--- license: cc-by-4.0 tags: - generated_from_trainer datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: herbert-base-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann config: pl split: validation args: pl metrics: - name: Precision type: precision value: 0.8885878330430295 - name: Recall type: recall value: 0.905945803735859 - name: F1 type: f1 value: 0.8971828692395376 - name: Accuracy type: accuracy value: 0.9568532096363909 --- # herbert-base-ner This model is a fine-tuned version of [allegro/herbert-base-cased](https://huggingface.co/allegro/herbert-base-cased) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.2006 - Precision: 0.8886 - Recall: 0.9059 - F1: 0.8972 - Accuracy: 0.9569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.207 | 1.0 | 2500 | 0.1929 | 0.8566 | 0.8884 | 0.8722 | 0.9499 | | 0.1528 | 2.0 | 5000 | 0.1979 | 0.8807 | 0.9006 | 0.8905 | 0.9547 | | 0.1195 | 3.0 | 7500 | 0.2006 | 0.8886 | 0.9059 | 0.8972 | 0.9569 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3