ylacombe commited on
Commit
81bf954
β€’
1 Parent(s): 2d133ba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -158
README.md CHANGED
@@ -3,10 +3,6 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
  {
11
  "2450": "Mark",
12
  "496": "Jessica",
@@ -26,192 +22,143 @@ tags: []
26
  "4174": "Michelle"
27
  }
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- ## Model Details
31
-
32
- ### Model Description
33
-
34
- <!-- Provide a longer summary of what this model is. -->
35
-
36
- This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.
37
-
38
- - **Developed by:** [More Information Needed]
39
- - **Funded by [optional]:** [More Information Needed]
40
- - **Shared by [optional]:** [More Information Needed]
41
- - **Model type:** [More Information Needed]
42
- - **Language(s) (NLP):** [More Information Needed]
43
- - **License:** [More Information Needed]
44
- - **Finetuned from model [optional]:** [More Information Needed]
45
-
46
- ### Model Sources [optional]
47
-
48
- <!-- Provide the basic links for the model. -->
49
-
50
- - **Repository:** [More Information Needed]
51
- - **Paper [optional]:** [More Information Needed]
52
- - **Demo [optional]:** [More Information Needed]
53
-
54
- ## Uses
55
-
56
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
57
-
58
- ### Direct Use
59
-
60
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Downstream Use [optional]
65
-
66
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
67
-
68
- [More Information Needed]
69
-
70
- ### Out-of-Scope Use
71
-
72
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
73
-
74
- [More Information Needed]
75
-
76
- ## Bias, Risks, and Limitations
77
-
78
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
79
-
80
- [More Information Needed]
81
-
82
- ### Recommendations
83
-
84
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
85
-
86
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
87
-
88
- ## How to Get Started with the Model
89
-
90
- Use the code below to get started with the model.
91
-
92
- [More Information Needed]
93
-
94
- ## Training Details
95
-
96
- ### Training Data
97
-
98
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
99
-
100
- [More Information Needed]
101
-
102
- ### Training Procedure
103
-
104
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
105
-
106
- #### Preprocessing [optional]
107
-
108
- [More Information Needed]
109
-
110
-
111
- #### Training Hyperparameters
112
-
113
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
114
-
115
- #### Speeds, Sizes, Times [optional]
116
-
117
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
118
-
119
- [More Information Needed]
120
-
121
- ## Evaluation
122
-
123
- <!-- This section describes the evaluation protocols and provides the results. -->
124
-
125
- ### Testing Data, Factors & Metrics
126
-
127
- #### Testing Data
128
-
129
- <!-- This should link to a Dataset Card if possible. -->
130
-
131
- [More Information Needed]
132
-
133
- #### Factors
134
-
135
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
136
-
137
- [More Information Needed]
138
-
139
- #### Metrics
140
-
141
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
142
-
143
- [More Information Needed]
144
-
145
- ### Results
146
-
147
- [More Information Needed]
148
 
149
- #### Summary
150
 
 
151
 
 
 
 
152
 
153
- ## Model Examination [optional]
154
 
155
- <!-- Relevant interpretability work for the model goes here -->
 
156
 
157
- [More Information Needed]
158
 
159
- ## Environmental Impact
160
 
161
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
162
 
163
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
164
 
165
- - **Hardware Type:** [More Information Needed]
166
- - **Hours used:** [More Information Needed]
167
- - **Cloud Provider:** [More Information Needed]
168
- - **Compute Region:** [More Information Needed]
169
- - **Carbon Emitted:** [More Information Needed]
170
 
171
- ## Technical Specifications [optional]
172
 
173
- ### Model Architecture and Objective
174
 
175
- [More Information Needed]
176
 
177
- ### Compute Infrastructure
178
 
179
- [More Information Needed]
 
 
180
 
181
- #### Hardware
182
 
183
- [More Information Needed]
184
 
185
- #### Software
186
 
187
- [More Information Needed]
 
 
 
 
188
 
189
- ## Citation [optional]
190
 
191
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
192
 
193
- **BibTeX:**
 
194
 
195
- [More Information Needed]
 
196
 
197
- **APA:**
 
 
 
198
 
199
- [More Information Needed]
 
 
 
 
200
 
201
- ## Glossary [optional]
202
 
203
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
204
 
205
- [More Information Needed]
 
 
 
 
206
 
207
- ## More Information [optional]
208
 
209
- [More Information Needed]
210
 
211
- ## Model Card Authors [optional]
 
 
 
 
 
 
 
 
 
212
 
213
- [More Information Needed]
 
 
 
 
 
 
 
 
 
214
 
215
- ## Model Card Contact
216
 
217
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
 
 
 
 
6
  {
7
  "2450": "Mark",
8
  "496": "Jessica",
 
22
  "4174": "Michelle"
23
  }
24
 
25
+ ---
26
+ library_name: transformers
27
+ tags:
28
+ - text-to-speech
29
+ - annotation
30
+ license: apache-2.0
31
+ language:
32
+ - en
33
+ - fr
34
+ - es
35
+ - pt
36
+ - pl
37
+ - de
38
+ - nl
39
+ - it
40
+ pipeline_tag: text-to-speech
41
+ inference: false
42
+ datasets:
43
+ - facebook/multilingual_librispeech
44
+ - parler-tts/libritts_r_filtered
45
+ - parler-tts/libritts-r-filtered-speaker-descriptions
46
+ - parler-tts/mls_eng
47
+ - parler-tts/mls-eng-speaker-descriptions
48
+ - PHBJT/mls-annotated
49
+ - PHBJT/cml-tts-filtered-annotated
50
+ - PHBJT/cml-tts-filtered
51
+ ---
52
 
53
+ <img src="https://huggingface.co/datasets/parler-tts/images/resolve/main/thumbnail.png" alt="Parler Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
 
55
 
56
+ # Parler-TTS Mini Multilingual
57
 
58
+ <a target="_blank" href="https://huggingface.co/spaces/PHBJT/multi_parler_tts">
59
+ <img src="https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg" alt="Open in HuggingFace"/>
60
+ </a>
61
 
62
+ **Parler-TTS Mini Multilingual v1** is a multilingual extension of [Parler-TTS Mini](https://huggingface.co/parler-tts/parler-tts-mini-v1.1).
63
 
64
+ It is a fine-tuned version, trained on a [cleaned version](https://huggingface.co/datasets/PHBJT/cml-tts-filtered) of [CML-TTS](https://huggingface.co/datasets/ylacombe/cml-tts) and on the non-English version of [Multilingual LibriSpeech](https://huggingface.co/datasets/facebook/multilingual_librispeech).
65
+ In all, this represents some 9,200 hours of non-English data. To retain English capabilities, we also added back the [LibriTTS-R English dataset](https://huggingface.co/datasets/parler-tts/libritts_r_filtered), some 580h of high-quality English data.
66
 
67
+ **Parler-TTS Mini Multilingual** can speak in 8 European languages: English, French, Spanish, Portuguese, Polish, German, Italian and Dutch.
68
 
69
+ Thanks to its **better prompt tokenizer**, it can easily be extended to other languages. This tokenizer has a larger vocabulary and handles byte fallback, which simplifies multilingual training.
70
 
71
+ 🚨 This work is the result of a collaboration between the **HuggingFace audio team** and the **[Quantum Squadra](https://quantumsquadra.com/) team**. The **[AI4Bharat](https://ai4bharat.iitm.ac.in/) team** also provided advice and assistance in improving tokenization. 🚨
72
 
 
73
 
74
+ ## πŸ“– Quick Index
75
+ * [πŸ‘¨β€πŸ’» Installation](#πŸ‘¨β€πŸ’»-installation)
76
+ * [🎯 Inference](#inference)
77
+ * [Motivation](#motivation)
78
+ * [Optimizing inference](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md)
79
 
80
+ ## πŸ› οΈ Usage
81
 
82
+ 🚨Unlike previous versions of Parler-TTS, here we use two tokenizers - one for the prompt and one for the description.🚨
83
 
84
+ ### πŸ‘¨β€πŸ’» Installation
85
 
86
+ Using Parler-TTS is as simple as "bonjour". Simply install the library once:
87
 
88
+ ```sh
89
+ pip install git+https://github.com/huggingface/parler-tts.git
90
+ ```
91
 
92
+ ### Inference
93
 
 
94
 
95
+ **Parler-TTS** has been trained to generate speech with features that can be controlled with a simple text prompt, for example:
96
 
97
+ ```py
98
+ import torch
99
+ from parler_tts import ParlerTTSForConditionalGeneration
100
+ from transformers import AutoTokenizer
101
+ import soundfile as sf
102
 
103
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
104
 
105
+ model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-multilingual").to(device)
106
+ tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-multilingual")
107
+ description_tokenizer = AutoTokenizer.from_pretrained(model.config.text_encoder._name_or_path)
108
 
109
+ prompt = "Hey, how are you doing today?"
110
+ description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."
111
 
112
+ input_ids = description_tokenizer(description, return_tensors="pt").input_ids.to(device)
113
+ prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
114
 
115
+ generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
116
+ audio_arr = generation.cpu().numpy().squeeze()
117
+ sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate)
118
+ ```
119
 
120
+ **Tips**:
121
+ * We've set up an [inference guide](https://github.com/huggingface/parler-tts/blob/main/INFERENCE.md) to make generation faster. Think SDPA, torch.compile, batching and streaming!
122
+ * Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise
123
+ * Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech
124
+ * The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt
125
 
126
+ ## Motivation
127
 
128
+ Parler-TTS is a reproduction of work from the paper [Natural language guidance of high-fidelity text-to-speech with synthetic annotations](https://www.text-description-to-speech.com) by Dan Lyth and Simon King, from Stability AI and Edinburgh University respectively.
129
 
130
+ Contrarily to other TTS models, Parler-TTS is a **fully open-source** release. All of the datasets, pre-processing, training code and weights are released publicly under permissive license, enabling the community to build on our work and develop their own powerful TTS models.
131
+ Parler-TTS was released alongside:
132
+ * [The Parler-TTS repository](https://github.com/huggingface/parler-tts) - you can train and fine-tuned your own version of the model.
133
+ * [The Data-Speech repository](https://github.com/huggingface/dataspeech) - a suite of utility scripts designed to annotate speech datasets.
134
+ * [The Parler-TTS organization](https://huggingface.co/parler-tts) - where you can find the annotated datasets as well as the future checkpoints.
135
 
136
+ ## Citation
137
 
138
+ If you found this repository useful, please consider citing this work and also the original Stability AI paper:
139
 
140
+ ```
141
+ @misc{lacombe-etal-2024-parler-tts,
142
+ author = {Yoach Lacombe and Vaibhav Srivastav and Sanchit Gandhi},
143
+ title = {Parler-TTS},
144
+ year = {2024},
145
+ publisher = {GitHub},
146
+ journal = {GitHub repository},
147
+ howpublished = {\url{https://github.com/huggingface/parler-tts}}
148
+ }
149
+ ```
150
 
151
+ ```
152
+ @misc{lyth2024natural,
153
+ title={Natural language guidance of high-fidelity text-to-speech with synthetic annotations},
154
+ author={Dan Lyth and Simon King},
155
+ year={2024},
156
+ eprint={2402.01912},
157
+ archivePrefix={arXiv},
158
+ primaryClass={cs.SD}
159
+ }
160
+ ```
161
 
162
+ ## License
163
 
164
+ This model is permissively licensed under the Apache 2.0 license.