pdufour commited on
Commit
62f6f1c
·
verified ·
1 Parent(s): 2b6e2f8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -173
README.md CHANGED
@@ -15,6 +15,9 @@ See https://huggingface.co/spaces/pdufour/Qwen2-VL-2B-Instruct-ONNX-Q4-F16 for a
15
 
16
  **Python**
17
 
 
 
 
18
  ```
19
  import os
20
  import sys
@@ -27,206 +30,118 @@ from PIL import Image
27
  from io import BytesIO
28
  from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer
29
 
30
- # Constants
31
- DEBUG = True
32
- PRINT = print
33
-
34
- # Try importing config, set defaults if not found
35
- try:
36
- from export_config import (
37
- INPUT_IMAGE_SIZE,
38
- IMAGE_RESIZE,
39
- MAX_SEQ_LENGTH,
40
- HEIGHT_FACTOR,
41
- WIDTH_FACTOR
42
- )
43
- except:
44
- INPUT_IMAGE_SIZE = [960, 960]
45
- HEIGHT_FACTOR = 10
46
- WIDTH_FACTOR = 10
47
- IMAGE_RESIZE = [HEIGHT_FACTOR * 28, WIDTH_FACTOR * 28]
48
- MAX_SEQ_LENGTH = 1024
49
-
50
  # Command line arguments
51
  model_path = sys.argv[1]
52
  onnx_path = sys.argv[2]
53
 
54
- # ONNX model paths
55
- model_paths = {
56
- 'A': os.path.join(onnx_path, 'QwenVL_A_q4f16.onnx'),
57
- 'B': os.path.join(onnx_path, 'QwenVL_B_q4f16.onnx'),
58
- 'C': os.path.join(onnx_path, 'QwenVL_C_q4f16.onnx'),
59
- 'D': os.path.join(onnx_path, 'QwenVL_D_q4f16.onnx'),
60
- 'E': os.path.join(onnx_path, 'QwenVL_E_q4f16.onnx')
61
- }
62
-
63
- PRINT('\n[PATHS] ONNX model paths:')
64
- for key, path in model_paths.items():
65
- PRINT(f" Model {key}: {path}")
66
-
67
- # Test image and prompt
68
- TEST_IMAGE_URL = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg'
69
- TEST_PROMPT = 'Describe this image.'
70
-
71
  # Initialize model and tokenizer
72
- with torch.inference_mode():
73
- model = Qwen2VLForConditionalGeneration.from_pretrained(
74
- model_path,
75
- torch_dtype=torch.float32,
76
- device_map='mps',
77
- low_cpu_mem_usage=DEBUG
78
- )
79
-
80
- max_length = MAX_SEQ_LENGTH
81
- num_attention_heads = model.config.num_attention_heads
82
- num_key_value_heads = model.config.num_key_value_heads
83
- head_dim = model.config.hidden_size // num_attention_heads
84
- num_layers = model.config.num_hidden_layers
85
- hidden_size = model.config.hidden_size
86
-
87
- MAX_ITERATIONS = 12
88
- tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=DEBUG)
89
-
90
- # ONNX session options
91
  session_options = ort.SessionOptions()
92
- session_options.log_severity_level = 3
93
- session_options.inter_op_num_threads = 0
94
- session_options.intra_op_num_threads = 0
95
- session_options.enable_cpu_mem_arena = DEBUG
96
- session_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
97
  session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
98
- session_options.add_session_config_entry('session.intra_op.allow_spinning', '1')
99
- session_options.add_session_config_entry('session.inter_op.allow_spinning', '1')
100
-
101
- # Initialize ONNX sessions
102
- sessions = {
103
- 'A': ort.InferenceSession(model_paths['A'], sess_options=session_options),
104
- 'B': ort.InferenceSession(model_paths['B'], sess_options=session_options),
105
- 'C': ort.InferenceSession(model_paths['C'], sess_options=session_options),
106
- 'D': ort.InferenceSession(model_paths['D'], sess_options=session_options),
107
- 'E': ort.InferenceSession(model_paths['E'], sess_options=session_options)
108
- }
109
 
110
- # Get input/output names for each session
 
 
 
 
 
111
  inputs = {
112
- 'A': {
113
- 'input': sessions['A'].get_inputs()[0].name,
114
- 'output': sessions['A'].get_outputs()[0].name
115
- },
116
- 'B': {
117
- 'input_ids': sessions['B'].get_inputs()[0].name,
118
- 'input_lengths': sessions['B'].get_inputs()[1].name,
119
- 'output': sessions['B'].get_outputs()[0].name
120
- },
121
- 'C': {
122
- 'input': sessions['C'].get_inputs()[0].name,
123
- 'output': sessions['C'].get_outputs()[0].name
124
- },
125
- 'D': {
126
- 'names': [inp.name for inp in sessions['D'].get_inputs()],
127
- 'outputs': [out.name for out in sessions['D'].get_outputs()]
128
- },
129
- 'E': {
130
- 'names': [inp.name for inp in sessions['E'].get_inputs()],
131
- 'outputs': [out.name for out in sessions['E'].get_outputs()]
132
- }
133
  }
134
 
135
  # Process image
136
- response = requests.get(TEST_IMAGE_URL)
137
- image = Image.open(BytesIO(response.content))
138
- image = image.resize((INPUT_IMAGE_SIZE[1], INPUT_IMAGE_SIZE[0]))
139
- if image.mode != 'RGB':
140
- image = image.convert('RGB')
141
-
142
- image_array = np.transpose(np.array(image).astype(np.float32), (2, 0, 1))
143
- image_array = np.expand_dims(image_array, axis=0) / 255.
144
-
145
- use_images = DEBUG
146
- prompt = f"\n<|im_start|>user\n<|vision_start|><|vision_end|>{TEST_PROMPT}<|im_end|>\n<|im_start|>assistant\n"
147
- eos_token_id = np.array([5], dtype=np.int64)
148
- total_ids = WIDTH_FACTOR * HEIGHT_FACTOR
149
-
150
- # Initialize tensors
151
- input_ids = tokenizer(prompt, return_tensors='pt')['input_ids']
152
  input_lengths = np.array([input_ids.shape[1]], dtype=np.int64)
153
  tokens = np.zeros(max_length, dtype=np.int32)
154
- tokens[:input_lengths[0]] = input_ids[0, :]
155
  position = np.zeros(1, dtype=np.int64)
156
 
157
- # Initialize cache tensors
158
  key_cache = np.zeros((num_layers, num_key_value_heads, max_length, head_dim), dtype=np.float16)
159
  value_cache = key_cache.copy()
160
- logits_mask = np.array([-65504.], dtype=np.float16)
161
- position_mask = np.array([.0], dtype=np.float16)
162
- max_total_tokens = 1 - total_ids + WIDTH_FACTOR
163
- batch_size = np.array(0, dtype=np.int32)
164
 
165
  # Process initial inputs
166
- hidden_states = sessions['B'].run([inputs['B']['output']],
167
- {inputs['B']['input_ids']: tokens, inputs['B']['input_lengths']: input_lengths})[0]
168
- batch_size, = sessions['C'].run([inputs['C']['output']], {inputs['C']['input']: batch_size})
169
-
170
- if use_images:
171
- image_features = sessions['A'].run([inputs['A']['output']], {inputs['A']['input']: image_array})[0]
172
- input_lengths += total_ids
173
- remaining_tokens = np.array(max_length - input_lengths[0] - total_ids, dtype=np.int32)
174
- tokens_to_stop = np.array(input_lengths[0] - eos_token_id[0], dtype=np.int32)
175
- hidden_states, batch_size = sessions['D'].run(
176
- [inputs['D']['outputs'][0], inputs['D']['outputs'][1]],
177
- {
178
- inputs['D']['names'][0]: hidden_states,
179
- inputs['D']['names'][1]: image_features,
180
- inputs['D']['names'][2]: input_lengths,
181
- inputs['D']['names'][3]: tokens_to_stop,
182
- inputs['D']['names'][4]: remaining_tokens
183
- }
184
- )
185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
  start_time = time.time()
187
- iterations = 0
188
-
189
- while (iterations < MAX_ITERATIONS) & (position < max_length):
190
  token, key_cache, value_cache = sessions['E'].run(
191
- [inputs['E']['outputs'][0], inputs['E']['outputs'][1], inputs['E']['outputs'][2]],
192
- {
193
- inputs['E']['names'][0]: hidden_states,
194
- inputs['E']['names'][1]: logits_mask,
195
- inputs['E']['names'][2]: key_cache,
196
- inputs['E']['names'][3]: value_cache,
197
- inputs['E']['names'][4]: position,
198
- inputs['E']['names'][5]: input_lengths,
199
- inputs['E']['names'][6]: batch_size,
200
- inputs['E']['names'][7]: position_mask
201
- }
202
  )
203
 
204
- if (token == 151643) | (token == 151645):
205
  break
 
 
 
 
206
  else:
207
- iterations += 1
208
- if iterations < 2:
209
- position += input_lengths[0]
210
- input_lengths[0] = 1
211
- logits_mask = np.array([.0], dtype=np.float16)
212
- if use_images:
213
- position_mask = np.array(max_total_tokens + input_lengths[0], dtype=np.float16)
214
- else:
215
- position_mask = np.array(position[0] + 1, dtype=np.float16)
216
- else:
217
- position += 1
218
- position_mask += 1
219
-
220
- tokens[0] = token
221
- hidden_states = sessions['B'].run(
222
- [inputs['B']['output']],
223
- {inputs['B']['input_ids']: tokens, inputs['B']['input_lengths']: input_lengths}
224
- )[0]
225
- decoded_token = tokenizer.decode(token)
226
- PRINT(f"Decoded token: {decoded_token}")
227
- PRINT(decoded_token, end='', flush=DEBUG)
228
-
229
- total_time = time.time() - start_time
230
  ```
231
 
232
  # Technical Information:
 
15
 
16
  **Python**
17
 
18
+ Download the following script ./infer.py and then run like so:
19
+ python3 infer.py Qwen/Qwen2-VL-2B-Instruct 'path-to/Qwen2-VL-2B-Instruct-onnx/onnx'
20
+
21
  ```
22
  import os
23
  import sys
 
30
  from io import BytesIO
31
  from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  # Command line arguments
34
  model_path = sys.argv[1]
35
  onnx_path = sys.argv[2]
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  # Initialize model and tokenizer
38
+ model = Qwen2VLForConditionalGeneration.from_pretrained(
39
+ model_path, torch_dtype=torch.float32, device_map='mps'
40
+ )
41
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
42
+
43
+ # Model configuration
44
+ max_length = 1024
45
+ num_attention_heads = model.config.num_attention_heads
46
+ num_key_value_heads = model.config.num_key_value_heads
47
+ head_dim = model.config.hidden_size // num_attention_heads
48
+ num_layers = model.config.num_hidden_layers
49
+
50
+ # Setup ONNX sessions
 
 
 
 
 
 
51
  session_options = ort.SessionOptions()
 
 
 
 
 
52
  session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
 
 
 
 
 
 
 
 
 
 
 
53
 
54
+ # Model paths and sessions
55
+ models = ['A', 'B', 'C', 'D', 'E']
56
+ model_paths = {m: os.path.join(onnx_path, f'QwenVL_{m}_q4f16.onnx') for m in models}
57
+ sessions = {m: ort.InferenceSession(path, sess_options=session_options) for m, path in model_paths.items()}
58
+
59
+ # Input/output names
60
  inputs = {
61
+ 'A': sessions['A'].get_inputs()[0].name,
62
+ 'B': [sessions['B'].get_inputs()[i].name for i in range(2)],
63
+ 'C': sessions['C'].get_inputs()[0].name,
64
+ 'D': [inp.name for inp in sessions['D'].get_inputs()],
65
+ 'E': [inp.name for inp in sessions['E'].get_inputs()]
66
+ }
67
+
68
+ outputs = {
69
+ 'A': sessions['A'].get_outputs()[0].name,
70
+ 'B': sessions['B'].get_outputs()[0].name,
71
+ 'C': sessions['C'].get_outputs()[0].name,
72
+ 'D': [out.name for out in sessions['D'].get_outputs()],
73
+ 'E': [out.name for out in sessions['E'].get_outputs()]
 
 
 
 
 
 
 
 
74
  }
75
 
76
  # Process image
77
+ image_url = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg'
78
+ image = Image.open(BytesIO(requests.get(image_url).content)).resize((960, 960)).convert('RGB')
79
+ image_array = np.expand_dims(np.transpose(np.array(image).astype(np.float32), (2, 0, 1)), axis=0) / 255.
80
+
81
+ # Prepare inputs
82
+ prompt = "Describe this image."
83
+ formatted_prompt = f"\n<|im_start|>user\n<|vision_start|><|vision_end|>{prompt}<|im_end|>\n<|im_start|>assistant\n"
84
+ input_ids = tokenizer(formatted_prompt, return_tensors='pt')['input_ids']
 
 
 
 
 
 
 
 
85
  input_lengths = np.array([input_ids.shape[1]], dtype=np.int64)
86
  tokens = np.zeros(max_length, dtype=np.int32)
87
+ tokens[:input_ids.shape[1]] = input_ids[0, :]
88
  position = np.zeros(1, dtype=np.int64)
89
 
90
+ # Initialize caches
91
  key_cache = np.zeros((num_layers, num_key_value_heads, max_length, head_dim), dtype=np.float16)
92
  value_cache = key_cache.copy()
 
 
 
 
93
 
94
  # Process initial inputs
95
+ hidden_states = sessions['B'].run(
96
+ [outputs['B']],
97
+ {inputs['B'][0]: tokens, inputs['B'][1]: input_lengths}
98
+ )[0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
+ batch_size = np.array(0, dtype=np.int32)
101
+ batch_size, = sessions['C'].run([outputs['C']], {inputs['C']: batch_size})
102
+
103
+ # Process image features
104
+ image_features = sessions['A'].run([outputs['A']], {inputs['A']: image_array})[0]
105
+ total_ids = 100 # 10 * 10 from original factors
106
+ input_lengths += total_ids
107
+ remaining_tokens = np.array(max_length - input_lengths[0] - total_ids, dtype=np.int32)
108
+ tokens_to_stop = np.array(input_lengths[0] - 5, dtype=np.int32)
109
+
110
+ hidden_states, batch_size = sessions['D'].run(
111
+ outputs['D'],
112
+ dict(zip(inputs['D'],
113
+ [hidden_states, image_features, input_lengths, tokens_to_stop, remaining_tokens]))
114
+ )
115
+
116
+ # Generate tokens
117
  start_time = time.time()
118
+ for i in range(12): # MAX_ITERATIONS
 
 
119
  token, key_cache, value_cache = sessions['E'].run(
120
+ outputs['E'],
121
+ dict(zip(inputs['E'],
122
+ [hidden_states, np.array([-65504. if i==0 else 0.], dtype=np.float16),
123
+ key_cache, value_cache, position, input_lengths, batch_size,
124
+ np.array([1-total_ids+10 if i==0 else position[0]+1], dtype=np.float16)]))
 
 
 
 
 
 
125
  )
126
 
127
+ if token in [151643, 151645]: # End tokens
128
  break
129
+
130
+ if i < 1:
131
+ position += input_lengths[0]
132
+ input_lengths[0] = 1
133
  else:
134
+ position += 1
135
+
136
+ tokens[0] = token
137
+ hidden_states = sessions['B'].run(
138
+ [outputs['B']],
139
+ {inputs['B'][0]: tokens, inputs['B'][1]: input_lengths}
140
+ )[0]
141
+ print(tokenizer.decode(token), end='', flush=True)
142
+
143
+ print(f"\nTotal time: {time.time() - start_time:.2f}s")
144
+
 
 
 
 
 
 
 
 
 
 
 
 
145
  ```
146
 
147
  # Technical Information: