new

Get trending papers in your email inbox!

Subscribe

Daily Papers

by AK and the research community

A Unified View of Long-Sequence Models towards Modeling Million-Scale Dependencies

Ever since their conception, Transformers have taken over traditional sequence models in many tasks, such as NLP, image classification, and video/audio processing, for their fast training and superior performance. Much of the merit is attributable to positional encoding and multi-head attention. However, Transformers fall short in learning long-range dependencies mainly due to the quadratic complexity scaled with context length, in terms of both time and space. Consequently, over the past five years, a myriad of methods has been proposed to make Transformers more efficient. In this work, we first take a step back, study and compare existing solutions to long-sequence modeling in terms of their pure mathematical formulation. Specifically, we summarize them using a unified template, given their shared nature of token mixing. Through benchmarks, we then demonstrate that long context length does yield better performance, albeit application-dependent, and traditional Transformer models fall short in taking advantage of long-range dependencies. Next, inspired by emerging sparse models of huge capacity, we propose a machine learning system for handling million-scale dependencies. As a proof of concept, we evaluate the performance of one essential component of this system, namely, the distributed multi-head attention. We show that our algorithm can scale up attention computation by almost 40times using four GeForce RTX 4090 GPUs, compared to vanilla multi-head attention mechanism. We believe this study is an instrumental step towards modeling million-scale dependencies.

UniGeo: Unifying Geometry Logical Reasoning via Reformulating Mathematical Expression

Geometry problem solving is a well-recognized testbed for evaluating the high-level multi-modal reasoning capability of deep models. In most existing works, two main geometry problems: calculation and proving, are usually treated as two specific tasks, hindering a deep model to unify its reasoning capability on multiple math tasks. However, in essence, these two tasks have similar problem representations and overlapped math knowledge which can improve the understanding and reasoning ability of a deep model on both two tasks. Therefore, we construct a large-scale Unified Geometry problem benchmark, UniGeo, which contains 4,998 calculation problems and 9,543 proving problems. Each proving problem is annotated with a multi-step proof with reasons and mathematical expressions. The proof can be easily reformulated as a proving sequence that shares the same formats with the annotated program sequence for calculation problems. Naturally, we also present a unified multi-task Geometric Transformer framework, Geoformer, to tackle calculation and proving problems simultaneously in the form of sequence generation, which finally shows the reasoning ability can be improved on both two tasks by unifying formulation. Furthermore, we propose a Mathematical Expression Pretraining (MEP) method that aims to predict the mathematical expressions in the problem solution, thus improving the Geoformer model. Experiments on the UniGeo demonstrate that our proposed Geoformer obtains state-of-the-art performance by outperforming task-specific model NGS with over 5.6% and 3.2% accuracies on calculation and proving problems, respectively.

Mamo: a Mathematical Modeling Benchmark with Solvers

Mathematical modeling involves representing real-world phenomena, systems, or problems using mathematical expressions and equations to analyze, understand, and predict their behavior. Given that this process typically requires experienced experts, there is an interest in exploring whether Large Language Models (LLMs) can undertake mathematical modeling to potentially decrease human labor. To evaluate of LLMs in mathematical modeling, we introduce a new benchmark, Mamo, that transcends traditional result-oriented assessments. Unlike conventional methods that primarily assess LLMs based on the accuracy of solutions to mathematical problems, our approach offers deeper insight into the modeling process itself. By focusing on the processes LLMs undertake rather than the correctness of their final solutions, Mamo pioneers a novel evaluation paradigm. This shift underscores the importance of understanding the inherent modeling capabilities of LLMs, paving the way for a more nuanced and comprehensive analysis of their problem-solving strategies. Our work marks a significant advancement in the field, suggesting a new direction for future research by emphasizing the evaluation of LLMs' modeling processes over the mere correctness of answers. This benchmark not only facilitates a better understanding of LLMs' mathematical modeling capabilities but also sets a new standard for evaluating their performance in complex problem-solving scenarios.

A Flexible Parametric Modelling Framework for Survival Analysis

We introduce a general, flexible, parametric survival modelling framework which encompasses key shapes of hazard function (constant, increasing, decreasing, up-then-down, down-then-up), various common survival distributions (log-logistic, Burr type XII, Weibull, Gompertz), and includes defective distributions (i.e., cure models). This generality is achieved using four basic distributional parameters: two scale-type parameters and two shape parameters. Generalising to covariate dependence, the scale-type regression components correspond to accelerated failure time (AFT) and proportional hazards (PH) models. Therefore, this general formulation unifies the most popular survival models which allows us to consider the practical value of possible modelling choices for survival data. Furthermore, in line with our proposed flexible baseline distribution, we advocate the use of multi-parameter regression in which more than one distributional parameter depends on covariates - rather than the usual convention of having a single covariate-dependent (scale) parameter. While many choices are available, we suggest introducing covariates through just one or other of the two scale parameters, which covers AFT and PH models, in combination with a `power' shape parameter, which allows for more complex non-AFT/non-PH effects, while the other shape parameter remains covariate-independent, and handles automatic selection of the baseline distribution. We explore inferential issues in simulations, both with and without a covariate, with particular focus on evidence concerning the need, or otherwise, to include both AFT and PH parameters. We illustrate the efficacy of our modelling framework by investigating differences between treatment groups using data from a lung cancer study and a melanoma study. Censoring is accommodated throughout.

JiuZhang 2.0: A Unified Chinese Pre-trained Language Model for Multi-task Mathematical Problem Solving

Although pre-trained language models~(PLMs) have recently advanced the research progress in mathematical reasoning, they are not specially designed as a capable multi-task solver, suffering from high cost for multi-task deployment (\eg a model copy for a task) and inferior performance on complex mathematical problems in practical applications. To address these issues, in this paper, we propose JiuZhang~2.0, a unified Chinese PLM specially for multi-task mathematical problem solving. Our idea is to maintain a moderate-sized model and employ the cross-task knowledge sharing to improve the model capacity in a multi-task setting. Specially, we construct a Mixture-of-Experts~(MoE) architecture for modeling mathematical text, so as to capture the common mathematical knowledge across tasks. For optimizing the MoE architecture, we design multi-task continual pre-training and multi-task fine-tuning strategies for multi-task adaptation. These training strategies can effectively decompose the knowledge from the task data and establish the cross-task sharing via expert networks. In order to further improve the general capacity of solving different complex tasks, we leverage large language models~(LLMs) as complementary models to iteratively refine the generated solution by our PLM, via in-context learning. Extensive experiments have demonstrated the effectiveness of our model.

PROSE: Predicting Operators and Symbolic Expressions using Multimodal Transformers

Approximating nonlinear differential equations using a neural network provides a robust and efficient tool for various scientific computing tasks, including real-time predictions, inverse problems, optimal controls, and surrogate modeling. Previous works have focused on embedding dynamical systems into networks through two approaches: learning a single solution operator (i.e., the mapping from input parametrized functions to solutions) or learning the governing system of equations (i.e., the constitutive model relative to the state variables). Both of these approaches yield different representations for the same underlying data or function. Additionally, observing that families of differential equations often share key characteristics, we seek one network representation across a wide range of equations. Our method, called Predicting Operators and Symbolic Expressions (PROSE), learns maps from multimodal inputs to multimodal outputs, capable of generating both numerical predictions and mathematical equations. By using a transformer structure and a feature fusion approach, our network can simultaneously embed sets of solution operators for various parametric differential equations using a single trained network. Detailed experiments demonstrate that the network benefits from its multimodal nature, resulting in improved prediction accuracy and better generalization. The network is shown to be able to handle noise in the data and errors in the symbolic representation, including noisy numerical values, model misspecification, and erroneous addition or deletion of terms. PROSE provides a new neural network framework for differential equations which allows for more flexibility and generality in learning operators and governing equations from data.

Mathematical modelling of flow and adsorption in a gas chromatograph

In this paper, a mathematical model is developed to describe the evolution of the concentration of compounds through a gas chromatography column. The model couples mass balances and kinetic equations for all components. Both single and multiple-component cases are considered with constant or variable velocity. Non-dimensionalisation indicates the small effect of diffusion. The system where diffusion is neglected is analysed using Laplace transforms. In the multiple-component case, it is demonstrated that the competition between the compounds is negligible and the equations may be decoupled. This reduces the problem to solving a single integral equation to determine the concentration profile for all components (since they are scaled versions of each other). For a given analyte, we then only two parameters need to be fitted to the data. To verify this approach, the full governing equations are also solved numerically using the finite difference method and a global adaptive quadrature method to integrate the Laplace transformation. Comparison with the Laplace solution verifies the high degree of accuracy of the simpler Laplace form. The Laplace solution is then verified against experimental data from BTEX chromatography. This novel method, which involves solving a single equation and fitting parameters in pairs for individual components, is highly efficient. It is significantly faster and simpler than the full numerical solution and avoids the computationally expensive methods that would normally be used to fit all curves at the same time.

Symmetries and Asymptotically Flat Space

The construction of a theory of quantum gravity is an outstanding problem that can benefit from better understanding the laws of nature that are expected to hold in regimes currently inaccessible to experiment. Such fundamental laws can be found by considering the classical counterparts of a quantum theory. For example, conservation laws in a quantum theory often stem from conservation laws of the corresponding classical theory. In order to construct such laws, this thesis is concerned with the interplay between symmetries and conservation laws of classical field theories and their application to asymptotically flat spacetimes. This work begins with an explanation of symmetries in field theories with a focus on variational symmetries and their associated conservation laws. Boundary conditions for general relativity are then formulated on three-dimensional asymptotically flat spacetimes at null infinity using the method of conformal completion. Conserved quantities related to asymptotic symmetry transformations are derived and their properties are studied. This is done in a manifestly coordinate independent manner. In a separate step a coordinate system is introduced, such that the results can be compared to existing literature. Next, asymptotically flat spacetimes which contain both future as well as past null infinity are considered. Asymptotic symmetries occurring at these disjoint regions of three-dimensional asymptotically flat spacetimes are linked and the corresponding conserved quantities are matched. Finally, it is shown how asymptotic symmetries lead to the notion of distinct Minkowski spaces that can be differentiated by conserved quantities.

Layer Swapping for Zero-Shot Cross-Lingual Transfer in Large Language Models

Model merging, such as model souping, is the practice of combining different models with the same architecture together without further training. In this work, we present a model merging methodology that addresses the difficulty of fine-tuning Large Language Models (LLMs) for target tasks in non-English languages, where task-specific data is often unavailable. We focus on mathematical reasoning and without in-language math data, facilitate cross-lingual transfer by composing language and math capabilities. Starting from the same pretrained model, we fine-tune separate "experts" on math instruction data in English and on generic instruction data in the target language. We then replace the top and bottom transformer layers of the math expert directly with layers from the language expert, which consequently enhances math performance in the target language. The resulting merged models outperform the individual experts and other merging methods on the math benchmark, MGSM, by 10% across four major languages where math instruction data is scarce. In addition, this layer swapping is simple, inexpensive, and intuitive, as it is based on an interpretative analysis of the most important parameter changes during the fine-tuning of each expert. The ability to successfully re-compose LLMs for cross-lingual transfer in this manner opens up future possibilities to combine model expertise, create modular solutions, and transfer reasoning capabilities across languages all post hoc.

Lie Group Decompositions for Equivariant Neural Networks

Invariance and equivariance to geometrical transformations have proven to be very useful inductive biases when training (convolutional) neural network models, especially in the low-data regime. Much work has focused on the case where the symmetry group employed is compact or abelian, or both. Recent work has explored enlarging the class of transformations used to the case of Lie groups, principally through the use of their Lie algebra, as well as the group exponential and logarithm maps. The applicability of such methods to larger transformation groups is limited by the fact that depending on the group of interest G, the exponential map may not be surjective. Further limitations are encountered when G is neither compact nor abelian. Using the structure and geometry of Lie groups and their homogeneous spaces, we present a framework by which it is possible to work with such groups primarily focusing on the Lie groups G = GL^{+}(n, R) and G = SL(n, R), as well as their representation as affine transformations R^{n} rtimes G. Invariant integration as well as a global parametrization is realized by decomposing the `larger` groups into subgroups and submanifolds which can be handled individually. Under this framework, we show how convolution kernels can be parametrized to build models equivariant with respect to affine transformations. We evaluate the robustness and out-of-distribution generalisation capability of our model on the standard affine-invariant benchmark classification task, where we outperform all previous equivariant models as well as all Capsule Network proposals.

UGMathBench: A Diverse and Dynamic Benchmark for Undergraduate-Level Mathematical Reasoning with Large Language Models

Large Language Models (LLMs) have made significant strides in mathematical reasoning, underscoring the need for a comprehensive and fair evaluation of their capabilities. However, existing benchmarks often fall short, either lacking extensive coverage of undergraduate-level mathematical problems or probably suffering from test-set contamination. To address these issues, we introduce UGMathBench, a diverse and dynamic benchmark specifically designed for evaluating undergraduate-level mathematical reasoning with LLMs. UGMathBench comprises 5,062 problems across 16 subjects and 111 topics, featuring 10 distinct answer types. Each problem includes three randomized versions, with additional versions planned for release as leading open-source LLMs become saturated in UGMathBench. Furthermore, we propose two key metrics: effective accuracy (EAcc), which measures the percentage of correctly solved problems across all three versions, and reasoning gap (Delta), which assesses reasoning robustness by calculating the difference between the average accuracy across all versions and EAcc. Our extensive evaluation of 23 leading LLMs reveals that the highest EAcc achieved is 56.3\% by OpenAI-o1-mini, with large Delta values observed across different models. This highlights the need for future research aimed at developing "large reasoning models" with high EAcc and Delta = 0. We anticipate that the release of UGMathBench, along with its detailed evaluation codes, will serve as a valuable resource to advance the development of LLMs in solving mathematical problems.

A Deep Learning Framework for Lifelong Machine Learning

Humans can learn a variety of concepts and skills incrementally over the course of their lives while exhibiting many desirable properties, such as continual learning without forgetting, forward transfer and backward transfer of knowledge, and learning a new concept or task with only a few examples. Several lines of machine learning research, such as lifelong machine learning, few-shot learning, and transfer learning attempt to capture these properties. However, most previous approaches can only demonstrate subsets of these properties, often by different complex mechanisms. In this work, we propose a simple yet powerful unified deep learning framework that supports almost all of these properties and approaches through one central mechanism. Experiments on toy examples support our claims. We also draw connections between many peculiarities of human learning (such as memory loss and "rain man") and our framework. As academics, we often lack resources required to build and train, deep neural networks with billions of parameters on hundreds of TPUs. Thus, while our framework is still conceptual, and our experiment results are surely not SOTA, we hope that this unified lifelong learning framework inspires new work towards large-scale experiments and understanding human learning in general. This paper is summarized in two short YouTube videos: https://youtu.be/gCuUyGETbTU (part 1) and https://youtu.be/XsaGI01b-1o (part 2).

URSA: Understanding and Verifying Chain-of-thought Reasoning in Multimodal Mathematics

Chain-of-thought (CoT) reasoning has been widely applied in the mathematical reasoning of Large Language Models (LLMs). Recently, the introduction of derivative process supervision on CoT trajectories has sparked discussions on enhancing scaling capabilities during test time, thereby boosting the potential of these models. However, in multimodal mathematical reasoning, the scarcity of high-quality CoT training data has hindered existing models from achieving high-precision CoT reasoning and has limited the realization of reasoning potential during test time. In this work, we propose a three-module synthesis strategy that integrates CoT distillation, trajectory-format rewriting, and format unification. It results in a high-quality CoT reasoning instruction fine-tuning dataset in multimodal mathematics, MMathCoT-1M. We comprehensively validate the state-of-the-art (SOTA) performance of the trained URSA-7B model on multiple multimodal mathematical benchmarks. For test-time scaling, we introduce a data synthesis strategy that automatically generates process annotation datasets, known as DualMath-1.1M, focusing on both interpretation and logic. By further training URSA-7B on DualMath-1.1M, we transition from CoT reasoning capabilities to robust supervision abilities. The trained URSA-RM-7B acts as a verifier, effectively enhancing the performance of URSA-7B at test time. URSA-RM-7B also demonstrates excellent out-of-distribution (OOD) verifying capabilities, showcasing its generalization. Model weights, training data and code will be open-sourced.

How to Train Your HiPPO: State Space Models with Generalized Orthogonal Basis Projections

Linear time-invariant state space models (SSM) are a classical model from engineering and statistics, that have recently been shown to be very promising in machine learning through the Structured State Space sequence model (S4). A core component of S4 involves initializing the SSM state matrix to a particular matrix called a HiPPO matrix, which was empirically important for S4's ability to handle long sequences. However, the specific matrix that S4 uses was actually derived in previous work for a particular time-varying dynamical system, and the use of this matrix as a time-invariant SSM had no known mathematical interpretation. Consequently, the theoretical mechanism by which S4 models long-range dependencies actually remains unexplained. We derive a more general and intuitive formulation of the HiPPO framework, which provides a simple mathematical interpretation of S4 as a decomposition onto exponentially-warped Legendre polynomials, explaining its ability to capture long dependencies. Our generalization introduces a theoretically rich class of SSMs that also lets us derive more intuitive S4 variants for other bases such as the Fourier basis, and explains other aspects of training S4, such as how to initialize the important timescale parameter. These insights improve S4's performance to 86% on the Long Range Arena benchmark, with 96% on the most difficult Path-X task.

The probabilistic world

Physics is based on probabilities as fundamental entities of a mathematical description. Expectation values of observables are computed according to the classical statistical rule. The overall probability distribution for one world covers all times. The quantum formalism arises once one focuses on the evolution of the time-local probabilistic information. Wave functions or the density matrix allow the formulation of a general linear evolution law for classical statistics. The quantum formalism for classical statistics is a powerful tool which allows us to implement for generalized Ising models the momentum observable with the associated Fourier representation. The association of operators to observables permits the computation of expectation values in terms of the density matrix by the usual quantum rule. We show that probabilistic cellular automata are quantum systems in a formulation with discrete time steps and real wave functions. With a complex structure the evolution operator for automata can be expressed in terms of a Hamiltonian involving fermionic creation and annihilation operators. The time-local probabilistic information amounts to a subsystem of the overall probabilistic system which is correlated with its environment consisting of the past and future. Such subsystems typically involve probabilistic observables for which only a probability distribution for their possible measurement values is available. Incomplete statistics does not permit to compute classical correlation functions for arbitrary subsystem-observables. Bell's inequalities are not generally applicable.

Math Agents: Computational Infrastructure, Mathematical Embedding, and Genomics

The advancement in generative AI could be boosted with more accessible mathematics. Beyond human-AI chat, large language models (LLMs) are emerging in programming, algorithm discovery, and theorem proving, yet their genomics application is limited. This project introduces Math Agents and mathematical embedding as fresh entries to the "Moore's Law of Mathematics", using a GPT-based workflow to convert equations from literature into LaTeX and Python formats. While many digital equation representations exist, there's a lack of automated large-scale evaluation tools. LLMs are pivotal as linguistic user interfaces, providing natural language access for human-AI chat and formal languages for large-scale AI-assisted computational infrastructure. Given the infinite formal possibility spaces, Math Agents, which interact with math, could potentially shift us from "big data" to "big math". Math, unlike the more flexible natural language, has properties subject to proof, enabling its use beyond traditional applications like high-validation math-certified icons for AI alignment aims. This project aims to use Math Agents and mathematical embeddings to address the ageing issue in information systems biology by applying multiscalar physics mathematics to disease models and genomic data. Generative AI with episodic memory could help analyse causal relations in longitudinal health records, using SIR Precision Health models. Genomic data is suggested for addressing the unsolved Alzheimer's disease problem.

Generating Mathematical Derivations with Large Language Models

The derivation of mathematical results in specialised fields using Large Language Models (LLMs) is an emerging research direction that can help identify models' limitations, and potentially support mathematical discovery. In this paper, we leverage a symbolic engine to generate derivations of equations at scale, and investigate the capabilities of LLMs when deriving goal equations from premises. Specifically, we employ in-context learning for GPT and fine-tune a range of T5 models to compare the robustness and generalisation of pre-training strategies to specialised models. Empirical results show that fine-tuned FLAN-T5-large (MathT5) outperforms GPT models on all static and out-of-distribution test sets in terms of absolute performance. However, an in-depth analysis reveals that the fine-tuned models are more sensitive to perturbations involving unseen symbols and (to a lesser extent) changes to equation structure. In addition, we analyse 1.7K equations and over 200 derivations to highlight common reasoning errors such as the inclusion of incorrect, irrelevant, and redundant equations, along with the tendency to skip derivation steps. Finally, we explore the suitability of existing metrics for evaluating mathematical derivations finding evidence that, while they capture general properties such as sensitivity to perturbations, they fail to highlight fine-grained reasoning errors and essential differences between models. Overall, this work demonstrates that training models on synthetic data can improve their mathematical capabilities beyond larger architectures.

Scalable Diffusion for Materials Generation

Generative models trained on internet-scale data are capable of generating novel and realistic texts, images, and videos. A natural next question is whether these models can advance science, for example by generating novel stable materials. Traditionally, models with explicit structures (e.g., graphs) have been used in modeling structural relationships in scientific data (e.g., atoms and bonds in crystals), but generating structures can be difficult to scale to large and complex systems. Another challenge in generating materials is the mismatch between standard generative modeling metrics and downstream applications. For instance, common metrics such as the reconstruction error do not correlate well with the downstream goal of discovering stable materials. In this work, we tackle the scalability challenge by developing a unified crystal representation that can represent any crystal structure (UniMat), followed by training a diffusion probabilistic model on these UniMat representations. Our empirical results suggest that despite the lack of explicit structure modeling, UniMat can generate high fidelity crystal structures from larger and more complex chemical systems, outperforming previous graph-based approaches under various generative modeling metrics. To better connect the generation quality of materials to downstream applications, such as discovering novel stable materials, we propose additional metrics for evaluating generative models of materials, including per-composition formation energy and stability with respect to convex hulls through decomposition energy from Density Function Theory (DFT). Lastly, we show that conditional generation with UniMat can scale to previously established crystal datasets with up to millions of crystals structures, outperforming random structure search (the current leading method for structure discovery) in discovering new stable materials.

A micro Lie theory for state estimation in robotics

A Lie group is an old mathematical abstract object dating back to the XIX century, when mathematician Sophus Lie laid the foundations of the theory of continuous transformation groups. As it often happens, its usage has spread over diverse areas of science and technology many years later. In robotics, we are recently experiencing an important trend in its usage, at least in the fields of estimation, and particularly in motion estimation for navigation. Yet for a vast majority of roboticians, Lie groups are highly abstract constructions and therefore difficult to understand and to use. This may be due to the fact that most of the literature on Lie theory is written by and for mathematicians and physicists, who might be more used than us to the deep abstractions this theory deals with. In estimation for robotics it is often not necessary to exploit the full capacity of the theory, and therefore an effort of selection of materials is required. In this paper, we will walk through the most basic principles of the Lie theory, with the aim of conveying clear and useful ideas, and leave a significant corpus of the Lie theory behind. Even with this mutilation, the material included here has proven to be extremely useful in modern estimation algorithms for robotics, especially in the fields of SLAM, visual odometry, and the like. Alongside this micro Lie theory, we provide a chapter with a few application examples, and a vast reference of formulas for the major Lie groups used in robotics, including most jacobian matrices and the way to easily manipulate them. We also present a new C++ template-only library implementing all the functionality described here.

Qwen2.5-Math Technical Report: Toward Mathematical Expert Model via Self-Improvement

In this report, we present a series of math-specific large language models: Qwen2.5-Math and Qwen2.5-Math-Instruct-1.5B/7B/72B. The core innovation of the Qwen2.5 series lies in integrating the philosophy of self-improvement throughout the entire pipeline, from pre-training and post-training to inference: (1) During the pre-training phase, Qwen2-Math-Instruct is utilized to generate large-scale, high-quality mathematical data. (2) In the post-training phase, we develop a reward model (RM) by conducting massive sampling from Qwen2-Math-Instruct. This RM is then applied to the iterative evolution of data in supervised fine-tuning (SFT). With a stronger SFT model, it's possible to iteratively train and update the RM, which in turn guides the next round of SFT data iteration. On the final SFT model, we employ the ultimate RM for reinforcement learning, resulting in the Qwen2.5-Math-Instruct. (3) Furthermore, during the inference stage, the RM is used to guide sampling, optimizing the model's performance. Qwen2.5-Math-Instruct supports both Chinese and English, and possess advanced mathematical reasoning capabilities, including Chain-of-Thought (CoT) and Tool-Integrated Reasoning (TIR). We evaluate our models on 10 mathematics datasets in both English and Chinese, such as GSM8K, MATH, GaoKao, AMC23, and AIME24, covering a range of difficulties from grade school level to math competition problems.

AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions

Computers calculate transcendental functions by approximating them through the composition of a few limited-precision instructions. For example, an exponential can be calculated with a Taylor series. These approximation methods were developed over the centuries by mathematicians, who emphasized the attainability of arbitrary precision. Computers, however, operate on few limited precision types, such as the popular float32. In this study, we show that when aiming for limited precision, existing approximation methods can be outperformed by programs automatically discovered from scratch by a simple evolutionary algorithm. In particular, over real numbers, our method can approximate the exponential function reaching orders of magnitude more precision for a given number of operations when compared to previous approaches. More practically, over float32 numbers and constrained to less than 1 ULP of error, the same method attains a speedup over baselines by generating code that triggers better XLA/LLVM compilation paths. In other words, in both cases, evolution searched a vast space of possible programs, without knowledge of mathematics, to discover previously unknown optimized approximations to high precision, for the first time. We also give evidence that these results extend beyond the exponential. The ubiquity of transcendental functions suggests that our method has the potential to reduce the cost of scientific computing applications.

Towards Cross Domain Generalization of Hamiltonian Representation via Meta Learning

Recent advances in deep learning for physics have focused on discovering shared representations of target systems by incorporating physics priors or inductive biases into neural networks. While effective, these methods are limited to the system domain, where the type of system remains consistent and thus cannot ensure the adaptation to new, or unseen physical systems governed by different laws. For instance, a neural network trained on a mass-spring system cannot guarantee accurate predictions for the behavior of a two-body system or any other system with different physical laws. In this work, we take a significant leap forward by targeting cross domain generalization within the field of Hamiltonian dynamics. We model our system with a graph neural network and employ a meta learning algorithm to enable the model to gain experience over a distribution of tasks and make it adapt to new physics. Our approach aims to learn a unified Hamiltonian representation that is generalizable across multiple system domains, thereby overcoming the limitations of system-specific models. Our results demonstrate that the meta-trained model not only adapts effectively to new systems but also captures a generalized Hamiltonian representation that is consistent across different physical domains. Overall, through the use of meta learning, we offer a framework that achieves cross domain generalization, providing a step towards a unified model for understanding a wide array of dynamical systems via deep learning.

JiuZhang3.0: Efficiently Improving Mathematical Reasoning by Training Small Data Synthesis Models

Mathematical reasoning is an important capability of large language models~(LLMs) for real-world applications. To enhance this capability, existing work either collects large-scale math-related texts for pre-training, or relies on stronger LLMs (\eg GPT-4) to synthesize massive math problems. Both types of work generally lead to large costs in training or synthesis. To reduce the cost, based on open-source available texts, we propose an efficient way that trains a small LLM for math problem synthesis, to efficiently generate sufficient high-quality pre-training data. To achieve it, we create a dataset using GPT-4 to distill its data synthesis capability into the small LLM. Concretely, we craft a set of prompts based on human education stages to guide GPT-4, to synthesize problems covering diverse math knowledge and difficulty levels. Besides, we adopt the gradient-based influence estimation method to select the most valuable math-related texts. The both are fed into GPT-4 for creating the knowledge distillation dataset to train the small LLM. We leverage it to synthesize 6 million math problems for pre-training our JiuZhang3.0 model, which only needs to invoke GPT-4 API 9.3k times and pre-train on 4.6B data. Experimental results have shown that JiuZhang3.0 achieves state-of-the-art performance on several mathematical reasoning datasets, under both natural language reasoning and tool manipulation settings. Our code and data will be publicly released in https://github.com/RUCAIBox/JiuZhang3.0.

Energy-Based Concept Bottleneck Models: Unifying Prediction, Concept Intervention, and Probabilistic Interpretations

Existing methods, such as concept bottleneck models (CBMs), have been successful in providing concept-based interpretations for black-box deep learning models. They typically work by predicting concepts given the input and then predicting the final class label given the predicted concepts. However, (1) they often fail to capture the high-order, nonlinear interaction between concepts, e.g., correcting a predicted concept (e.g., "yellow breast") does not help correct highly correlated concepts (e.g., "yellow belly"), leading to suboptimal final accuracy; (2) they cannot naturally quantify the complex conditional dependencies between different concepts and class labels (e.g., for an image with the class label "Kentucky Warbler" and a concept "black bill", what is the probability that the model correctly predicts another concept "black crown"), therefore failing to provide deeper insight into how a black-box model works. In response to these limitations, we propose Energy-based Concept Bottleneck Models (ECBMs). Our ECBMs use a set of neural networks to define the joint energy of candidate (input, concept, class) tuples. With such a unified interface, prediction, concept correction, and conditional dependency quantification are then represented as conditional probabilities, which are generated by composing different energy functions. Our ECBMs address both limitations of existing CBMs, providing higher accuracy and richer concept interpretations. Empirical results show that our approach outperforms the state-of-the-art on real-world datasets.

S2SNet: A Pretrained Neural Network for Superconductivity Discovery

Superconductivity allows electrical current to flow without any energy loss, and thus making solids superconducting is a grand goal of physics, material science, and electrical engineering. More than 16 Nobel Laureates have been awarded for their contribution to superconductivity research. Superconductors are valuable for sustainable development goals (SDGs), such as climate change mitigation, affordable and clean energy, industry, innovation and infrastructure, and so on. However, a unified physics theory explaining all superconductivity mechanism is still unknown. It is believed that superconductivity is microscopically due to not only molecular compositions but also the geometric crystal structure. Hence a new dataset, S2S, containing both crystal structures and superconducting critical temperature, is built upon SuperCon and Material Project. Based on this new dataset, we propose a novel model, S2SNet, which utilizes the attention mechanism for superconductivity prediction. To overcome the shortage of data, S2SNet is pre-trained on the whole Material Project dataset with Masked-Language Modeling (MLM). S2SNet makes a new state-of-the-art, with out-of-sample accuracy of 92% and Area Under Curve (AUC) of 0.92. To the best of our knowledge, S2SNet is the first work to predict superconductivity with only information of crystal structures. This work is beneficial to superconductivity discovery and further SDGs. Code and datasets are available in https://github.com/zjuKeLiu/S2SNet

A Unified and General Framework for Continual Learning

Continual Learning (CL) focuses on learning from dynamic and changing data distributions while retaining previously acquired knowledge. Various methods have been developed to address the challenge of catastrophic forgetting, including regularization-based, Bayesian-based, and memory-replay-based techniques. However, these methods lack a unified framework and common terminology for describing their approaches. This research aims to bridge this gap by introducing a comprehensive and overarching framework that encompasses and reconciles these existing methodologies. Notably, this new framework is capable of encompassing established CL approaches as special instances within a unified and general optimization objective. An intriguing finding is that despite their diverse origins, these methods share common mathematical structures. This observation highlights the compatibility of these seemingly distinct techniques, revealing their interconnectedness through a shared underlying optimization objective. Moreover, the proposed general framework introduces an innovative concept called refresh learning, specifically designed to enhance the CL performance. This novel approach draws inspiration from neuroscience, where the human brain often sheds outdated information to improve the retention of crucial knowledge and facilitate the acquisition of new information. In essence, refresh learning operates by initially unlearning current data and subsequently relearning it. It serves as a versatile plug-in that seamlessly integrates with existing CL methods, offering an adaptable and effective enhancement to the learning process. Extensive experiments on CL benchmarks and theoretical analysis demonstrate the effectiveness of the proposed refresh learning. Code is available at https://github.com/joey-wang123/CL-refresh-learning.

Reinforcement Learning for Adaptive Time-Stepping in the Chaotic Gravitational Three-Body Problem

Many problems in astrophysics cover multiple orders of magnitude in spatial and temporal scales. While simulating systems that experience rapid changes in these conditions, it is essential to adapt the (time-) step size to capture the behavior of the system during those rapid changes and use a less accurate time step at other, less demanding, moments. We encounter three problems with traditional methods. Firstly, making such changes requires expert knowledge of the astrophysics as well as of the details of the numerical implementation. Secondly, some parameters that determine the time-step size are fixed throughout the simulation, which means that they do not adapt to the rapidly changing conditions of the problem. Lastly, we would like the choice of time-step size to balance accuracy and computation effort. We address these challenges with Reinforcement Learning by training it to select the time-step size dynamically. We use the integration of a system of three equal-mass bodies that move due to their mutual gravity as an example of its application. With our method, the selected integration parameter adapts to the specific requirements of the problem, both in terms of computation time and accuracy while eliminating the expert knowledge needed to set up these simulations. Our method produces results competitive to existing methods and improve the results found with the most commonly-used values of time-step parameter. This method can be applied to other integrators without further retraining. We show that this extrapolation works for variable time-step integrators but does not perform to the desired accuracy for fixed time-step integrators.

OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling

Despite the rapid development of large language models (LLMs), a fundamental challenge persists: the lack of high-quality optimization modeling datasets hampers LLMs' robust modeling of practical optimization problems from natural language descriptions (NL). This data scarcity also contributes to the generalization difficulties experienced by learning-based methods. To address these challenges, we propose a scalable framework for synthesizing a high-quality dataset, named OptMATH. Starting from curated seed data with mathematical formulations (MF), this framework automatically generates problem data (PD) with controllable complexity. Then, a back-translation step is employed to obtain NL. To verify the correspondence between the NL and the PD, a forward modeling step followed by rejection sampling is used. The accepted pairs constitute the training part of OptMATH. Then a collection of rejected pairs is identified and further filtered. This collection serves as a new benchmark for optimization modeling, containing difficult instances whose lengths are much longer than these of NL4OPT and MAMO. Through extensive experiments, we demonstrate that models of various sizes (0.5B-32B parameters) trained on OptMATH achieve superior results on multiple modeling benchmarks, thereby validating the effectiveness and scalability of our approach. Our dataset is publicly available at https://github.com/AuroraLHL/OptMATH.

MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems?

The remarkable progress of Multi-modal Large Language Models (MLLMs) has garnered unparalleled attention, due to their superior performance in visual contexts. However, their capabilities in visual math problem-solving remain insufficiently evaluated and understood. We investigate current benchmarks to incorporate excessive visual content within textual questions, which potentially assist MLLMs in deducing answers without truly interpreting the input diagrams. To this end, we introduce MathVerse, an all-around visual math benchmark designed for an equitable and in-depth evaluation of MLLMs. We meticulously collect 2,612 high-quality, multi-subject math problems with diagrams from publicly available sources. Each problem is then transformed by human annotators into six distinct versions, each offering varying degrees of information content in multi-modality, contributing to 15K test samples in total. This approach allows MathVerse to comprehensively assess whether and how much MLLMs can truly understand the visual diagrams for mathematical reasoning. In addition, we propose a Chain-of-Thought (CoT) evaluation strategy for a fine-grained assessment of the output answers. Rather than naively judging True or False, we employ GPT-4(V) to adaptively extract crucial reasoning steps, and then score each step with detailed error analysis, which can reveal the intermediate CoT reasoning quality by MLLMs. We hope the MathVerse benchmark may provide unique insights to guide the future development of MLLMs. Project page: https://mathverse-cuhk.github.io

Experimenting with Multi-Agent Software Development: Towards a Unified Platform

Large language models are redefining software engineering by implementing AI-powered techniques throughout the whole software development process, including requirement gathering, software architecture, code generation, testing, and deployment. However, it is still difficult to develop a cohesive platform that consistently produces the best outcomes across all stages. The objective of this study is to develop a unified platform that utilizes multiple artificial intelligence agents to automate the process of transforming user requirements into well-organized deliverables. These deliverables include user stories, prioritization, and UML sequence diagrams, along with the modular approach to APIs, unit tests, and end-to-end tests. Additionally, the platform will organize tasks, perform security and compliance, and suggest design patterns and improvements for non-functional requirements. We allow users to control and manage each phase according to their preferences. In addition, the platform provides security and compliance checks following European standards and proposes design optimizations. We use multiple models, such as GPT-3.5, GPT-4, and Llama3 to enable to generation of modular code as per user choice. The research also highlights the limitations and future research discussions to overall improve the software development life cycle. The source code for our uniform platform is hosted on GitHub, enabling additional experimentation and supporting both research and practical uses. \end

Light Schrödinger Bridge

Despite the recent advances in the field of computational Schr\"odinger Bridges (SB), most existing SB solvers are still heavy-weighted and require complex optimization of several neural networks. It turns out that there is no principal solver which plays the role of simple-yet-effective baseline for SB just like, e.g., k-means method in clustering, logistic regression in classification or Sinkhorn algorithm in discrete optimal transport. We address this issue and propose a novel fast and simple SB solver. Our development is a smart combination of two ideas which recently appeared in the field: (a) parameterization of the Schr\"odinger potentials with sum-exp quadratic functions and (b) viewing the log-Schr\"odinger potentials as the energy functions. We show that combined together these ideas yield a lightweight, simulation-free and theoretically justified SB solver with a simple straightforward optimization objective. As a result, it allows solving SB in moderate dimensions in a matter of minutes on CPU without a painful hyperparameter selection. Our light solver resembles the Gaussian mixture model which is widely used for density estimation. Inspired by this similarity, we also prove an important theoretical result showing that our light solver is a universal approximator of SBs. Furthemore, we conduct the analysis of the generalization error of our light solver. The code for our solver can be found at https://github.com/ngushchin/LightSB

AI-Assisted Generation of Difficult Math Questions

Current LLM training positions mathematical reasoning as a core capability. With publicly available sources fully tapped, there is unmet demand for diverse and challenging math questions. Relying solely on human experts is both time-consuming and costly, while LLM-generated questions often lack the requisite diversity and difficulty. We present a design framework that combines the strengths of LLMs with a human-in-the-loop approach to generate a diverse array of challenging math questions. We leverage LLM metacognition skills [Didolkar et al., 2024] of a strong LLM to extract core "skills" from existing math datasets. These skills serve as the basis for generating novel and difficult questions by prompting the LLM with random pairs of core skills. The use of two different skills within each question makes finding such questions an "out of distribution" task for both LLMs and humans. Our pipeline employs LLMs to iteratively generate and refine questions and solutions through multiturn prompting. Human annotators then verify and further refine the questions, with their efficiency enhanced via further LLM interactions. Applying this pipeline on skills extracted from the MATH dataset [Hendrycks et al., 2021] resulted in MATH^2 - a dataset of higher-quality math questions, as evidenced by: (a) Lower performance of all models on MATH^2 than on MATH (b) Higher performance on MATH when using MATH^2 questions as in-context examples. Although focused on mathematics, our methodology seems applicable to other domains requiring structured reasoning, and potentially as a component of scalable oversight. Also of interest is a striking relationship observed between models' performance on the new dataset: the success rate on MATH^2 is the square on MATH, suggesting that successfully solving the question in MATH^2 requires a nontrivial combination of two distinct math skills.

SCP-116K: A High-Quality Problem-Solution Dataset and a Generalized Pipeline for Automated Extraction in the Higher Education Science Domain

Recent breakthroughs in large language models (LLMs) exemplified by the impressive mathematical and scientific reasoning capabilities of the o1 model have spotlighted the critical importance of high-quality training data in advancing LLM performance across STEM disciplines. While the mathematics community has benefited from a growing body of curated datasets, the scientific domain at the higher education level has long suffered from a scarcity of comparable resources. To address this gap, we present SCP-116K, a new large-scale dataset of 116,756 high-quality problem-solution pairs, automatically extracted from heterogeneous sources using a streamlined and highly generalizable pipeline. Our approach involves stringent filtering to ensure the scientific rigor and educational level of the extracted materials, while maintaining adaptability for future expansions or domain transfers. By openly releasing both the dataset and the extraction pipeline, we seek to foster research on scientific reasoning, enable comprehensive performance evaluations of new LLMs, and lower the barrier to replicating the successes of advanced models like o1 in the broader science community. We believe SCP-116K will serve as a critical resource, catalyzing progress in high-level scientific reasoning tasks and promoting further innovations in LLM development. The dataset and code are publicly available at https://github.com/AQA6666/SCP-116K-open.

Challenge LLMs to Reason About Reasoning: A Benchmark to Unveil Cognitive Depth in LLMs

In this work, we introduce a novel evaluation paradigm for Large Language Models, one that challenges them to engage in meta-reasoning. This approach addresses critical shortcomings in existing math problem-solving benchmarks, traditionally used to evaluate the cognitive capabilities of agents. Our paradigm shifts the focus from result-oriented assessments, which often overlook the reasoning process, to a more holistic evaluation that effectively differentiates the cognitive capabilities among models. For example, in our benchmark, GPT-4 demonstrates a performance ten times more accurate than GPT3-5. The significance of this new paradigm lies in its ability to reveal potential cognitive deficiencies in LLMs that current benchmarks, such as GSM8K, fail to uncover due to their saturation and lack of effective differentiation among varying reasoning abilities. Our comprehensive analysis includes several state-of-the-art math models from both open-source and closed-source communities, uncovering fundamental deficiencies in their training and evaluation approaches. This paper not only advocates for a paradigm shift in the assessment of LLMs but also contributes to the ongoing discourse on the trajectory towards Artificial General Intelligence (AGI). By promoting the adoption of meta-reasoning evaluation methods similar to ours, we aim to facilitate a more accurate assessment of the true cognitive abilities of LLMs.

CMM-Math: A Chinese Multimodal Math Dataset To Evaluate and Enhance the Mathematics Reasoning of Large Multimodal Models

Large language models (LLMs) have obtained promising results in mathematical reasoning, which is a foundational skill for human intelligence. Most previous studies focus on improving and measuring the performance of LLMs based on textual math reasoning datasets (e.g., MATH, GSM8K). Recently, a few researchers have released English multimodal math datasets (e.g., MATHVISTA and MATH-V) to evaluate the effectiveness of large multimodal models (LMMs). In this paper, we release a Chinese multimodal math (CMM-Math) dataset, including benchmark and training parts, to evaluate and enhance the mathematical reasoning of LMMs. CMM-Math contains over 28,000 high-quality samples, featuring a variety of problem types (e.g., multiple-choice, fill-in-the-blank, and so on) with detailed solutions across 12 grade levels from elementary to high school in China. Specifically, the visual context may be present in the questions or opinions, which makes this dataset more challenging. Through comprehensive analysis, we discover that state-of-the-art LMMs on the CMM-Math dataset face challenges, emphasizing the necessity for further improvements in LMM development. We also propose a Multimodal Mathematical LMM (Math-LMM) to handle the problems with mixed input of multiple images and text segments. We train our model using three stages, including foundational pre-training, foundational fine-tuning, and mathematical fine-tuning. The extensive experiments indicate that our model effectively improves math reasoning performance by comparing it with the SOTA LMMs over three multimodal mathematical datasets.

MeLM, a generative pretrained language modeling framework that solves forward and inverse mechanics problems

We report a flexible multi-modal mechanics language model, MeLM, applied to solve various nonlinear forward and inverse problems, that can deal with a set of instructions, numbers and microstructure data. The framework is applied to various examples including bio-inspired hierarchical honeycomb design, carbon nanotube mechanics, and protein unfolding. In spite of the flexible nature of the model-which allows us to easily incorporate diverse materials, scales, and mechanical features-it performs well across disparate forward and inverse tasks. Based on an autoregressive attention-model, MeLM effectively represents a large multi-particle system consisting of hundreds of millions of neurons, where the interaction potentials are discovered through graph-forming self-attention mechanisms that are then used to identify relationships from emergent structures, while taking advantage of synergies discovered in the training data. We show that the model can solve complex degenerate mechanics design problems and determine novel material architectures across a range of hierarchical levels, providing an avenue for materials discovery and analysis. Looking beyond the demonstrations reported in this paper, we discuss other opportunities in applied mechanics and general considerations about the use of large language models in modeling, design, and analysis that can span a broad spectrum of material properties from mechanical, thermal, optical, to electronic.

SNIP: Bridging Mathematical Symbolic and Numeric Realms with Unified Pre-training

In an era where symbolic mathematical equations are indispensable for modeling complex natural phenomena, scientific inquiry often involves collecting observations and translating them into mathematical expressions. Recently, deep learning has emerged as a powerful tool for extracting insights from data. However, existing models typically specialize in either numeric or symbolic domains, and are usually trained in a supervised manner tailored to specific tasks. This approach neglects the substantial benefits that could arise from a task-agnostic unified understanding between symbolic equations and their numeric counterparts. To bridge the gap, we introduce SNIP, a Symbolic-Numeric Integrated Pre-training, which employs joint contrastive learning between symbolic and numeric domains, enhancing their mutual similarities in the pre-trained embeddings. By performing latent space analysis, we observe that SNIP provides cross-domain insights into the representations, revealing that symbolic supervision enhances the embeddings of numeric data and vice versa. We evaluate SNIP across diverse tasks, including symbolic-to-numeric mathematical property prediction and numeric-to-symbolic equation discovery, commonly known as symbolic regression. Results show that SNIP effectively transfers to various tasks, consistently outperforming fully supervised baselines and competing strongly with established task-specific methods, especially in few-shot learning scenarios where available data is limited.

Individualizing Glioma Radiotherapy Planning by Optimization of Data and Physics-Informed Discrete Loss

Brain tumor growth is unique to each glioma patient and extends beyond what is visible in imaging scans, infiltrating surrounding brain tissue. Understanding these hidden patient-specific progressions is essential for effective therapies. Current treatment plans for brain tumors, such as radiotherapy, typically involve delineating a uniform margin around the visible tumor on pre-treatment scans to target this invisible tumor growth. This "one size fits all" approach is derived from population studies and often fails to account for the nuances of individual patient conditions. We present the GliODIL framework, which infers the full spatial distribution of tumor cell concentration from available multi-modal imaging, leveraging a Fisher-Kolmogorov type physics model to describe tumor growth. This is achieved through the newly introduced method of Optimizing the Discrete Loss (ODIL), where both data and physics-based constraints are softly assimilated into the solution. Our test dataset comprises 152 glioblastoma patients with pre-treatment imaging and post-treatment follow-ups for tumor recurrence monitoring. By blending data-driven techniques with physics-based constraints, GliODIL enhances recurrence prediction in radiotherapy planning, challenging traditional uniform margins and strict adherence to the Fisher-Kolmogorov partial differential equation (PDE) model, which is adapted for complex cases.

Evolutionary Optimization of Model Merging Recipes

We present a novel application of evolutionary algorithms to automate the creation of powerful foundation models. While model merging has emerged as a promising approach for LLM development due to its cost-effectiveness, it currently relies on human intuition and domain knowledge, limiting its potential. Here, we propose an evolutionary approach that overcomes this limitation by automatically discovering effective combinations of diverse open-source models, harnessing their collective intelligence without requiring extensive additional training data or compute. Our approach operates in both parameter space and data flow space, allowing for optimization beyond just the weights of the individual models. This approach even facilitates cross-domain merging, generating models like a Japanese LLM with Math reasoning capabilities. Surprisingly, our Japanese Math LLM achieved state-of-the-art performance on a variety of established Japanese LLM benchmarks, even surpassing models with significantly more parameters, despite not being explicitly trained for such tasks. Furthermore, a culturally-aware Japanese VLM generated through our approach demonstrates its effectiveness in describing Japanese culture-specific content, outperforming previous Japanese VLMs. This work not only contributes new state-of-the-art models back to the open-source community, but also introduces a new paradigm for automated model composition, paving the way for exploring alternative, efficient approaches to foundation model development.

We-Math: Does Your Large Multimodal Model Achieve Human-like Mathematical Reasoning?

Visual mathematical reasoning, as a fundamental visual reasoning ability, has received widespread attention from the Large Multimodal Models (LMMs) community. Existing benchmarks, such as MathVista and MathVerse, focus more on the result-oriented performance but neglect the underlying principles in knowledge acquisition and generalization. Inspired by human-like mathematical reasoning, we introduce WE-MATH, the first benchmark specifically designed to explore the problem-solving principles beyond end-to-end performance. We meticulously collect and categorize 6.5K visual math problems, spanning 67 hierarchical knowledge concepts and five layers of knowledge granularity. We decompose composite problems into sub-problems according to the required knowledge concepts and introduce a novel four-dimensional metric, namely Insufficient Knowledge (IK), Inadequate Generalization (IG), Complete Mastery (CM), and Rote Memorization (RM), to hierarchically assess inherent issues in LMMs' reasoning process. With WE-MATH, we conduct a thorough evaluation of existing LMMs in visual mathematical reasoning and reveal a negative correlation between solving steps and problem-specific performance. We confirm the IK issue of LMMs can be effectively improved via knowledge augmentation strategies. More notably, the primary challenge of GPT-4o has significantly transitioned from IK to IG, establishing it as the first LMM advancing towards the knowledge generalization stage. In contrast, other LMMs exhibit a marked inclination towards Rote Memorization - they correctly solve composite problems involving multiple knowledge concepts yet fail to answer sub-problems. We anticipate that WE-MATH will open new pathways for advancements in visual mathematical reasoning for LMMs. The WE-MATH data and evaluation code are available at https://github.com/We-Math/We-Math.

Advancing Math Reasoning in Language Models: The Impact of Problem-Solving Data, Data Synthesis Methods, and Training Stages

Advancements in LLMs have significantly expanded their capabilities across various domains. However, mathematical reasoning remains a challenging area, prompting the development of math-specific LLMs. These models typically follow a two-stage training paradigm: pre-training with math-related corpora and post-training with problem datasets for SFT. Despite these efforts, the improvements in mathematical reasoning achieved through continued pre-training (CPT) are often less significant compared to those obtained via SFT. This study addresses this discrepancy by exploring alternative strategies during the pre-training phase, focusing on the use of problem-solving data over general mathematical corpora. We investigate three primary research questions: (1) Can problem-solving data enhance the model's mathematical reasoning capabilities more effectively than general mathematical corpora during CPT? (2) Are synthetic data from the same source equally effective, and which synthesis methods are most efficient? (3) How do the capabilities developed from the same problem-solving data differ between the CPT and SFT stages, and what factors contribute to these differences? Our findings indicate that problem-solving data significantly enhances the model's mathematical capabilities compared to general mathematical corpora. We also identify effective data synthesis methods, demonstrating that the tutorship amplification synthesis method achieves the best performance. Furthermore, while SFT facilitates instruction-following abilities, it underperforms compared to CPT with the same data, which can be partially attributed to its poor learning capacity for hard multi-step problem-solving data. These insights provide valuable guidance for optimizing the mathematical reasoning capabilities of LLMs, culminating in our development of a powerful mathematical base model called JiuZhang-8B.

Is Your Model Really A Good Math Reasoner? Evaluating Mathematical Reasoning with Checklist

Exceptional mathematical reasoning ability is one of the key features that demonstrate the power of large language models (LLMs). How to comprehensively define and evaluate the mathematical abilities of LLMs, and even reflect the user experience in real-world scenarios, has emerged as a critical issue. Current benchmarks predominantly concentrate on problem-solving capabilities, which presents a substantial risk of model overfitting and fails to accurately represent genuine mathematical reasoning abilities. In this paper, we argue that if a model really understands a problem, it should be robustly and readily applied across a diverse array of tasks. Motivated by this, we introduce MATHCHECK, a well-designed checklist for testing task generalization and reasoning robustness, as well as an automatic tool to generate checklists efficiently. MATHCHECK includes multiple mathematical reasoning tasks and robustness test types to facilitate a comprehensive evaluation of both mathematical reasoning ability and behavior testing. Utilizing MATHCHECK, we develop MATHCHECK-GSM and MATHCHECK-GEO to assess mathematical textual reasoning and multi-modal reasoning capabilities, respectively, serving as upgraded versions of benchmarks including GSM8k, GeoQA, UniGeo, and Geometry3K. We adopt MATHCHECK-GSM and MATHCHECK-GEO to evaluate over 20 LLMs and 11 MLLMs, assessing their comprehensive mathematical reasoning abilities. Our results demonstrate that while frontier LLMs like GPT-4o continue to excel in various abilities on the checklist, many other model families exhibit a significant decline. Further experiments indicate that, compared to traditional math benchmarks, MATHCHECK better reflects true mathematical abilities and represents mathematical intelligence more linearly, thereby supporting our design. On our MATHCHECK, we can easily conduct detailed behavior analysis to deeply investigate models.

One-connection rule for structural equation models

Linear structural equation models are multivariate statistical models encoded by mixed graphs. In particular, the set of covariance matrices for distributions belonging to a linear structural equation model for a fixed mixed graph G=(V, D,B) is parameterized by a rational function with parameters for each vertex and edge in G. This rational parametrization naturally allows for the study of these models from an algebraic and combinatorial point of view. Indeed, this point of view has led to a collection of results in the literature, mainly focusing on questions related to identifiability and determining relationships between covariances (i.e., finding polynomials in the Gaussian vanishing ideal). So far, a large proportion of these results has focused on the case when D, the directed part of the mixed graph G, is acyclic. This is due to the fact that in the acyclic case, the parametrization becomes polynomial and there is a description of the entries of the covariance matrices in terms of a finite sum. We move beyond the acyclic case and give a closed form expression for the entries of the covariance matrices in terms of the one-connections in a graph obtained from D through some small operations. This closed form expression then allows us to show that if G is simple, then the parametrization map is generically finite-to-one. Finally, having a closed form expression for the covariance matrices allows for the development of an algorithm for systematically exploring possible polynomials in the Gaussian vanishing ideal.

MARIO: MAth Reasoning with code Interpreter Output -- A Reproducible Pipeline

Large language models (LLMs) have seen considerable advancements in natural language understanding tasks, yet there remains a gap to bridge before attaining true artificial general intelligence, especially concerning shortcomings in mathematical reasoning capabilities. We postulate that the inherent nature of LLM training, which focuses on predicting probabilities of next token, presents challenges in effectively modeling mathematical reasoning that demands exact calculations, both from data-driven and theoretical standpoints. In this paper, we address this challenge by enriching the data landscape and introducing a novel math dataset, enhanced with a capability to utilize a Python code interpreter. This dataset is derived from GSM8K and MATH and has been further refined through a combination of GPT-4 annotations, human review, and self-training processes, where the errors in the original GSM8K training set have been fixed. Additionally, we propose a tentative, easily replicable protocol for the fine-tuning of math-specific LLMs, which has led to a significant improvement in the performance of a 7B-parameter LLM on the GSM8K and MATH datasets. We are committed to advancing the field of mathematical reasoning in LLMs and, to that end, we have made the model checkpoints and will make the dataset publicly available. We hope this will facilitate further research and development within the community.

High-performance symbolic-numerics via multiple dispatch

As mathematical computing becomes more democratized in high-level languages, high-performance symbolic-numeric systems are necessary for domain scientists and engineers to get the best performance out of their machine without deep knowledge of code optimization. Naturally, users need different term types either to have different algebraic properties for them, or to use efficient data structures. To this end, we developed Symbolics.jl, an extendable symbolic system which uses dynamic multiple dispatch to change behavior depending on the domain needs. In this work we detail an underlying abstract term interface which allows for speed without sacrificing generality. We show that by formalizing a generic API on actions independent of implementation, we can retroactively add optimized data structures to our system without changing the pre-existing term rewriters. We showcase how this can be used to optimize term construction and give a 113x acceleration on general symbolic transformations. Further, we show that such a generic API allows for complementary term-rewriting implementations. We demonstrate the ability to swap between classical term-rewriting simplifiers and e-graph-based term-rewriting simplifiers. We showcase an e-graph ruleset which minimizes the number of CPU cycles during expression evaluation, and demonstrate how it simplifies a real-world reaction-network simulation to halve the runtime. Additionally, we show a reaction-diffusion partial differential equation solver which is able to be automatically converted into symbolic expressions via multiple dispatch tracing, which is subsequently accelerated and parallelized to give a 157x simulation speedup. Together, this presents Symbolics.jl as a next-generation symbolic-numeric computing environment geared towards modeling and simulation.

Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences

Formulas involving fundamental mathematical constants had a great impact on various fields of science and mathematics, for example aiding in proofs of irrationality of constants. However, the discovery of such formulas has historically remained scarce, often perceived as an act of mathematical genius by great mathematicians such as Ramanujan, Euler, and Gauss. Recent efforts to automate the discovery of formulas for mathematical constants, such as the Ramanujan Machine project, relied on exhaustive search. Despite several successful discoveries, exhaustive search remains limited by the space of options that can be covered and by the need for vast amounts of computational resources. Here we propose a fundamentally different method to search for conjectures on mathematical constants: through analysis of integer sequences. We introduce the Enumerated Signed-continued-fraction Massey Approve (ESMA) algorithm, which builds on the Berlekamp-Massey algorithm to identify patterns in integer sequences that represent mathematical constants. The ESMA algorithm found various known formulas for e, e^2, tan(1), and ratios of values of Bessel functions. The algorithm further discovered a large number of new conjectures for these constants, some providing simpler representations and some providing faster numerical convergence than the corresponding simple continued fractions. Along with the algorithm, we present mathematical tools for manipulating continued fractions. These connections enable us to characterize what space of constants can be found by ESMA and quantify its algorithmic advantage in certain scenarios. Altogether, this work continues in the development of augmenting mathematical intuition by computer algorithms, to help reveal mathematical structures and accelerate mathematical research.

Efficient and Modular Implicit Differentiation

Automatic differentiation (autodiff) has revolutionized machine learning. It allows to express complex computations by composing elementary ones in creative ways and removes the burden of computing their derivatives by hand. More recently, differentiation of optimization problem solutions has attracted widespread attention with applications such as optimization layers, and in bi-level problems such as hyper-parameter optimization and meta-learning. However, so far, implicit differentiation remained difficult to use for practitioners, as it often required case-by-case tedious mathematical derivations and implementations. In this paper, we propose automatic implicit differentiation, an efficient and modular approach for implicit differentiation of optimization problems. In our approach, the user defines directly in Python a function F capturing the optimality conditions of the problem to be differentiated. Once this is done, we leverage autodiff of F and the implicit function theorem to automatically differentiate the optimization problem. Our approach thus combines the benefits of implicit differentiation and autodiff. It is efficient as it can be added on top of any state-of-the-art solver and modular as the optimality condition specification is decoupled from the implicit differentiation mechanism. We show that seemingly simple principles allow to recover many existing implicit differentiation methods and create new ones easily. We demonstrate the ease of formulating and solving bi-level optimization problems using our framework. We also showcase an application to the sensitivity analysis of molecular dynamics.

OpenMathInstruct-2: Accelerating AI for Math with Massive Open-Source Instruction Data

Mathematical reasoning continues to be a critical challenge in large language model (LLM) development with significant interest. However, most of the cutting-edge progress in mathematical reasoning with LLMs has become closed-source due to lack of access to training data. This lack of data access limits researchers from understanding the impact of different choices for synthesizing and utilizing the data. With the goal of creating a high-quality finetuning (SFT) dataset for math reasoning, we conduct careful ablation experiments on data synthesis using the recently released Llama3.1 family of models. Our experiments show that: (a) solution format matters, with excessively verbose solutions proving detrimental to SFT performance, (b) data generated by a strong teacher outperforms on-policy data generated by a weak student model, (c) SFT is robust to low-quality solutions, allowing for imprecise data filtering, and (d) question diversity is crucial for achieving data scaling gains. Based on these insights, we create the OpenMathInstruct-2 dataset, which consists of 14M question-solution pairs (approx 600K unique questions), making it nearly eight times larger than the previous largest open-source math reasoning dataset. Finetuning the Llama-3.1-8B-Base using OpenMathInstruct-2 outperforms Llama3.1-8B-Instruct on MATH by an absolute 15.9\% (51.9\% rightarrow 67.8\%). Finally, to accelerate the open-source efforts, we release the code, the finetuned models, and the OpenMathInstruct-2 dataset under a commercially permissive license.

Enabling Efficient Equivariant Operations in the Fourier Basis via Gaunt Tensor Products

Developing equivariant neural networks for the E(3) group plays an important role in modeling 3D data across real-world applications. Enforcing this equivariance primarily involves the tensor products of irreducible representations (irreps). However, the computational complexity of such operations increases significantly as higher-order tensors are used. In this work, we propose a systematic approach to substantially accelerate the computation of the tensor products of irreps. We mathematically connect the commonly used Clebsch-Gordan coefficients to the Gaunt coefficients, which are integrals of products of three spherical harmonics. Through Gaunt coefficients, the tensor product of irreps becomes equivalent to the multiplication between spherical functions represented by spherical harmonics. This perspective further allows us to change the basis for the equivariant operations from spherical harmonics to a 2D Fourier basis. Consequently, the multiplication between spherical functions represented by a 2D Fourier basis can be efficiently computed via the convolution theorem and Fast Fourier Transforms. This transformation reduces the complexity of full tensor products of irreps from O(L^6) to O(L^3), where L is the max degree of irreps. Leveraging this approach, we introduce the Gaunt Tensor Product, which serves as a new method to construct efficient equivariant operations across different model architectures. Our experiments on the Open Catalyst Project and 3BPA datasets demonstrate both the increased efficiency and improved performance of our approach.

Mathematical Capabilities of ChatGPT

We investigate the mathematical capabilities of ChatGPT by testing it on publicly available datasets, as well as hand-crafted ones, and measuring its performance against other models trained on a mathematical corpus, such as Minerva. We also test whether ChatGPT can be a useful assistant to professional mathematicians by emulating various use cases that come up in the daily professional activities of mathematicians (question answering, theorem searching). In contrast to formal mathematics, where large databases of formal proofs are available (e.g., the Lean Mathematical Library), current datasets of natural-language mathematics, used to benchmark language models, only cover elementary mathematics. We address this issue by introducing a new dataset: GHOSTS. It is the first natural-language dataset made and curated by working researchers in mathematics that (1) aims to cover graduate-level mathematics and (2) provides a holistic overview of the mathematical capabilities of language models. We benchmark ChatGPT on GHOSTS and evaluate performance against fine-grained criteria. We make this new dataset publicly available to assist a community-driven comparison of ChatGPT with (future) large language models in terms of advanced mathematical comprehension. We conclude that contrary to many positive reports in the media (a potential case of selection bias), ChatGPT's mathematical abilities are significantly below those of an average mathematics graduate student. Our results show that ChatGPT often understands the question but fails to provide correct solutions. Hence, if your goal is to use it to pass a university exam, you would be better off copying from your average peer!

Limits and Powers of Koopman Learning

Dynamical systems provide a comprehensive way to study complex and changing behaviors across various sciences. Many modern systems are too complicated to analyze directly or we do not have access to models, driving significant interest in learning methods. Koopman operators have emerged as a dominant approach because they allow the study of nonlinear dynamics using linear techniques by solving an infinite-dimensional spectral problem. However, current algorithms face challenges such as lack of convergence, hindering practical progress. This paper addresses a fundamental open question: When can we robustly learn the spectral properties of Koopman operators from trajectory data of dynamical systems, and when can we not? Understanding these boundaries is crucial for analysis, applications, and designing algorithms. We establish a foundational approach that combines computational analysis and ergodic theory, revealing the first fundamental barriers -- universal for any algorithm -- associated with system geometry and complexity, regardless of data quality and quantity. For instance, we demonstrate well-behaved smooth dynamical systems on tori where non-trivial eigenfunctions of the Koopman operator cannot be determined by any sequence of (even randomized) algorithms, even with unlimited training data. Additionally, we identify when learning is possible and introduce optimal algorithms with verification that overcome issues in standard methods. These results pave the way for a sharp classification theory of data-driven dynamical systems based on how many limits are needed to solve a problem. These limits characterize all previous methods, presenting a unified view. Our framework systematically determines when and how Koopman spectral properties can be learned.

One Example Shown, Many Concepts Known! Counterexample-Driven Conceptual Reasoning in Mathematical LLMs

Leveraging mathematical Large Language Models (LLMs) for proof generation is a fundamental topic in LLMs research. We argue that the ability of current LLMs to prove statements largely depends on whether they have encountered the relevant proof process during training. This reliance limits their deeper understanding of mathematical theorems and related concepts. Inspired by the pedagogical method of "proof by counterexamples" commonly used in human mathematics education, our work aims to enhance LLMs' ability to conduct mathematical reasoning and proof through counterexamples. Specifically, we manually create a high-quality, university-level mathematical benchmark, CounterMATH, which requires LLMs to prove mathematical statements by providing counterexamples, thereby assessing their grasp of mathematical concepts. Additionally, we develop a data engineering framework to automatically obtain training data for further model improvement. Extensive experiments and detailed analyses demonstrate that CounterMATH is challenging, indicating that LLMs, such as OpenAI o1, have insufficient counterexample-driven proof capabilities. Moreover, our exploration into model training reveals that strengthening LLMs' counterexample-driven conceptual reasoning abilities is crucial for improving their overall mathematical capabilities. We believe that our work offers new perspectives on the community of mathematical LLMs.

An Old-Fashioned Framework for Machine Learning in Turbulence Modeling

The objective is to provide clear and well-motivated guidance to Machine Learning (ML) teams, founded on our experience in empirical turbulence modeling. Guidance is also needed for modeling outside ML. ML is not yet successful in turbulence modeling, and many papers have produced unusable proposals either due to errors in math or physics, or to severe overfitting. We believe that "Turbulence Culture" (TC) takes years to learn and is difficult to convey especially considering the modern lack of time for careful study; important facts which are self-evident after a career in turbulence research and modeling and extensive reading are easy to miss. In addition, many of them are not absolute facts, a consequence of the gaps in our understanding of turbulence and the weak connection of models to first principles. Some of the mathematical facts are rigorous, but the physical aspects often are not. Turbulence models are surprisingly arbitrary. Disagreement between experts confuses the new entrants. In addition, several key properties of the models are ascertained through non-trivial analytical properties of the differential equations, which puts them out of reach of purely data-driven ML-type approaches. The best example is the crucial behavior of the model at the edge of the turbulent region (ETR). The knowledge we wish to put out here may be divided into "Mission" and "Requirements," each combining physics and mathematics. Clear lists of "Hard" and "Soft" constraints are presented. A concrete example of how DNS data could be used, possibly allied with ML, is first carried through and illustrates the large number of decisions needed. Our focus is on creating effective products which will empower CFD, rather than on publications.

What it takes to solve the Origin(s) of Life: An integrated review of techniques

Understanding the origin(s) of life (OoL) is a fundamental challenge for science in the 21st century. Research on OoL spans many disciplines, including chemistry, physics, biology, planetary sciences, computer science, mathematics and philosophy. The sheer number of different scientific perspectives relevant to the problem has resulted in the coexistence of diverse tools, techniques, data, and software in OoL studies. This has made communication between the disciplines relevant to the OoL extremely difficult because the interpretation of data, analyses, or standards of evidence can vary dramatically. Here, we hope to bridge this wide field of study by providing common ground via the consolidation of tools and techniques rather than positing a unifying view on how life emerges. We review the common tools and techniques that have been used significantly in OoL studies in recent years. In particular, we aim to identify which information is most relevant for comparing and integrating the results of experimental analyses into mathematical and computational models. This review aims to provide a baseline expectation and understanding of technical aspects of origins research, rather than being a primer on any particular topic. As such, it spans broadly -- from analytical chemistry to mathematical models -- and highlights areas of future work that will benefit from a multidisciplinary approach to tackling the mystery of life's origin. Ultimately, we hope to empower a new generation of OoL scientists by reviewing how they can investigate life's origin, rather than dictating how to think about the problem.

MuMath-Code: Combining Tool-Use Large Language Models with Multi-perspective Data Augmentation for Mathematical Reasoning

The tool-use Large Language Models (LLMs) that integrate with external Python interpreters have significantly enhanced mathematical reasoning capabilities for open-source LLMs, while tool-free methods chose another track: augmenting math reasoning data. However, a great method to integrate the above two research paths and combine their advantages remains to be explored. In this work, we firstly include new math questions via multi-perspective data augmenting methods and then synthesize code-nested solutions to them. The open LLMs (i.e., Llama-2) are finetuned on the augmented dataset to get the resulting models, MuMath-Code (mu-Math-Code). During the inference phase, our MuMath-Code generates code and interacts with the external python interpreter to get the execution results. Therefore, MuMath-Code leverages the advantages of both the external tool and data augmentation. To fully leverage the advantages of our augmented data, we propose a two-stage training strategy: In Stage-1, we finetune Llama-2 on pure CoT data to get an intermediate model, which then is trained on the code-nested data in Stage-2 to get the resulting MuMath-Code. Our MuMath-Code-7B achieves 83.8 on GSM8K and 52.4 on MATH, while MuMath-Code-70B model achieves new state-of-the-art performance among open methods -- achieving 90.7% on GSM8K and 55.1% on MATH. Extensive experiments validate the combination of tool use and data augmentation, as well as our two-stage training strategy. We release the proposed dataset along with the associated code for public use.

MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code

Code has been shown to be effective in enhancing the mathematical reasoning abilities of large language models due to its precision and accuracy. Previous works involving continued mathematical pretraining often include code that utilizes math-related packages, which are primarily designed for fields such as engineering, machine learning, signal processing, or module testing, rather than being directly focused on mathematical reasoning. In this paper, we introduce a novel method for generating mathematical code accompanied with corresponding reasoning steps for continued pretraining. Our approach begins with the construction of a high-quality mathematical continued pretraining dataset by incorporating math-related web data, code using mathematical packages, math textbooks, and synthetic data. Next, we construct reasoning steps by extracting LaTeX expressions, the conditions needed for the expressions, and the results of the expressions from the previously collected dataset. Based on this extracted information, we generate corresponding code to accurately capture the mathematical reasoning process. Appending the generated code to each reasoning step results in data consisting of paired natural language reasoning steps and their corresponding code. Combining this data with the original dataset results in a 19.2B-token high-performing mathematical pretraining corpus, which we name MathCode-Pile. Training several popular base models with this corpus significantly improves their mathematical abilities, leading to the creation of the MathCoder2 family of models. All of our data processing and training code is open-sourced, ensuring full transparency and easy reproducibility of the entire data collection and training pipeline. The code is released at https://github.com/mathllm/MathCoder2 .

The Impact of Large Language Models on Scientific Discovery: a Preliminary Study using GPT-4

In recent years, groundbreaking advancements in natural language processing have culminated in the emergence of powerful large language models (LLMs), which have showcased remarkable capabilities across a vast array of domains, including the understanding, generation, and translation of natural language, and even tasks that extend beyond language processing. In this report, we delve into the performance of LLMs within the context of scientific discovery, focusing on GPT-4, the state-of-the-art language model. Our investigation spans a diverse range of scientific areas encompassing drug discovery, biology, computational chemistry (density functional theory (DFT) and molecular dynamics (MD)), materials design, and partial differential equations (PDE). Evaluating GPT-4 on scientific tasks is crucial for uncovering its potential across various research domains, validating its domain-specific expertise, accelerating scientific progress, optimizing resource allocation, guiding future model development, and fostering interdisciplinary research. Our exploration methodology primarily consists of expert-driven case assessments, which offer qualitative insights into the model's comprehension of intricate scientific concepts and relationships, and occasionally benchmark testing, which quantitatively evaluates the model's capacity to solve well-defined domain-specific problems. Our preliminary exploration indicates that GPT-4 exhibits promising potential for a variety of scientific applications, demonstrating its aptitude for handling complex problem-solving and knowledge integration tasks. Broadly speaking, we evaluate GPT-4's knowledge base, scientific understanding, scientific numerical calculation abilities, and various scientific prediction capabilities.

On gauge freedom, conservativity and intrinsic dimensionality estimation in diffusion models

Diffusion models are generative models that have recently demonstrated impressive performances in terms of sampling quality and density estimation in high dimensions. They rely on a forward continuous diffusion process and a backward continuous denoising process, which can be described by a time-dependent vector field and is used as a generative model. In the original formulation of the diffusion model, this vector field is assumed to be the score function (i.e. it is the gradient of the log-probability at a given time in the diffusion process). Curiously, on the practical side, most studies on diffusion models implement this vector field as a neural network function and do not constrain it be the gradient of some energy function (that is, most studies do not constrain the vector field to be conservative). Even though some studies investigated empirically whether such a constraint will lead to a performance gain, they lead to contradicting results and failed to provide analytical results. Here, we provide three analytical results regarding the extent of the modeling freedom of this vector field. {Firstly, we propose a novel decomposition of vector fields into a conservative component and an orthogonal component which satisfies a given (gauge) freedom. Secondly, from this orthogonal decomposition, we show that exact density estimation and exact sampling is achieved when the conservative component is exactly equals to the true score and therefore conservativity is neither necessary nor sufficient to obtain exact density estimation and exact sampling. Finally, we show that when it comes to inferring local information of the data manifold, constraining the vector field to be conservative is desirable.

Can LLMs Master Math? Investigating Large Language Models on Math Stack Exchange

Large Language Models (LLMs) have demonstrated exceptional capabilities in various natural language tasks, often achieving performances that surpass those of humans. Despite these advancements, the domain of mathematics presents a distinctive challenge, primarily due to its specialized structure and the precision it demands. In this study, we adopted a two-step approach for investigating the proficiency of LLMs in answering mathematical questions. First, we employ the most effective LLMs, as identified by their performance on math question-answer benchmarks, to generate answers to 78 questions from the Math Stack Exchange (MSE). Second, a case analysis is conducted on the LLM that showed the highest performance, focusing on the quality and accuracy of its answers through manual evaluation. We found that GPT-4 performs best (nDCG of 0.48 and P@10 of 0.37) amongst existing LLMs fine-tuned for answering mathematics questions and outperforms the current best approach on ArqMATH3 Task1, considering P@10. Our Case analysis indicates that while the GPT-4 can generate relevant responses in certain instances, it does not consistently answer all questions accurately. This paper explores the current limitations of LLMs in navigating complex mathematical problem-solving. Through case analysis, we shed light on the gaps in LLM capabilities within mathematics, thereby setting the stage for future research and advancements in AI-driven mathematical reasoning. We make our code and findings publicly available for research: https://github.com/gipplab/LLM-Investig-MathStackExchange

Evaluating Language Models for Mathematics through Interactions

The standard methodology of evaluating large language models (LLMs) based on static pairs of inputs and outputs is insufficient for developing assistants: this kind of assessments fails to take into account the essential interactive element in their deployment, and therefore limits how we understand language model capabilities. We introduce CheckMate, an adaptable prototype platform for humans to interact with and evaluate LLMs. We conduct a study with CheckMate to evaluate three language models~(InstructGPT, ChatGPT, and GPT-4) as assistants in proving undergraduate-level mathematics, with a mixed cohort of participants from undergraduate students to professors of mathematics. We release the resulting interaction and rating dataset, MathConverse. By analysing MathConverse, we derive a preliminary taxonomy of human behaviours and uncover that despite a generally positive correlation, there are notable instances of divergence between correctness and perceived helpfulness in LLM generations, amongst other findings. Further, we identify useful scenarios and existing issues of GPT-4 in mathematical reasoning through a series of case studies contributed by expert mathematicians. We conclude with actionable takeaways for ML practitioners and mathematicians: models which communicate uncertainty, respond well to user corrections, are more interpretable and concise may constitute better assistants; interactive evaluation is a promising way to continually navigate the capability of these models; humans should be aware of language models' algebraic fallibility, and for that reason discern where they should be used.

Specializing Smaller Language Models towards Multi-Step Reasoning

The surprising ability of Large Language Models (LLMs) to perform well on complex reasoning with only few-shot chain-of-thought prompts is believed to emerge only in very large-scale models (100+ billion parameters). We show that such abilities can, in fact, be distilled down from GPT-3.5 (ge 175B) to T5 variants (le 11B). We propose model specialization, to specialize the model's ability towards a target task. The hypothesis is that large models (commonly viewed as larger than 100B) have strong modeling power, but are spread on a large spectrum of tasks. Small models (commonly viewed as smaller than 10B) have limited model capacity, but if we concentrate their capacity on a specific target task, the model can achieve a decent improved performance. We use multi-step math reasoning as our testbed because it is a very typical emergent ability. We show two important aspects of model abilities: (1). there exists a very complex balance/ tradeoff between language models' multi-dimensional abilities; (2). by paying the price of decreased generic ability, we can clearly lift up the scaling curve of models smaller than 10B towards a specialized multi-step math reasoning ability. We further give comprehensive discussions about important design choices for better generalization, including the tuning data format, the start model checkpoint, and a new model selection method. We hope our practice and discoveries can serve as an important attempt towards specialized smaller models in the new research paradigm set by LLMs.

SciGLM: Training Scientific Language Models with Self-Reflective Instruction Annotation and Tuning

sec:abstract Large Language Models (LLMs) have shown promise in assisting scientific discovery. However, such applications are currently limited by LLMs' deficiencies in understanding intricate scientific concepts, deriving symbolic equations, and solving advanced numerical calculations. To bridge these gaps, we introduce SciGLM, a suite of scientific language models able to conduct college-level scientific reasoning. Central to our approach is a novel self-reflective instruction annotation framework to address the data scarcity challenge in the science domain. This framework leverages existing LLMs to generate step-by-step reasoning for unlabelled scientific questions, followed by a process of self-reflective critic-and-revise. Applying this framework, we curated SciInstruct, a diverse and high-quality dataset encompassing mathematics, physics, chemistry, and formal proofs. We fine-tuned the ChatGLM family of language models with SciInstruct, enhancing their capabilities in scientific and mathematical reasoning. Remarkably, SciGLM consistently improves both the base model (ChatGLM3-6B-Base) and larger-scale models (12B and 32B), without sacrificing the language understanding capabilities of the base model. This makes SciGLM a suitable foundational model to facilitate diverse scientific discovery tasks. For the benefit of the wider research community, we release SciInstruct, SciGLM, alongside a self-reflective framework and fine-tuning code at https://github.com/THUDM/SciGLM.

A Deep Conjugate Direction Method for Iteratively Solving Linear Systems

We present a novel deep learning approach to approximate the solution of large, sparse, symmetric, positive-definite linear systems of equations. These systems arise from many problems in applied science, e.g., in numerical methods for partial differential equations. Algorithms for approximating the solution to these systems are often the bottleneck in problems that require their solution, particularly for modern applications that require many millions of unknowns. Indeed, numerical linear algebra techniques have been investigated for many decades to alleviate this computational burden. Recently, data-driven techniques have also shown promise for these problems. Motivated by the conjugate gradients algorithm that iteratively selects search directions for minimizing the matrix norm of the approximation error, we design an approach that utilizes a deep neural network to accelerate convergence via data-driven improvement of the search directions. Our method leverages a carefully chosen convolutional network to approximate the action of the inverse of the linear operator up to an arbitrary constant. We train the network using unsupervised learning with a loss function equal to the L^2 difference between an input and the system matrix times the network evaluation, where the unspecified constant in the approximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially discretized Poisson equations with millions of degrees of freedom arising in computational fluid dynamics applications. Unlike state-of-the-art learning approaches, our algorithm is capable of reducing the linear system residual to a given tolerance in a small number of iterations, independent of the problem size. Moreover, our method generalizes effectively to various systems beyond those encountered during training.

Wu's Method can Boost Symbolic AI to Rival Silver Medalists and AlphaGeometry to Outperform Gold Medalists at IMO Geometry

Proving geometric theorems constitutes a hallmark of visual reasoning combining both intuitive and logical skills. Therefore, automated theorem proving of Olympiad-level geometry problems is considered a notable milestone in human-level automated reasoning. The introduction of AlphaGeometry, a neuro-symbolic model trained with 100 million synthetic samples, marked a major breakthrough. It solved 25 of 30 International Mathematical Olympiad (IMO) problems whereas the reported baseline based on Wu's method solved only ten. In this note, we revisit the IMO-AG-30 Challenge introduced with AlphaGeometry, and find that Wu's method is surprisingly strong. Wu's method alone can solve 15 problems, and some of them are not solved by any of the other methods. This leads to two key findings: (i) Combining Wu's method with the classic synthetic methods of deductive databases and angle, ratio, and distance chasing solves 21 out of 30 methods by just using a CPU-only laptop with a time limit of 5 minutes per problem. Essentially, this classic method solves just 4 problems less than AlphaGeometry and establishes the first fully symbolic baseline strong enough to rival the performance of an IMO silver medalist. (ii) Wu's method even solves 2 of the 5 problems that AlphaGeometry failed to solve. Thus, by combining AlphaGeometry with Wu's method we set a new state-of-the-art for automated theorem proving on IMO-AG-30, solving 27 out of 30 problems, the first AI method which outperforms an IMO gold medalist.

RSRM: Reinforcement Symbolic Regression Machine

In nature, the behaviors of many complex systems can be described by parsimonious math equations. Automatically distilling these equations from limited data is cast as a symbolic regression process which hitherto remains a grand challenge. Keen efforts in recent years have been placed on tackling this issue and demonstrated success in symbolic regression. However, there still exist bottlenecks that current methods struggle to break when the discrete search space tends toward infinity and especially when the underlying math formula is intricate. To this end, we propose a novel Reinforcement Symbolic Regression Machine (RSRM) that masters the capability of uncovering complex math equations from only scarce data. The RSRM model is composed of three key modules: (1) a Monte Carlo tree search (MCTS) agent that explores optimal math expression trees consisting of pre-defined math operators and variables, (2) a Double Q-learning block that helps reduce the feasible search space of MCTS via properly understanding the distribution of reward, and (3) a modulated sub-tree discovery block that heuristically learns and defines new math operators to improve representation ability of math expression trees. Biding of these modules yields the state-of-the-art performance of RSRM in symbolic regression as demonstrated by multiple sets of benchmark examples. The RSRM model shows clear superiority over several representative baseline models.

CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities

Recent large language models (LLMs) have shown indications of mathematical reasoning ability. However it has not been clear how they would fare on more challenging competition-level problems. And while self-generated verbalizations of intermediate reasoning steps (i.e., chain-of-thought prompting) have been shown to be helpful, whether LLMs can make use of helpful side information such as problem-specific hints has not been investigated before. In this paper, we propose a challenging benchmark dataset for enabling such analyses. The Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems, annotated with concepts, or general math facts, and hints, or problem-specific tricks. These annotations allow us to explore the effects of additional information, such as relevant hints, misleading concepts, or related problems. This benchmark is difficult, with the best model only scoring 58.1% in standard settings. With concepts and hints, performance sometimes improves, indicating that some models can make use of such side information. We further annotate model-generated solutions for their correctness. Using this corpus, we find that models often arrive at the correct final answer through wrong reasoning steps. In addition, we test whether models are able to verify these solutions, and find that most models struggle. The dataset and code are available on the project website.

On Penalty Methods for Nonconvex Bilevel Optimization and First-Order Stochastic Approximation

In this work, we study first-order algorithms for solving Bilevel Optimization (BO) where the objective functions are smooth but possibly nonconvex in both levels and the variables are restricted to closed convex sets. As a first step, we study the landscape of BO through the lens of penalty methods, in which the upper- and lower-level objectives are combined in a weighted sum with penalty parameter sigma > 0. In particular, we establish a strong connection between the penalty function and the hyper-objective by explicitly characterizing the conditions under which the values and derivatives of the two must be O(sigma)-close. A by-product of our analysis is the explicit formula for the gradient of hyper-objective when the lower-level problem has multiple solutions under minimal conditions, which could be of independent interest. Next, viewing the penalty formulation as O(sigma)-approximation of the original BO, we propose first-order algorithms that find an epsilon-stationary solution by optimizing the penalty formulation with sigma = O(epsilon). When the perturbed lower-level problem uniformly satisfies the small-error proximal error-bound (EB) condition, we propose a first-order algorithm that converges to an epsilon-stationary point of the penalty function, using in total O(epsilon^{-3}) and O(epsilon^{-7}) accesses to first-order (stochastic) gradient oracles when the oracle is deterministic and oracles are noisy, respectively. Under an additional assumption on stochastic oracles, we show that the algorithm can be implemented in a fully {\it single-loop} manner, i.e., with O(1) samples per iteration, and achieves the improved oracle-complexity of O(epsilon^{-3}) and O(epsilon^{-5}), respectively.

Big-Math: A Large-Scale, High-Quality Math Dataset for Reinforcement Learning in Language Models

Increasing interest in reasoning models has led math to become a prominent testing ground for algorithmic and methodological improvements. However, existing open math datasets either contain a small collection of high-quality, human-written problems or a large corpus of machine-generated problems of uncertain quality, forcing researchers to choose between quality and quantity. In this work, we present Big-Math, a dataset of over 250,000 high-quality math questions with verifiable answers, purposefully made for reinforcement learning (RL). To create Big-Math, we rigorously filter, clean, and curate openly available datasets, extracting questions that satisfy our three desiderata: (1) problems with uniquely verifiable solutions, (2) problems that are open-ended, (3) and problems with a closed-form solution. To ensure the quality of Big-Math, we manually verify each step in our filtering process. Based on the findings from our filtering process, we introduce 47,000 new questions with verified answers, Big-Math-Reformulated: closed-ended questions (i.e. multiple choice questions) that have been reformulated as open-ended questions through a systematic reformulation algorithm. Compared to the most commonly used existing open-source datasets for math reasoning, GSM8k and MATH, Big-Math is an order of magnitude larger, while our rigorous filtering ensures that we maintain the questions most suitable for RL. We also provide a rigorous analysis of the dataset, finding that Big-Math contains a high degree of diversity across problem domains, and incorporates a wide range of problem difficulties, enabling a wide range of downstream uses for models of varying capabilities and training requirements. By bridging the gap between data quality and quantity, Big-Math establish a robust foundation for advancing reasoning in LLMs.

DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps

Diffusion probabilistic models (DPMs) are emerging powerful generative models. Despite their high-quality generation performance, DPMs still suffer from their slow sampling as they generally need hundreds or thousands of sequential function evaluations (steps) of large neural networks to draw a sample. Sampling from DPMs can be viewed alternatively as solving the corresponding diffusion ordinary differential equations (ODEs). In this work, we propose an exact formulation of the solution of diffusion ODEs. The formulation analytically computes the linear part of the solution, rather than leaving all terms to black-box ODE solvers as adopted in previous works. By applying change-of-variable, the solution can be equivalently simplified to an exponentially weighted integral of the neural network. Based on our formulation, we propose DPM-Solver, a fast dedicated high-order solver for diffusion ODEs with the convergence order guarantee. DPM-Solver is suitable for both discrete-time and continuous-time DPMs without any further training. Experimental results show that DPM-Solver can generate high-quality samples in only 10 to 20 function evaluations on various datasets. We achieve 4.70 FID in 10 function evaluations and 2.87 FID in 20 function evaluations on the CIFAR10 dataset, and a 4sim 16times speedup compared with previous state-of-the-art training-free samplers on various datasets.

Implicit Neural Spatial Representations for Time-dependent PDEs

Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields. This work explores solving time-dependent PDEs with INSR. Classical PDE solvers introduce both temporal and spatial discretizations. Common spatial discretizations include meshes and meshless point clouds, where each degree-of-freedom corresponds to a location in space. While these explicit spatial correspondences are intuitive to model and understand, these representations are not necessarily optimal for accuracy, memory usage, or adaptivity. Keeping the classical temporal discretization unchanged (e.g., explicit/implicit Euler), we explore INSR as an alternative spatial discretization, where spatial information is implicitly stored in the neural network weights. The network weights then evolve over time via time integration. Our approach does not require any training data generated by existing solvers because our approach is the solver itself. We validate our approach on various PDEs with examples involving large elastic deformations, turbulent fluids, and multi-scale phenomena. While slower to compute than traditional representations, our approach exhibits higher accuracy and lower memory consumption. Whereas classical solvers can dynamically adapt their spatial representation only by resorting to complex remeshing algorithms, our INSR approach is intrinsically adaptive. By tapping into the rich literature of classic time integrators, e.g., operator-splitting schemes, our method enables challenging simulations in contact mechanics and turbulent flows where previous neural-physics approaches struggle. Videos and codes are available on the project page: http://www.cs.columbia.edu/cg/INSR-PDE/

InfinityMATH: A Scalable Instruction Tuning Dataset in Programmatic Mathematical Reasoning

Recent advancements in Chain-of-Thoughts (CoT) and Program-of-Thoughts (PoT) methods have greatly enhanced language models' mathematical reasoning capabilities, facilitating their integration into instruction tuning datasets with LLMs. However, existing methods for large-scale dataset creation require substantial seed data and high computational costs for data synthesis, posing significant challenges for scalability. We introduce InfinityMATH, a scalable instruction tuning dataset for programmatic mathematical reasoning. The construction pipeline emphasizes decoupling numbers from mathematical problems to synthesize number-independent programs, enabling efficient and flexible scaling while minimizing dependency on specific numerical values. Fine-tuning experiments with open-source language and code models, such as Llama2 and CodeLlama, demonstrate the practical benefits of InfinityMATH. These fine-tuned models, showed significant relative improvements on both in-domain and out-of-domain benchmarks, ranging from 184.7% to 514.3% on average. Additionally, these models exhibited high robustness on the GSM8K+ and MATH+ benchmarks, which are enhanced version of test sets with simply the number variations. InfinityMATH ensures that models are more versatile and effective across a broader range of mathematical problems. The data is available at https://huggingface.co/datasets/flagopen/InfinityMATH.

Solving High-Dimensional PDEs with Latent Spectral Models

Deep models have achieved impressive progress in solving partial differential equations (PDEs). A burgeoning paradigm is learning neural operators to approximate the input-output mappings of PDEs. While previous deep models have explored the multiscale architectures and various operator designs, they are limited to learning the operators as a whole in the coordinate space. In real physical science problems, PDEs are complex coupled equations with numerical solvers relying on discretization into high-dimensional coordinate space, which cannot be precisely approximated by a single operator nor efficiently learned due to the curse of dimensionality. We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs. Going beyond the coordinate space, LSM enables an attention-based hierarchical projection network to reduce the high-dimensional data into a compact latent space in linear time. Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space that approximates complex input-output mappings via learning multiple basis operators, enjoying nice theoretical guarantees for convergence and approximation. Experimentally, LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks covering both solid and fluid physics. Code is available at https://github.com/thuml/Latent-Spectral-Models.

Learning Physical Models that Can Respect Conservation Laws

Recent work in scientific machine learning (SciML) has focused on incorporating partial differential equation (PDE) information into the learning process. Much of this work has focused on relatively ``easy'' PDE operators (e.g., elliptic and parabolic), with less emphasis on relatively ``hard'' PDE operators (e.g., hyperbolic). Within numerical PDEs, the latter problem class requires control of a type of volume element or conservation constraint, which is known to be challenging. Delivering on the promise of SciML requires seamlessly incorporating both types of problems into the learning process. To address this issue, we propose ProbConserv, a framework for incorporating conservation constraints into a generic SciML architecture. To do so, ProbConserv combines the integral form of a conservation law with a Bayesian update. We provide a detailed analysis of ProbConserv on learning with the Generalized Porous Medium Equation (GPME), a widely-applicable parameterized family of PDEs that illustrates the qualitative properties of both easier and harder PDEs. ProbConserv is effective for easy GPME variants, performing well with state-of-the-art competitors; and for harder GPME variants it outperforms other approaches that do not guarantee volume conservation. ProbConserv seamlessly enforces physical conservation constraints, maintains probabilistic uncertainty quantification (UQ), and deals well with shocks and heteroscedasticities. In each case, it achieves superior predictive performance on downstream tasks.