File size: 9,859 Bytes
853f4a5
 
 
 
 
 
 
 
 
 
 
 
30f0705
 
 
 
 
 
 
 
 
 
 
853f4a5
 
 
 
 
 
 
 
 
 
 
 
 
30f0705
853f4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30f0705
853f4a5
 
 
 
 
 
 
 
 
 
 
30f0705
 
 
 
 
853f4a5
 
 
 
 
 
30f0705
853f4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30f0705
853f4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30f0705
 
 
853f4a5
30f0705
 
 
 
 
853f4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30f0705
 
 
 
 
 
 
 
 
853f4a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---
base_model: BAAI/bge-small-en-v1.5
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Autonomous diagnostic and recovery protocols are embedded within the power
    management system to isolate and rectify faults, ensuring mission continuity.
- text: The satellite thermal control subsystem (TCS) is crucial for maintaining operational
    temperatures of all onboard instruments and systems within their specified limits.
- text: How does the choice of oxidizer, such as liquid oxygen or nitrogen tetroxide,
    affect the performance and handling requirements of a rocket engine?
- text: The energy conversion efficiency of solar cells is influenced by factors such
    as temperature, radiation exposure, and the angle of incidence of sunlight, necessitating
    adaptive control mechanisms.
- text: The thermal control subsystem must accommodate both internal heat generated
    by electronic components and external thermal loads from the space environment.
inference: true
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 1.0
      name: Accuracy
---

# SetFit with BAAI/bge-small-en-v1.5

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label           | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|:----------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Subsystem | <ul><li>'The electrical generation capability of a satellite is primarily determined by the efficiency and surface area of its photovoltaic cells, which convert incident solar radiation into electrical energy.'</li><li>'Energy distribution within the satellite is managed by a network of bus bars and wiring harnesses, designed to minimize resistive losses and maintain voltage stability across all operational conditions.'</li><li>'Redundant power paths and autonomous fault detection mechanisms are implemented to ensure continuous electrical supply even in the event of subsystem failures or external anomalies.'</li></ul> |
| Thermal Control | <ul><li>'Discuss the significance of thermal isolation techniques in preventing heat transfer between satellite components.'</li><li>'The thermal emissivity of radiators and heat pipes is optimized to dissipate the excess heat generated by power electronics, maintaining thermal equilibrium within the satellite.'</li><li>'Deployable radiators can be utilized to increase the heat rejection capacity of a satellite, particularly during high-power operational phases.'</li></ul>                                                                                                                                                     |
| Propulsion      | <ul><li>'The combustion efficiency of a rocket engine depends on factors like propellant mixture ratio, injector design, and combustion chamber pressure.'</li><li>'Liquid rocket engines utilize cryogenic fuels and oxidizers, such as liquid hydrogen and liquid oxygen, which require complex storage and handling systems to maintain their extremely low temperatures.'</li><li>'The nozzle design, including its shape and expansion ratio, significantly influences the exhaust velocity and overall thrust of a rocket engine.'</li></ul>                                                                                                |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 1.0      |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("patrickfleith/setfit-bge-small-v1.5-sst2-8-shot")
# Run inference
preds = model("How does the choice of oxidizer, such as liquid oxygen or nitrogen tetroxide, affect the performance and handling requirements of a rocket engine?")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 11  | 23.2632 | 30  |

| Label           | Training Sample Count |
|:----------------|:----------------------|
| Propulsion      | 13                    |
| Thermal Control | 13                    |
| Power Subsystem | 12                    |

### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0323 | 1    | 0.2123        | -               |
| 1.6129 | 50   | 0.0264        | -               |
| 3.2258 | 100  | 0.0039        | -               |
| 4.8387 | 150  | 0.0034        | -               |
| 6.4516 | 200  | 0.0024        | -               |
| 8.0645 | 250  | 0.0021        | -               |
| 9.6774 | 300  | 0.0021        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->