from typing import Dict, List, Any from transformers import Blip2Processor, Blip2ForConditionalGeneration from PIL import Image from io import BytesIO import torch, re, base64 class EndpointHandler: def __init__(self, path=""): # load the optimized model self.processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") self.model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", device_map="auto") def __call__(self, data: Any) -> Dict[str, Any]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`dict`:. The object returned should be a dict of one list like {"captions": ["A hugging face at the office"]} containing : - "caption": A string corresponding to the generated caption. """ # parameters = data.pop("parameters", {}) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') inputs = base64.b64decode(re.sub('^data:image/.+;base64,', '', data['inputs'])) raw_images = Image.open(BytesIO(inputs)) processed_image = self.processor(images=raw_images, return_tensors="pt").to(device) out = self.model.generate(**processed_image) captions = self.processor.decode(out[0], skip_special_tokens=True) # postprocess the prediction return {"captions": captions} EndpointHandler()