File size: 2,846 Bytes
b1ae5f6
 
9bb75cf
 
 
 
 
 
 
 
 
 
 
 
55ef942
 
 
b1ae5f6
 
9bb75cf
 
b1ae5f6
9bb75cf
b1ae5f6
9bb75cf
 
 
 
 
 
 
b1ae5f6
9bb75cf
b1ae5f6
9bb75cf
b1ae5f6
9bb75cf
b1ae5f6
9bb75cf
b1ae5f6
9bb75cf
b1ae5f6
9bb75cf
b1ae5f6
9bb75cf
b1ae5f6
9bb75cf
b1ae5f6
9bb75cf
 
 
 
 
 
 
 
 
 
 
 
 
b1ae5f6
9bb75cf
b1ae5f6
9bb75cf
 
 
 
 
 
 
 
 
 
 
 
 
b1ae5f6
 
9bb75cf
b1ae5f6
9bb75cf
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
datasets:
- param-bharat/scorers-nli
pipeline_tag: text-classification
model-index:
- name: ModernBERT-base-nli-clf
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ModernBERT-base-nli-clf

This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0101
- F1: 0.8717
- Accuracy: 0.8717
- Precision: 0.8717
- Recall: 0.8717

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 128
- eval_batch_size: 128
- seed: 2024
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 1024
- total_eval_batch_size: 1024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | F1     | Accuracy | Precision | Recall |
|:-------------:|:------:|:-----:|:---------------:|:------:|:--------:|:---------:|:------:|
| No log        | 0      | 0     | 0.0185          | 0.5044 | 0.5297   | 0.5418    | 0.5297 |
| 0.0135        | 0.4999 | 6630  | 0.0150          | 0.7539 | 0.755    | 0.7582    | 0.755  |
| 0.0108        | 0.9998 | 13260 | 0.0108          | 0.8539 | 0.8539   | 0.8540    | 0.8539 |
| 0.0109        | 1.4998 | 19890 | 0.0113          | 0.8492 | 0.8493   | 0.8496    | 0.8493 |
| 0.0103        | 1.9997 | 26520 | 0.0103          | 0.8641 | 0.8641   | 0.8641    | 0.8641 |
| 0.0099        | 2.4996 | 33150 | 0.0109          | 0.8575 | 0.8579   | 0.8630    | 0.8579 |
| 0.0095        | 2.9995 | 39780 | 0.0103          | 0.8686 | 0.8686   | 0.8686    | 0.8686 |
| 0.0092        | 3.4995 | 46410 | 0.0101          | 0.8700 | 0.87     | 0.8700    | 0.87   |
| 0.0094        | 3.9994 | 53040 | 0.0097          | 0.8751 | 0.8751   | 0.8751    | 0.8751 |
| 0.0095        | 4.4993 | 59670 | 0.0105          | 0.8664 | 0.8664   | 0.8664    | 0.8664 |
| 0.0086        | 4.9992 | 66300 | 0.0101          | 0.8717 | 0.8717   | 0.8717    | 0.8717 |


### Framework versions

- Transformers 4.48.0.dev0
- Pytorch 2.5.1
- Datasets 3.2.0
- Tokenizers 0.21.0