sinaghassemi96 commited on
Commit
b298b84
1 Parent(s): b84ccc0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -193
README.md CHANGED
@@ -1,198 +1,111 @@
1
- ---
2
- library_name: diffusers
3
- ---
4
-
5
- # Model Card for Model ID
6
-
7
- <!-- Provide a quick summary of what the model is/does. -->
8
 
 
9
 
 
10
 
11
  ## Model Details
12
 
13
- ### Model Description
14
-
15
- <!-- Provide a longer summary of what this model is. -->
16
-
17
- This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
18
-
19
- - **Developed by:** [More Information Needed]
20
- - **Funded by [optional]:** [More Information Needed]
21
- - **Shared by [optional]:** [More Information Needed]
22
- - **Model type:** [More Information Needed]
23
- - **Language(s) (NLP):** [More Information Needed]
24
- - **License:** [More Information Needed]
25
- - **Finetuned from model [optional]:** [More Information Needed]
26
-
27
- ### Model Sources [optional]
28
-
29
- <!-- Provide the basic links for the model. -->
30
-
31
- - **Repository:** [More Information Needed]
32
- - **Paper [optional]:** [More Information Needed]
33
- - **Demo [optional]:** [More Information Needed]
34
-
35
- ## Uses
36
-
37
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
-
39
- ### Direct Use
40
-
41
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
-
43
- [More Information Needed]
44
-
45
- ### Downstream Use [optional]
46
-
47
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
-
49
- [More Information Needed]
50
-
51
- ### Out-of-Scope Use
52
-
53
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
-
55
- [More Information Needed]
56
-
57
- ## Bias, Risks, and Limitations
58
-
59
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
-
61
- [More Information Needed]
62
-
63
- ### Recommendations
64
-
65
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
-
67
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
-
69
- ## How to Get Started with the Model
70
-
71
- Use the code below to get started with the model.
72
-
73
- [More Information Needed]
74
-
75
- ## Training Details
76
-
77
- ### Training Data
78
-
79
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
-
81
- [More Information Needed]
82
-
83
- ### Training Procedure
84
-
85
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
-
87
- #### Preprocessing [optional]
88
-
89
- [More Information Needed]
90
-
91
-
92
- #### Training Hyperparameters
93
-
94
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
-
96
- #### Speeds, Sizes, Times [optional]
97
-
98
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
-
100
- [More Information Needed]
101
-
102
- ## Evaluation
103
-
104
- <!-- This section describes the evaluation protocols and provides the results. -->
105
-
106
- ### Testing Data, Factors & Metrics
107
-
108
- #### Testing Data
109
-
110
- <!-- This should link to a Dataset Card if possible. -->
111
-
112
- [More Information Needed]
113
-
114
- #### Factors
115
-
116
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Metrics
121
-
122
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
-
124
- [More Information Needed]
125
-
126
- ### Results
127
-
128
- [More Information Needed]
129
-
130
- #### Summary
131
-
132
-
133
-
134
- ## Model Examination [optional]
135
-
136
- <!-- Relevant interpretability work for the model goes here -->
137
-
138
- [More Information Needed]
139
-
140
- ## Environmental Impact
141
-
142
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
-
144
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
-
146
- - **Hardware Type:** [More Information Needed]
147
- - **Hours used:** [More Information Needed]
148
- - **Cloud Provider:** [More Information Needed]
149
- - **Compute Region:** [More Information Needed]
150
- - **Carbon Emitted:** [More Information Needed]
151
-
152
- ## Technical Specifications [optional]
153
-
154
- ### Model Architecture and Objective
155
-
156
- [More Information Needed]
157
-
158
- ### Compute Infrastructure
159
-
160
- [More Information Needed]
161
-
162
- #### Hardware
163
-
164
- [More Information Needed]
165
-
166
- #### Software
167
-
168
- [More Information Needed]
169
-
170
- ## Citation [optional]
171
-
172
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
-
174
- **BibTeX:**
175
-
176
- [More Information Needed]
177
-
178
- **APA:**
179
-
180
- [More Information Needed]
181
-
182
- ## Glossary [optional]
183
-
184
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
-
186
- [More Information Needed]
187
-
188
- ## More Information [optional]
189
-
190
- [More Information Needed]
191
-
192
- ## Model Card Authors [optional]
193
-
194
- [More Information Needed]
195
-
196
- ## Model Card Contact
197
-
198
- [More Information Needed]
 
1
+ # Persian-to-Image Text-to-Image Pipeline
 
 
 
 
 
 
2
 
3
+ ## Model Overview
4
 
5
+ This model pipeline is designed to generate images from Persian text descriptions. It works by first translating the Persian text into English and then using a fine-tuned Stable Diffusion model to generate the corresponding image. The pipeline combines two models: a translation model (`mohammad-shirkhani/finetune_persian_to_english_mt5_base_summarize_on_celeba_hq`) and an image generation model (`ebrahim-k/Stable-Diffusion-1_5-FT-celeba_HQ_en`).
6
 
7
  ## Model Details
8
 
9
+ ### Translation Model
10
+ - **Model Name**: `mohammad-shirkhani/finetune_persian_to_english_mt5_base_summarize_on_celeba_hq`
11
+ - **Architecture**: mT5
12
+ - **Purpose**: This model translates Persian text into English. It has been fine-tuned on the CelebA-HQ dataset for summarization tasks, making it effective for translating descriptions of facial features.
13
+
14
+ ### Image Generation Model
15
+ - **Model Name**: `ebrahim-k/Stable-Diffusion-1_5-FT-celeba_HQ_en`
16
+ - **Architecture**: Stable Diffusion 1.5
17
+ - **Purpose**: This model generates high-quality images from English text produced by the translation model. It has been fine-tuned on the CelebA-HQ dataset, which makes it particularly effective for generating realistic human faces based on text descriptions.
18
+
19
+ ## Pipeline Description
20
+
21
+ The pipeline operates through the following steps:
22
+
23
+ 1. **Text Translation**: The Persian input text is translated into English using the mT5-based translation model.
24
+ 2. **Image Generation**: The translated English text is then used to generate the corresponding image with the Stable Diffusion model.
25
+
26
+ ### Code Implementation
27
+
28
+ #### 1. Install Required Libraries
29
+
30
+ ```python
31
+ !pip install transformers diffusers accelerate torch
32
+ ```
33
+ #### 2. Import Necessary Libraries
34
+
35
+ ```python
36
+ import torch
37
+ from transformers import MT5ForConditionalGeneration, T5Tokenizer
38
+ from diffusers import StableDiffusionPipeline
39
+ ```
40
+
41
+ #### 3. Set Device (GPU or CPU)
42
+ This code determines whether the pipeline should use a GPU (if available) or fallback to a CPU.
43
+
44
+ ```python
45
+ # Determine the device: GPU if available, otherwise CPU
46
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
47
+ print(f"Using device: {device}")
48
+ ```
49
+
50
+ #### 4. Define and Load the Persian-to-Image Model Class
51
+ The following class handles both translation and image generation tasks.
52
+
53
+ ```python
54
+ # Define the model class
55
+ class PersianToImageModel:
56
+ def __init__(self, translation_model_name, image_model_name, device):
57
+ self.device = device
58
+
59
+ # Load translation model
60
+ self.translation_model = MT5ForConditionalGeneration.from_pretrained(translation_model_name).to(device)
61
+ self.translation_tokenizer = T5Tokenizer.from_pretrained(translation_model_name)
62
+
63
+ # Load image generation model
64
+ self.image_model = StableDiffusionPipeline.from_pretrained(image_model_name).to(device)
65
+
66
+ def translate_text(self, persian_text):
67
+ input_ids = self.translation_tokenizer.encode(persian_text, return_tensors="pt").to(self.device)
68
+ translated_ids = self.translation_model.generate(input_ids, max_length=512, num_beams=4, early_stopping=True)
69
+ translated_text = self.translation_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
70
+ return translated_text
71
+
72
+ def generate_image(self, english_text):
73
+ image = self.image_model(english_text).images[0]
74
+ return image
75
+
76
+ def __call__(self, persian_text):
77
+ # Translate Persian text to English
78
+ english_text = self.translate_text(persian_text)
79
+ print(f"Translated Text: {english_text}")
80
+
81
+ # Generate and return image
82
+ return self.generate_image(english_text)
83
+ ```
84
+ #### 5. Instantiate the Model
85
+ The following code snippet demonstrates how to instantiate the combined model.
86
+
87
+ ```python
88
+ # Instantiate the combined model
89
+ translation_model_name = 'mohammad-shirkhani/finetune_persian_to_english_mt5_base_summarize_on_celeba_hq'
90
+ image_model_name = 'ebrahim-k/Stable-Diffusion-1_5-FT-celeba_HQ_en'
91
+
92
+ persian_to_image_model = PersianToImageModel(translation_model_name, image_model_name, device)
93
+ ```
94
+ #### 6. Example Usage of the Model
95
+ Below are examples of how to use the model to generate images from Persian text.
96
+
97
+ ```python
98
+ from IPython.display import display
99
+
100
+ # Persian text describing a person
101
+ persian_text = "این زن دارای موهای موج دار ، لب های بزرگ و موهای قهوه ای است و رژ لب دارد.این زن موهای موج دار و لب های بزرگ دارد و رژ لب دارد.فرد جذاب است و موهای موج دار ، چشم های باریک و موهای قهوه ای دارد."
102
+
103
+ # Generate and display the image
104
+ image = persian_to_image_model(persian_text)
105
+ display(image)
106
+
107
+ # Another example
108
+ persian_text2 = "این مرد جذاب دارای موهای قهوه ای ، سوزش های جانبی ، دهان کمی باز و کیسه های زیر چشم است.این فرد جذاب دارای کیسه های زیر چشم ، سوزش های جانبی و دهان کمی باز است."
109
+ image2 = persian_to_image_model(persian_text2)
110
+ display(image2)
111
+ ```