File size: 2,846 Bytes
b1ae5f6 9bb75cf 55ef942 b1ae5f6 9bb75cf b1ae5f6 9bb75cf b1ae5f6 9bb75cf b1ae5f6 9bb75cf b1ae5f6 9bb75cf b1ae5f6 9bb75cf b1ae5f6 9bb75cf b1ae5f6 9bb75cf b1ae5f6 9bb75cf b1ae5f6 9bb75cf b1ae5f6 9bb75cf b1ae5f6 9bb75cf b1ae5f6 9bb75cf b1ae5f6 9bb75cf b1ae5f6 9bb75cf b1ae5f6 9bb75cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
datasets:
- param-bharat/scorers-nli
pipeline_tag: text-classification
model-index:
- name: ModernBERT-base-nli-clf
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ModernBERT-base-nli-clf
This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0101
- F1: 0.8717
- Accuracy: 0.8717
- Precision: 0.8717
- Recall: 0.8717
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 128
- eval_batch_size: 128
- seed: 2024
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 1024
- total_eval_batch_size: 1024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall |
|:-------------:|:------:|:-----:|:---------------:|:------:|:--------:|:---------:|:------:|
| No log | 0 | 0 | 0.0185 | 0.5044 | 0.5297 | 0.5418 | 0.5297 |
| 0.0135 | 0.4999 | 6630 | 0.0150 | 0.7539 | 0.755 | 0.7582 | 0.755 |
| 0.0108 | 0.9998 | 13260 | 0.0108 | 0.8539 | 0.8539 | 0.8540 | 0.8539 |
| 0.0109 | 1.4998 | 19890 | 0.0113 | 0.8492 | 0.8493 | 0.8496 | 0.8493 |
| 0.0103 | 1.9997 | 26520 | 0.0103 | 0.8641 | 0.8641 | 0.8641 | 0.8641 |
| 0.0099 | 2.4996 | 33150 | 0.0109 | 0.8575 | 0.8579 | 0.8630 | 0.8579 |
| 0.0095 | 2.9995 | 39780 | 0.0103 | 0.8686 | 0.8686 | 0.8686 | 0.8686 |
| 0.0092 | 3.4995 | 46410 | 0.0101 | 0.8700 | 0.87 | 0.8700 | 0.87 |
| 0.0094 | 3.9994 | 53040 | 0.0097 | 0.8751 | 0.8751 | 0.8751 | 0.8751 |
| 0.0095 | 4.4993 | 59670 | 0.0105 | 0.8664 | 0.8664 | 0.8664 | 0.8664 |
| 0.0086 | 4.9992 | 66300 | 0.0101 | 0.8717 | 0.8717 | 0.8717 | 0.8717 |
### Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1
- Datasets 3.2.0
- Tokenizers 0.21.0 |