--- tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer model-index: - name: wavlm-libri-clean-100h-base results: [] --- # wavlm-libri-clean-100h-base This model is a fine-tuned version of [microsoft/wavlm-base](https://huggingface.co/microsoft/wavlm-base) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0829 - Wer: 0.0675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.8805 | 0.34 | 300 | 2.8686 | 1.0 | | 0.2459 | 0.67 | 600 | 0.1858 | 0.1554 | | 0.1114 | 1.01 | 900 | 0.1379 | 0.1191 | | 0.0867 | 1.35 | 1200 | 0.1130 | 0.0961 | | 0.0698 | 1.68 | 1500 | 0.1032 | 0.0877 | | 0.0663 | 2.02 | 1800 | 0.0959 | 0.0785 | | 0.0451 | 2.35 | 2100 | 0.0887 | 0.0748 | | 0.0392 | 2.69 | 2400 | 0.0859 | 0.0698 | ### Framework versions - Transformers 4.15.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.16.2.dev0 - Tokenizers 0.10.3