pasithbas159
commited on
Commit
•
b7b975b
1
Parent(s):
379a42e
pasithbas159/multilabel-cls-model-v3
Browse files- README.md +92 -0
- config.json +69 -0
- logs/events.out.tfevents.1728650631.2082b953c793.5832.0 +3 -0
- logs/events.out.tfevents.1728652713.2082b953c793.5832.1 +3 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: xlm-roberta-large
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: multilabel_transfer_learning_transformer
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# multilabel_transfer_learning_transformer
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0217
|
23 |
+
- F1: 0.9924
|
24 |
+
- Roc Auc: 0.9955
|
25 |
+
- Accuracy: 0.9887
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 1e-05
|
45 |
+
- train_batch_size: 8
|
46 |
+
- eval_batch_size: 4
|
47 |
+
- seed: 123
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: cosine
|
50 |
+
- lr_scheduler_warmup_steps: 300
|
51 |
+
- num_epochs: 100
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
|
57 |
+
| 0.5454 | 1.0 | 136 | 0.4135 | 0.0125 | 0.5030 | 0.0 |
|
58 |
+
| 0.3917 | 2.0 | 272 | 0.3582 | 0.2939 | 0.5855 | 0.0338 |
|
59 |
+
| 0.3405 | 3.0 | 408 | 0.3048 | 0.4862 | 0.6649 | 0.0827 |
|
60 |
+
| 0.2918 | 4.0 | 544 | 0.2753 | 0.5913 | 0.7250 | 0.1278 |
|
61 |
+
| 0.2531 | 5.0 | 680 | 0.2285 | 0.7261 | 0.8065 | 0.2406 |
|
62 |
+
| 0.214 | 6.0 | 816 | 0.1971 | 0.7684 | 0.8328 | 0.3233 |
|
63 |
+
| 0.181 | 7.0 | 952 | 0.1663 | 0.8199 | 0.8624 | 0.4173 |
|
64 |
+
| 0.1529 | 8.0 | 1088 | 0.1431 | 0.8591 | 0.8905 | 0.4774 |
|
65 |
+
| 0.1307 | 9.0 | 1224 | 0.1224 | 0.8979 | 0.9260 | 0.6090 |
|
66 |
+
| 0.1108 | 10.0 | 1360 | 0.1034 | 0.9195 | 0.9329 | 0.6955 |
|
67 |
+
| 0.0961 | 11.0 | 1496 | 0.0920 | 0.9435 | 0.9553 | 0.7744 |
|
68 |
+
| 0.0821 | 12.0 | 1632 | 0.0793 | 0.9559 | 0.9627 | 0.8346 |
|
69 |
+
| 0.0719 | 13.0 | 1768 | 0.0682 | 0.9636 | 0.9732 | 0.8759 |
|
70 |
+
| 0.0612 | 14.0 | 1904 | 0.0618 | 0.9651 | 0.9760 | 0.8947 |
|
71 |
+
| 0.0526 | 15.0 | 2040 | 0.0519 | 0.9757 | 0.9796 | 0.9135 |
|
72 |
+
| 0.0456 | 16.0 | 2176 | 0.0468 | 0.9778 | 0.9835 | 0.9248 |
|
73 |
+
| 0.0394 | 17.0 | 2312 | 0.0396 | 0.9854 | 0.9885 | 0.9586 |
|
74 |
+
| 0.0343 | 18.0 | 2448 | 0.0372 | 0.9855 | 0.9911 | 0.9586 |
|
75 |
+
| 0.0299 | 19.0 | 2584 | 0.0329 | 0.9854 | 0.9885 | 0.9586 |
|
76 |
+
| 0.0266 | 20.0 | 2720 | 0.0289 | 0.9887 | 0.9932 | 0.9887 |
|
77 |
+
| 0.0233 | 21.0 | 2856 | 0.0264 | 0.9874 | 0.9919 | 0.9812 |
|
78 |
+
| 0.0212 | 22.0 | 2992 | 0.0258 | 0.9887 | 0.9932 | 0.9887 |
|
79 |
+
| 0.02 | 23.0 | 3128 | 0.0242 | 0.9887 | 0.9932 | 0.9887 |
|
80 |
+
| 0.0177 | 24.0 | 3264 | 0.0217 | 0.9924 | 0.9955 | 0.9887 |
|
81 |
+
| 0.0162 | 25.0 | 3400 | 0.0200 | 0.9887 | 0.9932 | 0.9887 |
|
82 |
+
| 0.0146 | 26.0 | 3536 | 0.0201 | 0.9906 | 0.9951 | 0.9887 |
|
83 |
+
| 0.0136 | 27.0 | 3672 | 0.0192 | 0.9906 | 0.9951 | 0.9887 |
|
84 |
+
| 0.0127 | 28.0 | 3808 | 0.0169 | 0.9924 | 0.9955 | 0.9887 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.44.2
|
90 |
+
- Pytorch 2.4.1+cu121
|
91 |
+
- Datasets 3.0.1
|
92 |
+
- Tokenizers 0.19.1
|
config.json
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.15,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.15,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"id2label": {
|
14 |
+
"0": "CE",
|
15 |
+
"1": "ENV",
|
16 |
+
"2": "BME",
|
17 |
+
"3": "PE",
|
18 |
+
"4": "METAL",
|
19 |
+
"5": "ME",
|
20 |
+
"6": "EE",
|
21 |
+
"7": "CPE",
|
22 |
+
"8": "OPTIC",
|
23 |
+
"9": "NANO",
|
24 |
+
"10": "CHE",
|
25 |
+
"11": "MATENG",
|
26 |
+
"12": "AGRI",
|
27 |
+
"13": "EDU",
|
28 |
+
"14": "IE",
|
29 |
+
"15": "SAFETY",
|
30 |
+
"16": "MATH",
|
31 |
+
"17": "MATSCI"
|
32 |
+
},
|
33 |
+
"initializer_range": 0.02,
|
34 |
+
"intermediate_size": 4096,
|
35 |
+
"label2id": {
|
36 |
+
"AGRI": 12,
|
37 |
+
"BME": 2,
|
38 |
+
"CE": 0,
|
39 |
+
"CHE": 10,
|
40 |
+
"CPE": 7,
|
41 |
+
"EDU": 13,
|
42 |
+
"EE": 6,
|
43 |
+
"ENV": 1,
|
44 |
+
"IE": 14,
|
45 |
+
"MATENG": 11,
|
46 |
+
"MATH": 16,
|
47 |
+
"MATSCI": 17,
|
48 |
+
"ME": 5,
|
49 |
+
"METAL": 4,
|
50 |
+
"NANO": 9,
|
51 |
+
"OPTIC": 8,
|
52 |
+
"PE": 3,
|
53 |
+
"SAFETY": 15
|
54 |
+
},
|
55 |
+
"layer_norm_eps": 1e-05,
|
56 |
+
"max_position_embeddings": 514,
|
57 |
+
"model_type": "xlm-roberta",
|
58 |
+
"num_attention_heads": 16,
|
59 |
+
"num_hidden_layers": 24,
|
60 |
+
"output_past": true,
|
61 |
+
"pad_token_id": 1,
|
62 |
+
"position_embedding_type": "absolute",
|
63 |
+
"problem_type": "multi_label_classification",
|
64 |
+
"torch_dtype": "float32",
|
65 |
+
"transformers_version": "4.44.2",
|
66 |
+
"type_vocab_size": 1,
|
67 |
+
"use_cache": true,
|
68 |
+
"vocab_size": 250002
|
69 |
+
}
|
logs/events.out.tfevents.1728650631.2082b953c793.5832.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:972b69bb02398c2e400549cf166b524efcf8df469d801426090342c58866aa00
|
3 |
+
size 23684
|
logs/events.out.tfevents.1728652713.2082b953c793.5832.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdce3b11c741f057733a1b4a9e76fbaaaa95ae8c08a2f0b4e3abb58cf23e77d2
|
3 |
+
size 508
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3185d20b472f9f5efafd4363ef62a821e50d6bd292ec4af5614014a10be4a551
|
3 |
+
size 2239684272
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64accda8622a690125e7212e65b6344f3eef1685badbadcde8218b613fe5bfe2
|
3 |
+
size 5176
|