File size: 3,170 Bytes
7aac9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
tags:
- automatic-speech-recognition
- timit_asr
- generated_from_trainer
datasets:
- timit_asr
model-index:
- name: unispeech-large-1500h-cv-timit
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# unispeech-large-1500h-cv-timit
This model is a fine-tuned version of [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) on the TIMIT_ASR - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3099
- Wer: 0.2196
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.64 | 0.69 | 100 | 3.9717 | 0.9981 |
| 2.6793 | 1.38 | 200 | 2.6264 | 1.0 |
| 1.2221 | 2.07 | 300 | 0.9999 | 0.7167 |
| 0.9009 | 2.76 | 400 | 0.6509 | 0.5570 |
| 0.4352 | 3.45 | 500 | 0.4682 | 0.4332 |
| 0.227 | 4.14 | 600 | 0.3661 | 0.3565 |
| 0.2169 | 4.83 | 700 | 0.3244 | 0.3203 |
| 0.2687 | 5.52 | 800 | 0.3137 | 0.2981 |
| 0.127 | 6.21 | 900 | 0.3220 | 0.2828 |
| 0.0922 | 6.9 | 1000 | 0.3075 | 0.2708 |
| 0.0965 | 7.59 | 1100 | 0.2779 | 0.2576 |
| 0.1298 | 8.28 | 1200 | 0.3111 | 0.2480 |
| 0.0855 | 8.97 | 1300 | 0.3021 | 0.2421 |
| 0.0629 | 9.66 | 1400 | 0.3122 | 0.2511 |
| 0.0471 | 10.34 | 1500 | 0.2965 | 0.2368 |
| 0.0871 | 11.03 | 1600 | 0.3247 | 0.2387 |
| 0.0503 | 11.72 | 1700 | 0.3359 | 0.2363 |
| 0.0402 | 12.41 | 1800 | 0.2976 | 0.2332 |
| 0.0336 | 13.1 | 1900 | 0.3139 | 0.2321 |
| 0.0634 | 13.79 | 2000 | 0.3188 | 0.2309 |
| 0.0429 | 14.48 | 2100 | 0.3145 | 0.2335 |
| 0.028 | 15.17 | 2200 | 0.3244 | 0.2242 |
| 0.0255 | 15.86 | 2300 | 0.2914 | 0.2196 |
| 0.0406 | 16.55 | 2400 | 0.3249 | 0.2202 |
| 0.0512 | 17.24 | 2500 | 0.3037 | 0.2198 |
| 0.0269 | 17.93 | 2600 | 0.3218 | 0.2242 |
| 0.0287 | 18.62 | 2700 | 0.3106 | 0.2185 |
| 0.0319 | 19.31 | 2800 | 0.3124 | 0.2217 |
| 0.0494 | 20.0 | 2900 | 0.3099 | 0.2196 |
### Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.8.1
- Datasets 1.14.1.dev0
- Tokenizers 0.10.3
|