while only seeing minor accuracy degradation. Our method is effective even when training one epoch, where each training example is encountered only once. It is simple to implement and is compatible with the existing finetuning techniques. Code is available at: https://github.com/xo28/efficient- NLP-multistage-training
Calorie Aware Automatic Meal Kit Generation from an Image
Calorie and nutrition research has attained increased interest in recent years. But, due to the complexity of the problem, literature in this area focuses on a limited subset of ingredients or dish types and simple convolutional neural networks or traditional machine learning. Simultaneously, estimation of ingredient portions can help improve calorie estimation and meal re-production from a given image. In this paper, given a single cooking image, a pipeline for calorie estimation and meal re-production for different servings of the meal is proposed. The pipeline contains two stages. In the first stage, a set of ingredients associated with the meal in the given image are predicted. In the second stage, given image features and ingredients, portions of the ingredients and finally the total meal calorie are simultaneously estimated using a deep transformer-based model. Portion estimation introduced in the model helps improve calorie estimation and is also beneficial for meal re-production in different serving sizes. To demonstrate the benefits of the pipeline, the model can be used for meal kits generation. To evaluate the pipeline, the large scale dataset Recipe1M is used. Prior to experiments, the Recipe1M dataset is parsed and explicitly annotated with portions of ingredients. Experiments show that using ingredients and their portions significantly improves calorie estimation. Also, a visual interface is created in which a user can interact with the pipeline to reach accurate calorie estimations and generate a meal kit for cooking purposes.
One-stop Training of Multiple Capacity Models
Training models with varying capacities can be advantageous for deploying them in different scenarios. While high-capacity models offer better performance, low-capacity models require fewer computing resources for training and inference. In this work, we propose a novel one-stop training framework to jointly train high-capacity and low-capactiy models. This framework consists of two composite model architectures and a joint training algorithm called Two-Stage Joint-Training (TSJT). Unlike knowledge distillation, where multiple capacity models are trained from scratch separately, our approach integrates supervisions from different capacity models simultaneously, leading to faster and more efficient convergence. Extensive experiments on the multilingual machine translation benchmark WMT10 show that our method outperforms low-capacity baseline models and achieves comparable or better performance on high-capacity models. Notably, the analysis demonstrates that our method significantly influences the initial training process, leading to more efficient convergence and superior solutions.
Distiller: A Systematic Study of Model Distillation Methods in Natural Language Processing
We aim to identify how different components in the KD pipeline affect the resulting performance and how much the optimal KD pipeline varies across different datasets/tasks, such as the data augmentation policy, the loss function, and the intermediate representation for transferring the knowledge between teacher and student. To tease apart their effects, we propose Distiller, a meta KD framework that systematically combines a broad range of techniques across different stages of the KD pipeline, which enables us to quantify each component's contribution. Within Distiller, we unify commonly used objectives for distillation of intermediate representations under a universal mutual information (MI) objective and propose a class of MI-alpha objective functions with better bias/variance trade-off for estimating the MI between the teacher and the student. On a diverse set of NLP datasets, the best Distiller configurations are identified via large-scale hyperparameter optimization. Our experiments reveal the following: 1) the approach used to distill the intermediate representations is the most important factor in KD performance, 2) among different objectives for intermediate distillation, MI-alpha performs the best, and 3) data augmentation provides a large boost for small training datasets or small student networks. Moreover, we find that different datasets/tasks prefer different KD algorithms, and thus propose a simple AutoDistiller algorithm that can recommend a good KD pipeline for a new dataset.
Enhancing LLM Agents for Code Generation with Possibility and Pass-rate Prioritized Experience Replay
Nowadays transformer-based Large Language Models (LLM) for code generation tasks usually apply sampling and filtering pipelines. Due to the sparse reward problem in code generation tasks caused by one-token incorrectness, transformer-based models will sample redundant programs till they find a correct one, leading to low efficiency. To overcome the challenge, we incorporate Experience Replay (ER) in the fine-tuning phase, where codes and programs produced are stored and will be replayed to give the LLM agent a chance to learn from past experiences. Based on the spirit of ER, we introduce a novel approach called BTP pipeline which consists of three phases: beam search sampling, testing phase, and prioritized experience replay phase. The approach makes use of failed programs collected by code models and replays programs with high Possibility and Pass-rate Prioritized value (P2Value) from the replay buffer to improve efficiency. P2Value comprehensively considers the possibility of transformers' output and pass rate and can make use of the redundant resources caused by the problem that most programs collected by LLMs fail to pass any tests. We empirically apply our approach in several LLMs, demonstrating that it enhances their performance in code generation tasks and surpasses existing baselines.
TokenVerse: Towards Unifying Speech and NLP Tasks via Transducer-based ASR
In traditional conversational intelligence from speech, a cascaded pipeline is used, involving tasks such as voice activity detection, diarization, transcription, and subsequent processing with different NLP models for tasks like semantic endpointing and named entity recognition (NER). Our paper introduces TokenVerse, a single Transducer-based model designed to handle multiple tasks. This is achieved by integrating task-specific tokens into the reference text during ASR model training, streamlining the inference and eliminating the need for separate NLP models. In addition to ASR, we conduct experiments on 3 different tasks: speaker change detection, endpointing, and NER. Our experiments on a public and a private dataset show that the proposed method improves ASR by up to 7.7% in relative WER while outperforming the cascaded pipeline approach in individual task performance. Our code is publicly available: https://github.com/idiap/tokenverse-unifying-speech-nlp
RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture
There are two common ways in which developers are incorporating proprietary and domain-specific data when building applications of Large Language Models (LLMs): Retrieval-Augmented Generation (RAG) and Fine-Tuning. RAG augments the prompt with the external data, while fine-Tuning incorporates the additional knowledge into the model itself. However, the pros and cons of both approaches are not well understood. In this paper, we propose a pipeline for fine-tuning and RAG, and present the tradeoffs of both for multiple popular LLMs, including Llama2-13B, GPT-3.5, and GPT-4. Our pipeline consists of multiple stages, including extracting information from PDFs, generating questions and answers, using them for fine-tuning, and leveraging GPT-4 for evaluating the results. We propose metrics to assess the performance of different stages of the RAG and fine-Tuning pipeline. We conduct an in-depth study on an agricultural dataset. Agriculture as an industry has not seen much penetration of AI, and we study a potentially disruptive application - what if we could provide location-specific insights to a farmer? Our results show the effectiveness of our dataset generation pipeline in capturing geographic-specific knowledge, and the quantitative and qualitative benefits of RAG and fine-tuning. We see an accuracy increase of over 6 p.p. when fine-tuning the model and this is cumulative with RAG, which increases accuracy by 5 p.p. further. In one particular experiment, we also demonstrate that the fine-tuned model leverages information from across geographies to answer specific questions, increasing answer similarity from 47% to 72%. Overall, the results point to how systems built using LLMs can be adapted to respond and incorporate knowledge across a dimension that is critical for a specific industry, paving the way for further applications of LLMs in other industrial domains.
Data Movement Is All You Need: A Case Study on Optimizing Transformers
Transformers are one of the most important machine learning workloads today. Training one is a very compute-intensive task, often taking days or weeks, and significant attention has been given to optimizing transformers. Despite this, existing implementations do not efficiently utilize GPUs. We find that data movement is the key bottleneck when training. Due to Amdahl's Law and massive improvements in compute performance, training has now become memory-bound. Further, existing frameworks use suboptimal data layouts. Using these insights, we present a recipe for globally optimizing data movement in transformers. We reduce data movement by up to 22.91% and overall achieve a 1.30x performance improvement over state-of-the-art frameworks when training a BERT encoder layer and 1.19x for the entire BERT. Our approach is applicable more broadly to optimizing deep neural networks, and offers insight into how to tackle emerging performance bottlenecks.
Scaling Neural Machine Translation
Sequence to sequence learning models still require several days to reach state of the art performance on large benchmark datasets using a single machine. This paper shows that reduced precision and large batch training can speedup training by nearly 5x on a single 8-GPU machine with careful tuning and implementation. On WMT'14 English-German translation, we match the accuracy of Vaswani et al. (2017) in under 5 hours when training on 8 GPUs and we obtain a new state of the art of 29.3 BLEU after training for 85 minutes on 128 GPUs. We further improve these results to 29.8 BLEU by training on the much larger Paracrawl dataset. On the WMT'14 English-French task, we obtain a state-of-the-art BLEU of 43.2 in 8.5 hours on 128 GPUs.
Jetfire: Efficient and Accurate Transformer Pretraining with INT8 Data Flow and Per-Block Quantization
Pretraining transformers are generally time-consuming. Fully quantized training (FQT) is a promising approach to speed up pretraining. However, most FQT methods adopt a quantize-compute-dequantize procedure, which often leads to suboptimal speedup and significant performance degradation when used in transformers due to the high memory access overheads and low-precision computations. In this work, we propose Jetfire, an efficient and accurate INT8 training method specific to transformers. Our method features an INT8 data flow to optimize memory access and a per-block quantization method to maintain the accuracy of pretrained transformers. Extensive experiments demonstrate that our INT8 FQT method achieves comparable accuracy to the FP16 training baseline and outperforms the existing INT8 training works for transformers. Moreover, for a standard transformer block, our method offers an end-to-end training speedup of 1.42x and a 1.49x memory reduction compared to the FP16 baseline.
UKP-SQUARE: An Online Platform for Question Answering Research
Recent advances in NLP and information retrieval have given rise to a diverse set of question answering tasks that are of different formats (e.g., extractive, abstractive), require different model architectures (e.g., generative, discriminative), and setups (e.g., with or without retrieval). Despite having a large number of powerful, specialized QA pipelines (which we refer to as Skills) that consider a single domain, model or setup, there exists no framework where users can easily explore and compare such pipelines and can extend them according to their needs. To address this issue, we present UKP-SQUARE, an extensible online QA platform for researchers which allows users to query and analyze a large collection of modern Skills via a user-friendly web interface and integrated behavioural tests. In addition, QA researchers can develop, manage, and share their custom Skills using our microservices that support a wide range of models (Transformers, Adapters, ONNX), datastores and retrieval techniques (e.g., sparse and dense). UKP-SQUARE is available on https://square.ukp-lab.de.
The USYD-JD Speech Translation System for IWSLT 2021
This paper describes the University of Sydney& JD's joint submission of the IWSLT 2021 low resource speech translation task. We participated in the Swahili-English direction and got the best scareBLEU (25.3) score among all the participants. Our constrained system is based on a pipeline framework, i.e. ASR and NMT. We trained our models with the officially provided ASR and MT datasets. The ASR system is based on the open-sourced tool Kaldi and this work mainly explores how to make the most of the NMT models. To reduce the punctuation errors generated by the ASR model, we employ our previous work SlotRefine to train a punctuation correction model. To achieve better translation performance, we explored the most recent effective strategies, including back translation, knowledge distillation, multi-feature reranking and transductive finetuning. For model structure, we tried auto-regressive and non-autoregressive models, respectively. In addition, we proposed two novel pre-train approaches, i.e. de-noising training and bidirectional training to fully exploit the data. Extensive experiments show that adding the above techniques consistently improves the BLEU scores, and the final submission system outperforms the baseline (Transformer ensemble model trained with the original parallel data) by approximately 10.8 BLEU score, achieving the SOTA performance.
RNR: Teaching Large Language Models to Follow Roles and Rules
Instruction fine-tuning (IFT) elicits instruction following capabilities and steers the behavior of large language models (LLMs) via supervised learning. However, existing models trained on open-source IFT datasets only have the ability to follow instructions from users, and often fail to follow complex role and rules specified by developers, a.k.a. system prompts. The ability to follow these roles and rules is essential for deployment, as it ensures that the model safely interacts with users within developer defined guidelines. To improve such role and rule following ability, we propose \model, an automated data generation pipeline that generates diverse roles and rules from existing IFT instructions, along with corresponding responses. This data can then be used to train models that follow complex system prompts. The models are evaluated on our newly created benchmarks for role and rule following ability, as well as standard instruction-following benchmarks and general NLP tasks. Our framework significantly improves role and rule following capability in LLMs, as evidenced by over 25% increase in pass-rate on rule adherence, i.e. following all requirements, in our experiments with the Alpaca and Ultrachat datasets. Moreover, our models achieves this increase without any regression on popular instruction following benchmarks.
MediaPipe Hands: On-device Real-time Hand Tracking
We present a real-time on-device hand tracking pipeline that predicts hand skeleton from single RGB camera for AR/VR applications. The pipeline consists of two models: 1) a palm detector, 2) a hand landmark model. It's implemented via MediaPipe, a framework for building cross-platform ML solutions. The proposed model and pipeline architecture demonstrates real-time inference speed on mobile GPUs and high prediction quality. MediaPipe Hands is open sourced at https://mediapipe.dev.
Challenges and Opportunities of Using Transformer-Based Multi-Task Learning in NLP Through ML Lifecycle: A Survey
The increasing adoption of natural language processing (NLP) models across industries has led to practitioners' need for machine learning systems to handle these models efficiently, from training to serving them in production. However, training, deploying, and updating multiple models can be complex, costly, and time-consuming, mainly when using transformer-based pre-trained language models. Multi-Task Learning (MTL) has emerged as a promising approach to improve efficiency and performance through joint training, rather than training separate models. Motivated by this, we first provide an overview of transformer-based MTL approaches in NLP. Then, we discuss the challenges and opportunities of using MTL approaches throughout typical ML lifecycle phases, specifically focusing on the challenges related to data engineering, model development, deployment, and monitoring phases. This survey focuses on transformer-based MTL architectures and, to the best of our knowledge, is novel in that it systematically analyses how transformer-based MTL in NLP fits into ML lifecycle phases. Furthermore, we motivate research on the connection between MTL and continual learning (CL), as this area remains unexplored. We believe it would be practical to have a model that can handle both MTL and CL, as this would make it easier to periodically re-train the model, update it due to distribution shifts, and add new capabilities to meet real-world requirements.
Data, Data Everywhere: A Guide for Pretraining Dataset Construction
The impressive capabilities of recent language models can be largely attributed to the multi-trillion token pretraining datasets that they are trained on. However, model developers fail to disclose their construction methodology which has lead to a lack of open information on how to develop effective pretraining sets. To address this issue, we perform the first systematic study across the entire pipeline of pretraining set construction. First, we run ablations on existing techniques for pretraining set development to identify which methods translate to the largest gains in model accuracy on downstream evaluations. Then, we categorize the most widely used data source, web crawl snapshots, across the attributes of toxicity, quality, type of speech, and domain. Finally, we show how such attribute information can be used to further refine and improve the quality of a pretraining set. These findings constitute an actionable set of steps that practitioners can use to develop high quality pretraining sets.
ProTrain: Efficient LLM Training via Memory-Aware Techniques
It is extremely memory-hungry to train Large Language Models (LLM). To solve this problem, existing work exploits the combination of CPU and GPU for the training process, such as ZeRO-Offload. Such a technique largely democratizes billion-scale model training, making it possible to train with few consumer graphics cards. However, based on our observation, existing frameworks often provide coarse-grained memory management and require experienced experts in configuration tuning, leading to suboptimal hardware utilization and performance. This paper proposes ProTrain, a novel training system that intelligently balances memory usage and performance by coordinating memory, computation, and IO. ProTrain achieves adaptive memory management through Chunk-Based Model State Management and Block-Wise Activation Management, guided by a Memory-Aware Runtime Profiler without user intervention. ProTrain does not change the training algorithm and thus does not compromise accuracy. Experiments show that ProTrain improves training throughput by 1.43times to 2.71times compared to the SOTA training systems.