- Vocalsound: A Dataset for Improving Human Vocal Sounds Recognition Recognizing human non-speech vocalizations is an important task and has broad applications such as automatic sound transcription and health condition monitoring. However, existing datasets have a relatively small number of vocal sound samples or noisy labels. As a consequence, state-of-the-art audio event classification models may not perform well in detecting human vocal sounds. To support research on building robust and accurate vocal sound recognition, we have created a VocalSound dataset consisting of over 21,000 crowdsourced recordings of laughter, sighs, coughs, throat clearing, sneezes, and sniffs from 3,365 unique subjects. Experiments show that the vocal sound recognition performance of a model can be significantly improved by 41.9% by adding VocalSound dataset to an existing dataset as training material. In addition, different from previous datasets, the VocalSound dataset contains meta information such as speaker age, gender, native language, country, and health condition. 3 authors · May 6, 2022
1 RMVPE: A Robust Model for Vocal Pitch Estimation in Polyphonic Music Vocal pitch is an important high-level feature in music audio processing. However, extracting vocal pitch in polyphonic music is more challenging due to the presence of accompaniment. To eliminate the influence of the accompaniment, most previous methods adopt music source separation models to obtain clean vocals from polyphonic music before predicting vocal pitches. As a result, the performance of vocal pitch estimation is affected by the music source separation models. To address this issue and directly extract vocal pitches from polyphonic music, we propose a robust model named RMVPE. This model can extract effective hidden features and accurately predict vocal pitches from polyphonic music. The experimental results demonstrate the superiority of RMVPE in terms of raw pitch accuracy (RPA) and raw chroma accuracy (RCA). Additionally, experiments conducted with different types of noise show that RMVPE is robust across all signal-to-noise ratio (SNR) levels. The code of RMVPE is available at https://github.com/Dream-High/RMVPE. 4 authors · Jun 27, 2023
1 From Vocal Instructions to Household Tasks: The Inria Tiago++ in the euROBIN Service Robots Coopetition This paper describes the Inria team's integrated robotics system used in the 1st euROBIN coopetition, during which service robots performed voice-activated household tasks in a kitchen setting.The team developed a modified Tiago++ platform that leverages a whole-body control stack for autonomous and teleoperated modes, and an LLM-based pipeline for instruction understanding and task planning. The key contributions (opens-sourced) are the integration of these components and the design of custom teleoperation devices, addressing practical challenges in the deployment of service robots. 9 authors · Dec 20, 2024
- Mel-RoFormer for Vocal Separation and Vocal Melody Transcription Developing a versatile deep neural network to model music audio is crucial in MIR. This task is challenging due to the intricate spectral variations inherent in music signals, which convey melody, harmonics, and timbres of diverse instruments. In this paper, we introduce Mel-RoFormer, a spectrogram-based model featuring two key designs: a novel Mel-band Projection module at the front-end to enhance the model's capability to capture informative features across multiple frequency bands, and interleaved RoPE Transformers to explicitly model the frequency and time dimensions as two separate sequences. We apply Mel-RoFormer to tackle two essential MIR tasks: vocal separation and vocal melody transcription, aimed at isolating singing voices from audio mixtures and transcribing their lead melodies, respectively. Despite their shared focus on singing signals, these tasks possess distinct optimization objectives. Instead of training a unified model, we adopt a two-step approach. Initially, we train a vocal separation model, which subsequently serves as a foundation model for fine-tuning for vocal melody transcription. Through extensive experiments conducted on benchmark datasets, we showcase that our models achieve state-of-the-art performance in both vocal separation and melody transcription tasks, underscoring the efficacy and versatility of Mel-RoFormer in modeling complex music audio signals. 3 authors · Sep 6, 2024
- Feature Representations for Automatic Meerkat Vocalization Classification Understanding evolution of vocal communication in social animals is an important research problem. In that context, beyond humans, there is an interest in analyzing vocalizations of other social animals such as, meerkats, marmosets, apes. While existing approaches address vocalizations of certain species, a reliable method tailored for meerkat calls is lacking. To that extent, this paper investigates feature representations for automatic meerkat vocalization analysis. Both traditional signal processing-based representations and data-driven representations facilitated by advances in deep learning are explored. Call type classification studies conducted on two data sets reveal that feature extraction methods developed for human speech processing can be effectively employed for automatic meerkat call analysis. 4 authors · Aug 27, 2024
- Enhancing Child Vocalization Classification in Multi-Channel Child-Adult Conversations Through Wav2vec2 Children ASR Features Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that often emerges in early childhood. ASD assessment typically involves an observation protocol including note-taking and ratings of child's social behavior conducted by a trained clinician. A robust machine learning (ML) model that is capable of labeling adult and child audio has the potential to save significant time and labor in manual coding children's behaviors. This may assist clinicians capture events of interest, better communicate events with parents, and educate new clinicians. In this study, we leverage the self-supervised learning model, Wav2Vec 2.0 (W2V2), pretrained on 4300h of home recordings of children under 5 years old, to build a unified system that performs both speaker diarization (SD) and vocalization classification (VC) tasks. We apply this system to two-channel audio recordings of brief 3-5 minute clinician-child interactions using the Rapid-ABC corpus. We propose a novel technique by introducing auxiliary features extracted from W2V2-based automatic speech recognition (ASR) system for children under 4 years old to improve children's VC task. We test our proposed method of improving children's VC task on two corpora (Rapid-ABC and BabbleCor) and observe consistent improvements. Furthermore, we reach, or perhaps outperform, the state-of-the-art performance of BabbleCor. 3 authors · Sep 13, 2023
- Reverb Conversion of Mixed Vocal Tracks Using an End-to-end Convolutional Deep Neural Network Reverb plays a critical role in music production, where it provides listeners with spatial realization, timbre, and texture of the music. Yet, it is challenging to reproduce the musical reverb of a reference music track even by skilled engineers. In response, we propose an end-to-end system capable of switching the musical reverb factor of two different mixed vocal tracks. This method enables us to apply the reverb of the reference track to the source track to which the effect is desired. Further, our model can perform de-reverberation when the reference track is used as a dry vocal source. The proposed model is trained in combination with an adversarial objective, which makes it possible to handle high-resolution audio samples. The perceptual evaluation confirmed that the proposed model can convert the reverb factor with the preferred rate of 64.8%. To the best of our knowledge, this is the first attempt to apply deep neural networks to converting music reverb of vocal tracks. 3 authors · Mar 2, 2021
1 voc2vec: A Foundation Model for Non-Verbal Vocalization Speech foundation models have demonstrated exceptional capabilities in speech-related tasks. Nevertheless, these models often struggle with non-verbal audio data, such as vocalizations, baby crying, etc., which are critical for various real-world applications. Audio foundation models well handle non-speech data but also fail to capture the nuanced features of non-verbal human sounds. In this work, we aim to overcome the above shortcoming and propose a novel foundation model, termed voc2vec, specifically designed for non-verbal human data leveraging exclusively open-source non-verbal audio datasets. We employ a collection of 10 datasets covering around 125 hours of non-verbal audio. Experimental results prove that voc2vec is effective in non-verbal vocalization classification, and it outperforms conventional speech and audio foundation models. Moreover, voc2vec consistently outperforms strong baselines, namely OpenSmile and emotion2vec, on six different benchmark datasets. To the best of the authors' knowledge, voc2vec is the first universal representation model for vocalization tasks. 4 authors · Feb 22
1 Towards Lexical Analysis of Dog Vocalizations via Online Videos Deciphering the semantics of animal language has been a grand challenge. This study presents a data-driven investigation into the semantics of dog vocalizations via correlating different sound types with consistent semantics. We first present a new dataset of Shiba Inu sounds, along with contextual information such as location and activity, collected from YouTube with a well-constructed pipeline. The framework is also applicable to other animal species. Based on the analysis of conditioned probability between dog vocalizations and corresponding location and activity, we discover supporting evidence for previous heuristic research on the semantic meaning of various dog sounds. For instance, growls can signify interactions. Furthermore, our study yields new insights that existing word types can be subdivided into finer-grained subtypes and minimal semantic unit for Shiba Inu is word-related. For example, whimper can be subdivided into two types, attention-seeking and discomfort. 5 authors · Sep 21, 2023
- Hierarchical Generative Modeling of Melodic Vocal Contours in Hindustani Classical Music Hindustani music is a performance-driven oral tradition that exhibits the rendition of rich melodic patterns. In this paper, we focus on generative modeling of singers' vocal melodies extracted from audio recordings, as the voice is musically prominent within the tradition. Prior generative work in Hindustani music models melodies as coarse discrete symbols which fails to capture the rich expressive melodic intricacies of singing. Thus, we propose to use a finely quantized pitch contour, as an intermediate representation for hierarchical audio modeling. We propose GaMaDHaNi, a modular two-level hierarchy, consisting of a generative model on pitch contours, and a pitch contour to audio synthesis model. We compare our approach to non-hierarchical audio models and hierarchical models that use a self-supervised intermediate representation, through a listening test and qualitative analysis. We also evaluate audio model's ability to faithfully represent the pitch contour input using Pearson correlation coefficient. By using pitch contours as an intermediate representation, we show that our model may be better equipped to listen and respond to musicians in a human-AI collaborative setting by highlighting two potential interaction use cases (1) primed generation, and (2) coarse pitch conditioning. 5 authors · Aug 22, 2024
- JaCappella Corpus: A Japanese a Cappella Vocal Ensemble Corpus We construct a corpus of Japanese a cappella vocal ensembles (jaCappella corpus) for vocal ensemble separation and synthesis. It consists of 35 copyright-cleared vocal ensemble songs and their audio recordings of individual voice parts. These songs were arranged from out-of-copyright Japanese children's songs and have six voice parts (lead vocal, soprano, alto, tenor, bass, and vocal percussion). They are divided into seven subsets, each of which features typical characteristics of a music genre such as jazz and enka. The variety in genre and voice part match vocal ensembles recently widespread in social media services such as YouTube, although the main targets of conventional vocal ensemble datasets are choral singing made up of soprano, alto, tenor, and bass. Experimental evaluation demonstrates that our corpus is a challenging resource for vocal ensemble separation. Our corpus is available on our project page (https://tomohikonakamura.github.io/jaCappella_corpus/). 5 authors · Nov 29, 2022
- Speech Fusion to Face: Bridging the Gap Between Human's Vocal Characteristics and Facial Imaging While deep learning technologies are now capable of generating realistic images confusing humans, the research efforts are turning to the synthesis of images for more concrete and application-specific purposes. Facial image generation based on vocal characteristics from speech is one of such important yet challenging tasks. It is the key enabler to influential use cases of image generation, especially for business in public security and entertainment. Existing solutions to the problem of speech2face renders limited image quality and fails to preserve facial similarity due to the lack of quality dataset for training and appropriate integration of vocal features. In this paper, we investigate these key technical challenges and propose Speech Fusion to Face, or SF2F in short, attempting to address the issue of facial image quality and the poor connection between vocal feature domain and modern image generation models. By adopting new strategies on data model and training, we demonstrate dramatic performance boost over state-of-the-art solution, by doubling the recall of individual identity, and lifting the quality score from 15 to 19 based on the mutual information score with VGGFace classifier. 4 authors · Jun 10, 2020
1 Comparing Self-Supervised Learning Models Pre-Trained on Human Speech and Animal Vocalizations for Bioacoustics Processing Self-supervised learning (SSL) foundation models have emerged as powerful, domain-agnostic, general-purpose feature extractors applicable to a wide range of tasks. Such models pre-trained on human speech have demonstrated high transferability for bioacoustic processing. This paper investigates (i) whether SSL models pre-trained directly on animal vocalizations offer a significant advantage over those pre-trained on speech, and (ii) whether fine-tuning speech-pretrained models on automatic speech recognition (ASR) tasks can enhance bioacoustic classification. We conduct a comparative analysis using three diverse bioacoustic datasets and two different bioacoustic tasks. Results indicate that pre-training on bioacoustic data provides only marginal improvements over speech-pretrained models, with comparable performance in most scenarios. Fine-tuning on ASR tasks yields mixed outcomes, suggesting that the general-purpose representations learned during SSL pre-training are already well-suited for bioacoustic tasks. These findings highlight the robustness of speech-pretrained SSL models for bioacoustics and imply that extensive fine-tuning may not be necessary for optimal performance. 2 authors · Jan 10
- Analysis of Self-Supervised Speech Models on Children's Speech and Infant Vocalizations To understand why self-supervised learning (SSL) models have empirically achieved strong performances on several speech-processing downstream tasks, numerous studies have focused on analyzing the encoded information of the SSL layer representations in adult speech. Limited work has investigated how pre-training and fine-tuning affect SSL models encoding children's speech and vocalizations. In this study, we aim to bridge this gap by probing SSL models on two relevant downstream tasks: (1) phoneme recognition (PR) on the speech of adults, older children (8-10 years old), and younger children (1-4 years old), and (2) vocalization classification (VC) distinguishing cry, fuss, and babble for infants under 14 months old. For younger children's PR, the superiority of fine-tuned SSL models is largely due to their ability to learn features that represent older children's speech and then adapt those features to the speech of younger children. For infant VC, SSL models pre-trained on large-scale home recordings learn to leverage phonetic representations at middle layers, and thereby enhance the performance of this task. 3 authors · Feb 10, 2024
- Singing voice synthesis based on frame-level sequence-to-sequence models considering vocal timing deviation This paper proposes singing voice synthesis (SVS) based on frame-level sequence-to-sequence models considering vocal timing deviation. In SVS, it is essential to synchronize the timing of singing with temporal structures represented by scores, taking into account that there are differences between actual vocal timing and note start timing. In many SVS systems including our previous work, phoneme-level score features are converted into frame-level ones on the basis of phoneme boundaries obtained by external aligners to take into account vocal timing deviations. Therefore, the sound quality is affected by the aligner accuracy in this system. To alleviate this problem, we introduce an attention mechanism with frame-level features. In the proposed system, the attention mechanism absorbs alignment errors in phoneme boundaries. Additionally, we evaluate the system with pseudo-phoneme-boundaries defined by heuristic rules based on musical scores when there is no aligner. The experimental results show the effectiveness of the proposed system. 5 authors · Jan 5, 2023
- A Multilinear Tongue Model Derived from Speech Related MRI Data of the Human Vocal Tract We present a multilinear statistical model of the human tongue that captures anatomical and tongue pose related shape variations separately. The model is derived from 3D magnetic resonance imaging data of 11 speakers sustaining speech related vocal tract configurations. The extraction is performed by using a minimally supervised method that uses as basis an image segmentation approach and a template fitting technique. Furthermore, it uses image denoising to deal with possibly corrupt data, palate surface information reconstruction to handle palatal tongue contacts, and a bootstrap strategy to refine the obtained shapes. Our evaluation concludes that limiting the degrees of freedom for the anatomical and speech related variations to 5 and 4, respectively, produces a model that can reliably register unknown data while avoiding overfitting effects. Furthermore, we show that it can be used to generate a plausible tongue animation by tracking sparse motion capture data. 4 authors · Dec 15, 2016