Add custom endpoint handler
Browse files- handler.py +148 -0
- modules.py +178 -0
- requirements.txt +5 -0
handler.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
import base64
|
3 |
+
from io import BytesIO
|
4 |
+
from pathlib import Path
|
5 |
+
import torch
|
6 |
+
from torch import autocast
|
7 |
+
import open_clip
|
8 |
+
from open_clip import tokenizer
|
9 |
+
from rudalle import get_vae
|
10 |
+
from einops import rearrange
|
11 |
+
from PIL import Image
|
12 |
+
|
13 |
+
from modules import DenoiseUNet
|
14 |
+
|
15 |
+
# set device
|
16 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
+
|
18 |
+
batch_size = 1
|
19 |
+
steps = 11
|
20 |
+
scale = 5
|
21 |
+
|
22 |
+
def to_pil(images):
|
23 |
+
images = images.permute(0, 2, 3, 1).cpu().numpy()
|
24 |
+
images = (images * 255).round().astype("uint8")
|
25 |
+
images = [Image.fromarray(image) for image in images]
|
26 |
+
return images
|
27 |
+
|
28 |
+
def log(t, eps=1e-20):
|
29 |
+
return torch.log(t + eps)
|
30 |
+
|
31 |
+
def gumbel_noise(t):
|
32 |
+
noise = torch.zeros_like(t).uniform_(0, 1)
|
33 |
+
return -log(-log(noise))
|
34 |
+
|
35 |
+
def gumbel_sample(t, temperature=1., dim=-1):
|
36 |
+
return ((t / max(temperature, 1e-10)) + gumbel_noise(t)).argmax(dim=dim)
|
37 |
+
|
38 |
+
def sample(model, c, x=None, mask=None, T=12, size=(32, 32), starting_t=0, temp_range=[1.0, 1.0], typical_filtering=True, typical_mass=0.2, typical_min_tokens=1, classifier_free_scale=-1, renoise_steps=11, renoise_mode='start'):
|
39 |
+
with torch.inference_mode():
|
40 |
+
r_range = torch.linspace(0, 1, T+1)[:-1][:, None].expand(-1, c.size(0)).to(c.device)
|
41 |
+
temperatures = torch.linspace(temp_range[0], temp_range[1], T)
|
42 |
+
preds = []
|
43 |
+
if x is None:
|
44 |
+
x = torch.randint(0, model.num_labels, size=(c.size(0), *size), device=c.device)
|
45 |
+
elif mask is not None:
|
46 |
+
noise = torch.randint(0, model.num_labels, size=(c.size(0), *size), device=c.device)
|
47 |
+
x = noise * mask + (1-mask) * x
|
48 |
+
init_x = x.clone()
|
49 |
+
for i in range(starting_t, T):
|
50 |
+
if renoise_mode == 'prev':
|
51 |
+
prev_x = x.clone()
|
52 |
+
r, temp = r_range[i], temperatures[i]
|
53 |
+
logits = model(x, c, r)
|
54 |
+
if classifier_free_scale >= 0:
|
55 |
+
logits_uncond = model(x, torch.zeros_like(c), r)
|
56 |
+
logits = torch.lerp(logits_uncond, logits, classifier_free_scale)
|
57 |
+
x = logits
|
58 |
+
x_flat = x.permute(0, 2, 3, 1).reshape(-1, x.size(1))
|
59 |
+
if typical_filtering:
|
60 |
+
x_flat_norm = torch.nn.functional.log_softmax(x_flat, dim=-1)
|
61 |
+
x_flat_norm_p = torch.exp(x_flat_norm)
|
62 |
+
entropy = -(x_flat_norm * x_flat_norm_p).nansum(-1, keepdim=True)
|
63 |
+
|
64 |
+
c_flat_shifted = torch.abs((-x_flat_norm) - entropy)
|
65 |
+
c_flat_sorted, x_flat_indices = torch.sort(c_flat_shifted, descending=False)
|
66 |
+
x_flat_cumsum = x_flat.gather(-1, x_flat_indices).softmax(dim=-1).cumsum(dim=-1)
|
67 |
+
|
68 |
+
last_ind = (x_flat_cumsum < typical_mass).sum(dim=-1)
|
69 |
+
sorted_indices_to_remove = c_flat_sorted > c_flat_sorted.gather(1, last_ind.view(-1, 1))
|
70 |
+
if typical_min_tokens > 1:
|
71 |
+
sorted_indices_to_remove[..., :typical_min_tokens] = 0
|
72 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, x_flat_indices, sorted_indices_to_remove)
|
73 |
+
x_flat = x_flat.masked_fill(indices_to_remove, -float("Inf"))
|
74 |
+
# x_flat = torch.multinomial(x_flat.div(temp).softmax(-1), num_samples=1)[:, 0]
|
75 |
+
x_flat = gumbel_sample(x_flat, temperature=temp)
|
76 |
+
x = x_flat.view(x.size(0), *x.shape[2:])
|
77 |
+
if mask is not None:
|
78 |
+
x = x * mask + (1-mask) * init_x
|
79 |
+
if i < renoise_steps:
|
80 |
+
if renoise_mode == 'start':
|
81 |
+
x, _ = model.add_noise(x, r_range[i+1], random_x=init_x)
|
82 |
+
elif renoise_mode == 'prev':
|
83 |
+
x, _ = model.add_noise(x, r_range[i+1], random_x=prev_x)
|
84 |
+
else: # 'rand'
|
85 |
+
x, _ = model.add_noise(x, r_range[i+1])
|
86 |
+
preds.append(x.detach())
|
87 |
+
return preds
|
88 |
+
|
89 |
+
|
90 |
+
class EndpointHandler():
|
91 |
+
def __init__(self, path=""):
|
92 |
+
model_path = Path(path) / "model_600000.pt"
|
93 |
+
state_dict = torch.load(model_path, map_location=device)
|
94 |
+
model = DenoiseUNet(num_labels=8192).to(device)
|
95 |
+
model.load_state_dict(state_dict)
|
96 |
+
model.to(device).eval().requires_grad_()
|
97 |
+
self.model = model
|
98 |
+
|
99 |
+
vqmodel = get_vae().to(device)
|
100 |
+
vqmodel.eval().requires_grad_(False)
|
101 |
+
self.vqmodel = vqmodel
|
102 |
+
|
103 |
+
clip_model, _, _ = open_clip.create_model_and_transforms('ViT-g-14', pretrained='laion2b_s12b_b42k')
|
104 |
+
clip_model = clip_model.to(device).eval().requires_grad_(False)
|
105 |
+
self.clip_model = clip_model
|
106 |
+
|
107 |
+
def encode(self, x):
|
108 |
+
return self.vqmodel.model.encode((2 * x - 1))[-1][-1]
|
109 |
+
|
110 |
+
def decode(self, img_seq, shape=(32,32)):
|
111 |
+
img_seq = img_seq.view(img_seq.shape[0], -1)
|
112 |
+
b, n = img_seq.shape
|
113 |
+
one_hot_indices = torch.nn.functional.one_hot(img_seq, num_classes=self.vqmodel.num_tokens).float()
|
114 |
+
z = (one_hot_indices @ self.vqmodel.model.quantize.embed.weight)
|
115 |
+
z = rearrange(z, 'b (h w) c -> b c h w', h=shape[0], w=shape[1])
|
116 |
+
img = self.vqmodel.model.decode(z)
|
117 |
+
img = (img.clamp(-1., 1.) + 1) * 0.5
|
118 |
+
return img
|
119 |
+
|
120 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
121 |
+
"""
|
122 |
+
Args:
|
123 |
+
data (:obj:):
|
124 |
+
includes the input data and the parameters for the inference.
|
125 |
+
Return:
|
126 |
+
A :obj:`dict`:. base64 encoded image
|
127 |
+
"""
|
128 |
+
inputs = data.pop("inputs", data)
|
129 |
+
|
130 |
+
latent_shape = (32, 32)
|
131 |
+
tokenized_text = tokenizer.tokenize([inputs] * batch_size).to(device)
|
132 |
+
with autocast(device.type):
|
133 |
+
clip_embeddings = self.clip_model.encode_text(tokenized_text)
|
134 |
+
images = sample(
|
135 |
+
self.model, clip_embeddings, T=12, size=latent_shape, starting_t=0, temp_range=[1.0, 1.0],
|
136 |
+
typical_filtering=True, typical_mass=0.2, typical_min_tokens=1,
|
137 |
+
classifier_free_scale=scale, renoise_steps=steps, renoise_mode="start"
|
138 |
+
)
|
139 |
+
images = self.decode(images[-1], latent_shape)
|
140 |
+
images = to_pil(images)
|
141 |
+
|
142 |
+
# encode image as base 64
|
143 |
+
buffered = BytesIO()
|
144 |
+
images[0].save(buffered, format="JPEG")
|
145 |
+
img_str = base64.b64encode(buffered.getvalue())
|
146 |
+
|
147 |
+
# postprocess the prediction
|
148 |
+
return {"image": img_str.decode()}
|
modules.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class ModulatedLayerNorm(nn.Module):
|
8 |
+
def __init__(self, num_features, eps=1e-6, channels_first=True):
|
9 |
+
super().__init__()
|
10 |
+
self.ln = nn.LayerNorm(num_features, eps=eps)
|
11 |
+
self.gamma = nn.Parameter(torch.randn(1, 1, 1))
|
12 |
+
self.beta = nn.Parameter(torch.randn(1, 1, 1))
|
13 |
+
self.channels_first = channels_first
|
14 |
+
|
15 |
+
def forward(self, x, w=None):
|
16 |
+
x = x.permute(0, 2, 3, 1) if self.channels_first else x
|
17 |
+
if w is None:
|
18 |
+
x = self.ln(x)
|
19 |
+
else:
|
20 |
+
x = self.gamma * w * self.ln(x) + self.beta * w
|
21 |
+
x = x.permute(0, 3, 1, 2) if self.channels_first else x
|
22 |
+
return x
|
23 |
+
|
24 |
+
|
25 |
+
class ResBlock(nn.Module):
|
26 |
+
def __init__(self, c, c_hidden, c_cond=0, c_skip=0, scaler=None, layer_scale_init_value=1e-6):
|
27 |
+
super().__init__()
|
28 |
+
self.depthwise = nn.Sequential(
|
29 |
+
nn.ReflectionPad2d(1),
|
30 |
+
nn.Conv2d(c, c, kernel_size=3, groups=c)
|
31 |
+
)
|
32 |
+
self.ln = ModulatedLayerNorm(c, channels_first=False)
|
33 |
+
self.channelwise = nn.Sequential(
|
34 |
+
nn.Linear(c + c_skip, c_hidden),
|
35 |
+
nn.GELU(),
|
36 |
+
nn.Linear(c_hidden, c),
|
37 |
+
)
|
38 |
+
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(c), requires_grad=True) if layer_scale_init_value > 0 else None
|
39 |
+
self.scaler = scaler
|
40 |
+
if c_cond > 0:
|
41 |
+
self.cond_mapper = nn.Linear(c_cond, c)
|
42 |
+
|
43 |
+
def forward(self, x, s=None, skip=None):
|
44 |
+
res = x
|
45 |
+
x = self.depthwise(x)
|
46 |
+
if s is not None:
|
47 |
+
if s.size(2) == s.size(3) == 1:
|
48 |
+
s = s.expand(-1, -1, x.size(2), x.size(3))
|
49 |
+
elif s.size(2) != x.size(2) or s.size(3) != x.size(3):
|
50 |
+
s = nn.functional.interpolate(s, size=x.shape[-2:], mode='bilinear')
|
51 |
+
s = self.cond_mapper(s.permute(0, 2, 3, 1))
|
52 |
+
# s = self.cond_mapper(s.permute(0, 2, 3, 1))
|
53 |
+
# if s.size(1) == s.size(2) == 1:
|
54 |
+
# s = s.expand(-1, x.size(2), x.size(3), -1)
|
55 |
+
x = self.ln(x.permute(0, 2, 3, 1), s)
|
56 |
+
if skip is not None:
|
57 |
+
x = torch.cat([x, skip.permute(0, 2, 3, 1)], dim=-1)
|
58 |
+
x = self.channelwise(x)
|
59 |
+
x = self.gamma * x if self.gamma is not None else x
|
60 |
+
x = res + x.permute(0, 3, 1, 2)
|
61 |
+
if self.scaler is not None:
|
62 |
+
x = self.scaler(x)
|
63 |
+
return x
|
64 |
+
|
65 |
+
|
66 |
+
class DenoiseUNet(nn.Module):
|
67 |
+
def __init__(self, num_labels, c_hidden=1280, c_clip=1024, c_r=64, down_levels=[4, 8, 16], up_levels=[16, 8, 4]):
|
68 |
+
super().__init__()
|
69 |
+
self.num_labels = num_labels
|
70 |
+
self.c_r = c_r
|
71 |
+
self.down_levels = down_levels
|
72 |
+
self.up_levels = up_levels
|
73 |
+
c_levels = [c_hidden // (2 ** i) for i in reversed(range(len(down_levels)))]
|
74 |
+
self.embedding = nn.Embedding(num_labels, c_levels[0])
|
75 |
+
|
76 |
+
# DOWN BLOCKS
|
77 |
+
self.down_blocks = nn.ModuleList()
|
78 |
+
for i, num_blocks in enumerate(down_levels):
|
79 |
+
blocks = []
|
80 |
+
if i > 0:
|
81 |
+
blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
|
82 |
+
for _ in range(num_blocks):
|
83 |
+
block = ResBlock(c_levels[i], c_levels[i] * 4, c_clip + c_r)
|
84 |
+
block.channelwise[-1].weight.data *= np.sqrt(1 / sum(down_levels))
|
85 |
+
blocks.append(block)
|
86 |
+
self.down_blocks.append(nn.ModuleList(blocks))
|
87 |
+
|
88 |
+
# UP BLOCKS
|
89 |
+
self.up_blocks = nn.ModuleList()
|
90 |
+
for i, num_blocks in enumerate(up_levels):
|
91 |
+
blocks = []
|
92 |
+
for j in range(num_blocks):
|
93 |
+
block = ResBlock(c_levels[len(c_levels) - 1 - i], c_levels[len(c_levels) - 1 - i] * 4, c_clip + c_r,
|
94 |
+
c_levels[len(c_levels) - 1 - i] if (j == 0 and i > 0) else 0)
|
95 |
+
block.channelwise[-1].weight.data *= np.sqrt(1 / sum(up_levels))
|
96 |
+
blocks.append(block)
|
97 |
+
if i < len(up_levels) - 1:
|
98 |
+
blocks.append(
|
99 |
+
nn.ConvTranspose2d(c_levels[len(c_levels) - 1 - i], c_levels[len(c_levels) - 2 - i], kernel_size=4, stride=2, padding=1))
|
100 |
+
self.up_blocks.append(nn.ModuleList(blocks))
|
101 |
+
|
102 |
+
self.clf = nn.Conv2d(c_levels[0], num_labels, kernel_size=1)
|
103 |
+
|
104 |
+
def gamma(self, r):
|
105 |
+
return (r * torch.pi / 2).cos()
|
106 |
+
|
107 |
+
def add_noise(self, x, r, random_x=None):
|
108 |
+
r = self.gamma(r)[:, None, None]
|
109 |
+
mask = torch.bernoulli(r * torch.ones_like(x), )
|
110 |
+
mask = mask.round().long()
|
111 |
+
if random_x is None:
|
112 |
+
random_x = torch.randint_like(x, 0, self.num_labels)
|
113 |
+
x = x * (1 - mask) + random_x * mask
|
114 |
+
return x, mask
|
115 |
+
|
116 |
+
def gen_r_embedding(self, r, max_positions=10000):
|
117 |
+
dtype = r.dtype
|
118 |
+
r = self.gamma(r) * max_positions
|
119 |
+
half_dim = self.c_r // 2
|
120 |
+
emb = math.log(max_positions) / (half_dim - 1)
|
121 |
+
emb = torch.arange(half_dim, device=r.device).float().mul(-emb).exp()
|
122 |
+
emb = r[:, None] * emb[None, :]
|
123 |
+
emb = torch.cat([emb.sin(), emb.cos()], dim=1)
|
124 |
+
if self.c_r % 2 == 1: # zero pad
|
125 |
+
emb = nn.functional.pad(emb, (0, 1), mode='constant')
|
126 |
+
return emb.to(dtype)
|
127 |
+
|
128 |
+
def _down_encode_(self, x, s):
|
129 |
+
level_outputs = []
|
130 |
+
for i, blocks in enumerate(self.down_blocks):
|
131 |
+
for block in blocks:
|
132 |
+
if isinstance(block, ResBlock):
|
133 |
+
# s_level = s[:, 0]
|
134 |
+
# s = s[:, 1:]
|
135 |
+
x = block(x, s)
|
136 |
+
else:
|
137 |
+
x = block(x)
|
138 |
+
level_outputs.insert(0, x)
|
139 |
+
return level_outputs
|
140 |
+
|
141 |
+
def _up_decode(self, level_outputs, s):
|
142 |
+
x = level_outputs[0]
|
143 |
+
for i, blocks in enumerate(self.up_blocks):
|
144 |
+
for j, block in enumerate(blocks):
|
145 |
+
if isinstance(block, ResBlock):
|
146 |
+
# s_level = s[:, 0]
|
147 |
+
# s = s[:, 1:]
|
148 |
+
if i > 0 and j == 0:
|
149 |
+
x = block(x, s, level_outputs[i])
|
150 |
+
else:
|
151 |
+
x = block(x, s)
|
152 |
+
else:
|
153 |
+
x = block(x)
|
154 |
+
return x
|
155 |
+
|
156 |
+
def forward(self, x, c, r): # r is a uniform value between 0 and 1
|
157 |
+
r_embed = self.gen_r_embedding(r)
|
158 |
+
x = self.embedding(x).permute(0, 3, 1, 2)
|
159 |
+
if len(c.shape) == 2:
|
160 |
+
s = torch.cat([c, r_embed], dim=-1)[:, :, None, None]
|
161 |
+
else:
|
162 |
+
r_embed = r_embed[:, :, None, None].expand(-1, -1, c.size(2), c.size(3))
|
163 |
+
s = torch.cat([c, r_embed], dim=1)
|
164 |
+
level_outputs = self._down_encode_(x, s)
|
165 |
+
x = self._up_decode(level_outputs, s)
|
166 |
+
x = self.clf(x)
|
167 |
+
return x
|
168 |
+
|
169 |
+
|
170 |
+
if __name__ == '__main__':
|
171 |
+
device = "cuda"
|
172 |
+
model = DenoiseUNet(1024).to(device)
|
173 |
+
print(sum([p.numel() for p in model.parameters()]))
|
174 |
+
x = torch.randint(0, 1024, (1, 32, 32)).long().to(device)
|
175 |
+
c = torch.randn((1, 1024)).to(device)
|
176 |
+
r = torch.rand(1).to(device)
|
177 |
+
model(x, c, r)
|
178 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-f https://download.pytorch.org/whl/cu116
|
2 |
+
torch
|
3 |
+
rudalle
|
4 |
+
open_clip_torch
|
5 |
+
einops
|