File size: 1,613 Bytes
46f16c2
 
 
 
 
c6337a6
 
 
 
46f16c2
 
c6337a6
 
 
 
 
 
 
 
 
 
 
46f16c2
 
 
 
 
 
 
c6337a6
 
 
 
 
 
 
 
46f16c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
datasets:
- lilferrit/xsum_t5_distillation
metrics:
- rouge
model-index:
- name: xsum_aligned_smallT5
  results:
  - task:
      name: Summarization
      type: summarization
    dataset:
      name: lilferrit/xsum_t5_distillation
      type: lilferrit/xsum_t5_distillation
    metrics:
    - name: Rouge1
      type: rouge
      value: 28.6381
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xsum_aligned_smallT5

This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the lilferrit/xsum_t5_distillation dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5258
- Rouge1: 28.6381
- Rouge2: 7.1512
- Rougel: 21.3477
- Rougelsum: 21.2928
- Gen Len: 27.92

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 200

### Training results



### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2