from PIL import Image from typing import Dict, Any import torch import base64 from io import BytesIO from transformers import BlipForConditionalGeneration, BlipProcessor device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class EndpointHandler(): def __init__(self, path=""): self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") self.model = BlipForConditionalGeneration.from_pretrained( "Salesforce/blip-image-captioning-large" ).to(device) self.model.eval() self.max_length = 16 self.num_beams = 4 def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: try: image_data = data.get("inputs", None) # Convert base64 encoded image string to bytes image_bytes = base64.b64decode(image_data) # Convert bytes to a BytesIO object image_buffer = BytesIO(image_bytes) # Process the image with the processor processed_inputs = self.processor(image_buffer, return_tensors="pt").to(device) # Generate the caption gen_kwargs = {"max_length": self.max_length, "num_beams": self.num_beams} output_ids = self.model.generate(**processed_inputs, **gen_kwargs) caption = self.processor.batch_decode(output_ids, skip_special_tokens=True)[0].strip() return {"caption": caption} except Exception as e: # Log the error for better tracking print(f"Error during processing: {str(e)}") return {"caption": "", "error": str(e)} # from PIL import Image # from typing import Dict, Any # import torch # import base64 # from io import BytesIO # from transformers import BlipForConditionalGeneration, BlipProcessor # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # class EndpointHandler(): # def __init__(self, path=""): # self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") # self.model = BlipForConditionalGeneration.from_pretrained( # "Salesforce/blip-image-captioning-large" # ).to(device) # self.model.eval() # self.max_length = 16 # self.num_beams = 4 # def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: # try: # image_data = data.get("inputs", None) # # Convert base64 encoded image string to bytes # image_bytes = base64.b64decode(image_data) # # Create a BytesIO object from the bytes data # image_buffer = BytesIO(image_bytes) # # Open the image from the buffer # raw_image = Image.open(image_buffer) # # Ensure the image is in RGB mode (if necessary) # if raw_image.mode != "RGB": # raw_image = raw_image.convert(mode="RGB") # # Extract pixel values and move them to the device # pixel_values = self.processor(raw_image, return_tensors="pt").pixel_values.to(device) # # Generate the caption # gen_kwargs = {"max_length": self.max_length, "num_beams": self.num_beams} # output_ids = self.model.generate(pixel_values, **gen_kwargs) # caption = self.processor.batch_decode(output_ids[0], skip_special_tokens=True).strip() # return {"caption": caption} # except Exception as e: # # Log the error for better tracking # print(f"Error during processing: {str(e)}") # return {"caption": "", "error": str(e)} # from PIL import Image # from typing import Dict, Any # import torch # import base64 # from io import BytesIO # from transformers import BlipForConditionalGeneration, BlipProcessor # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # class EndpointHandler(): # def __init__(self, path=""): # self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") # self.model = BlipForConditionalGeneration.from_pretrained( # "Salesforce/blip-image-captioning-large" # ).to(device) # self.model.eval() # self.max_length = 16 # self.num_beams = 4 # def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: # try: # image_bytes = data.get("inputs", None) # # Convert base64 encoded image string to a PIL Image # raw_image = Image.open(BytesIO(image_bytes)) # # Ensure the image is in RGB mode (if necessary) # if raw_image.mode != "RGB": # raw_image = raw_image.convert(mode="RGB") # # Extract pixel values and move them to the device # pixel_values = self.processor(raw_image, return_tensors="pt").pixel_values.to(device) # # Generate the caption # gen_kwargs = {"max_length": self.max_length, "num_beams": self.num_beams} # output_ids = self.model.generate(pixel_values, **gen_kwargs) # caption = self.processor.batch_decode(output_ids[0], skip_special_tokens=True).strip() # return {"caption": caption} # except Exception as e: # # Log the error for better tracking # print(f"Error during processing: {str(e)}") # return {"caption": "", "error": str(e)}