yuekai commited on
Commit
b51bf8c
1 Parent(s): 1f07996

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/lustre/fsw/sa/yuekaiz/model/Llama-2-13b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 5120,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 13824,
12
+ "max_length": 4096,
13
+ "max_position_embeddings": 2048,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 40,
16
+ "num_hidden_layers": 40,
17
+ "num_key_value_heads": 40,
18
+ "pad_token_id": 0,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.31.0",
25
+ "use_cache": false,
26
+ "vocab_size": 32000
27
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.9,
8
+ "top_p": 0.6,
9
+ "transformers_version": "4.31.0"
10
+ }
pytorch_model-00001-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a2a60c7ffb503ed4c892254a03707fea1c9d96fcfe6b9c33f91fcc4d2b386f4
3
+ size 9956543883
pytorch_model-00002-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eefa7429da4f507370258b8987779b73a845e347309fe588594723a818e35e7d
3
+ size 9940856385
pytorch_model-00003-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9385f081ad913cd4f29a1de3b7bbeb46a3042cbdd93552d498156d7ecce493a
3
+ size 9940856943
pytorch_model-00004-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01709539ad5c31eb6cdf451a3ebc01af60a6548cc55c61a17529d5b0297056fd
3
+ size 9867415289
pytorch_model-00005-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4eaa2c126eab6332a15a0efde55005486fe6cc21989e334542a9e2a2d0dd0c0e
3
+ size 9867456961
pytorch_model-00006-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:468a33c3c225ddfd338d33f90cb29bc4e0d822234c5e96853af69bdccf379481
3
+ size 2490476207
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 52063467520
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00006-of-00006.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00006.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
268
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
269
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
270
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
271
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
272
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
273
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
274
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
275
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
276
+ "model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
277
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
278
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
279
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
280
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
281
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
282
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
283
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
284
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
285
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
286
+ "model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
287
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
288
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
289
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
290
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
291
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
292
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
293
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
294
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
295
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
296
+ "model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
297
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
298
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
299
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
300
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
301
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
302
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
303
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
304
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
305
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
306
+ "model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
307
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
308
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
309
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
310
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
311
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
312
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
313
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
314
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
315
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
316
+ "model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
317
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
318
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
319
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
320
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
321
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
322
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
323
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
324
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
325
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
326
+ "model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
327
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
328
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00006-of-00006.bin",
329
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00006-of-00006.bin",
330
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
331
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00006-of-00006.bin",
332
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00006-of-00006.bin",
333
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
334
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
335
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
336
+ "model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
337
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
338
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00006-of-00006.bin",
339
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00006-of-00006.bin",
340
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00006-of-00006.bin",
341
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00006-of-00006.bin",
342
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00006-of-00006.bin",
343
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00006-of-00006.bin",
344
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00006-of-00006.bin",
345
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00006-of-00006.bin",
346
+ "model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00006.bin",
347
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00006-of-00006.bin",
348
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
349
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
350
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
351
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
352
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
353
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
354
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
355
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
356
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
357
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
358
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
359
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
360
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
361
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
362
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
363
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
364
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
365
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
366
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
367
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
368
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
369
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
370
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
371
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
372
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
373
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
374
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
375
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
376
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
377
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
378
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
379
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
380
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
381
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
382
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
383
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
384
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
385
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
386
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
387
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
388
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
389
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
390
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
391
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
392
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
393
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
394
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
395
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
396
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
397
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
398
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
399
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
400
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
401
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
402
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
403
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
404
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
405
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
406
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
407
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
408
+ "model.norm.weight": "pytorch_model-00006-of-00006.bin"
409
+ }
410
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": false,
22
+ "model_max_length": 1000000000000000019884624838656,
23
+ "pad_token": null,
24
+ "sp_model_kwargs": {},
25
+ "tokenizer_class": "LlamaTokenizer",
26
+ "unk_token": {
27
+ "__type": "AddedToken",
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
trainer_state.json ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9962577962577963,
5
+ "global_step": 1200,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.08,
12
+ "learning_rate": 1.662757831681574e-05,
13
+ "loss": 0.6867,
14
+ "step": 50
15
+ },
16
+ {
17
+ "epoch": 0.17,
18
+ "learning_rate": 1.9777236052888476e-05,
19
+ "loss": 0.6579,
20
+ "step": 100
21
+ },
22
+ {
23
+ "epoch": 0.25,
24
+ "learning_rate": 2e-05,
25
+ "loss": 0.6459,
26
+ "step": 150
27
+ },
28
+ {
29
+ "epoch": 0.33,
30
+ "learning_rate": 2e-05,
31
+ "loss": 0.6523,
32
+ "step": 200
33
+ },
34
+ {
35
+ "epoch": 0.42,
36
+ "learning_rate": 2e-05,
37
+ "loss": 0.6483,
38
+ "step": 250
39
+ },
40
+ {
41
+ "epoch": 0.5,
42
+ "learning_rate": 2e-05,
43
+ "loss": 0.6507,
44
+ "step": 300
45
+ },
46
+ {
47
+ "epoch": 0.58,
48
+ "learning_rate": 2e-05,
49
+ "loss": 0.6488,
50
+ "step": 350
51
+ },
52
+ {
53
+ "epoch": 0.67,
54
+ "learning_rate": 2e-05,
55
+ "loss": 0.6447,
56
+ "step": 400
57
+ },
58
+ {
59
+ "epoch": 0.75,
60
+ "learning_rate": 2e-05,
61
+ "loss": 0.6504,
62
+ "step": 450
63
+ },
64
+ {
65
+ "epoch": 0.83,
66
+ "learning_rate": 2e-05,
67
+ "loss": 0.65,
68
+ "step": 500
69
+ },
70
+ {
71
+ "epoch": 0.91,
72
+ "learning_rate": 2e-05,
73
+ "loss": 0.6383,
74
+ "step": 550
75
+ },
76
+ {
77
+ "epoch": 1.0,
78
+ "learning_rate": 2e-05,
79
+ "loss": 0.6451,
80
+ "step": 600
81
+ },
82
+ {
83
+ "epoch": 1.08,
84
+ "learning_rate": 2e-05,
85
+ "loss": 0.6484,
86
+ "step": 650
87
+ },
88
+ {
89
+ "epoch": 1.16,
90
+ "learning_rate": 2e-05,
91
+ "loss": 0.6495,
92
+ "step": 700
93
+ },
94
+ {
95
+ "epoch": 1.25,
96
+ "learning_rate": 2e-05,
97
+ "loss": 0.6392,
98
+ "step": 750
99
+ },
100
+ {
101
+ "epoch": 1.33,
102
+ "learning_rate": 2e-05,
103
+ "loss": 0.6445,
104
+ "step": 800
105
+ },
106
+ {
107
+ "epoch": 1.41,
108
+ "learning_rate": 2e-05,
109
+ "loss": 0.6474,
110
+ "step": 850
111
+ },
112
+ {
113
+ "epoch": 1.5,
114
+ "learning_rate": 2e-05,
115
+ "loss": 0.6491,
116
+ "step": 900
117
+ },
118
+ {
119
+ "epoch": 1.58,
120
+ "learning_rate": 2e-05,
121
+ "loss": 0.6496,
122
+ "step": 950
123
+ },
124
+ {
125
+ "epoch": 1.66,
126
+ "learning_rate": 2e-05,
127
+ "loss": 0.6438,
128
+ "step": 1000
129
+ },
130
+ {
131
+ "epoch": 1.75,
132
+ "learning_rate": 2e-05,
133
+ "loss": 0.6482,
134
+ "step": 1050
135
+ },
136
+ {
137
+ "epoch": 1.83,
138
+ "learning_rate": 2e-05,
139
+ "loss": 0.6489,
140
+ "step": 1100
141
+ },
142
+ {
143
+ "epoch": 1.91,
144
+ "learning_rate": 2e-05,
145
+ "loss": 0.6483,
146
+ "step": 1150
147
+ },
148
+ {
149
+ "epoch": 2.0,
150
+ "learning_rate": 2e-05,
151
+ "loss": 0.652,
152
+ "step": 1200
153
+ }
154
+ ],
155
+ "max_steps": 1803,
156
+ "num_train_epochs": 3,
157
+ "total_flos": 1.7536187092579647e+19,
158
+ "trial_name": null,
159
+ "trial_params": null
160
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e07813834a22e525d9330d6ff64daf5d7bb994bcc164ba5d4fc5200f3871ec04
3
+ size 5435
zero_to_fp32.py ADDED
@@ -0,0 +1,578 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dicts.append(torch.load(f, map_location=device))
147
+
148
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
149
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
150
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
151
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
152
+
153
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
154
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
155
+ # use the max of the partition_count to get the dp world_size.
156
+
157
+ if type(world_size) is list:
158
+ world_size = max(world_size)
159
+
160
+ if world_size != total_files:
161
+ raise ValueError(
162
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
163
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
164
+ )
165
+
166
+ # the groups are named differently in each stage
167
+ if zero_stage <= 2:
168
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
169
+ elif zero_stage == 3:
170
+ fp32_groups_key = FP32_FLAT_GROUPS
171
+ else:
172
+ raise ValueError(f"unknown zero stage {zero_stage}")
173
+
174
+ if zero_stage <= 2:
175
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
176
+ elif zero_stage == 3:
177
+ # if there is more than one param group, there will be multiple flattened tensors - one
178
+ # flattened tensor per group - for simplicity merge them into a single tensor
179
+ #
180
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
181
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
182
+
183
+ fp32_flat_groups = [
184
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
185
+ ]
186
+
187
+ return zero_stage, world_size, fp32_flat_groups
188
+
189
+
190
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
191
+ """
192
+ Returns fp32 state_dict reconstructed from ds checkpoint
193
+
194
+ Args:
195
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
196
+
197
+ """
198
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
199
+
200
+ optim_files = get_optim_files(ds_checkpoint_dir)
201
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
202
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
203
+
204
+ model_files = get_model_state_files(ds_checkpoint_dir)
205
+
206
+ zero_model_states = parse_model_states(model_files)
207
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
208
+
209
+ if zero_stage <= 2:
210
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
211
+ elif zero_stage == 3:
212
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
248
+ param_shapes = zero_model_states[0].param_shapes
249
+
250
+ # Reconstruction protocol:
251
+ #
252
+ # XXX: document this
253
+
254
+ if debug:
255
+ for i in range(world_size):
256
+ for j in range(len(fp32_flat_groups[0])):
257
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
258
+
259
+ # XXX: memory usage doubles here (zero2)
260
+ num_param_groups = len(fp32_flat_groups[0])
261
+ merged_single_partition_of_fp32_groups = []
262
+ for i in range(num_param_groups):
263
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
264
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
265
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
266
+ avail_numel = sum(
267
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
268
+
269
+ if debug:
270
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
271
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
272
+ # not asserting if there is a mismatch due to possible padding
273
+ print(f"Have {avail_numel} numels to process.")
274
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
275
+
276
+ # params
277
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
278
+ # out-of-core computing solution
279
+ total_numel = 0
280
+ total_params = 0
281
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
282
+ offset = 0
283
+ avail_numel = full_single_fp32_vector.numel()
284
+ for name, shape in shapes.items():
285
+
286
+ unpartitioned_numel = shape.numel()
287
+ total_numel += unpartitioned_numel
288
+ total_params += 1
289
+
290
+ if debug:
291
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
292
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
293
+ offset += unpartitioned_numel
294
+
295
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
296
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
297
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
298
+ # live optimizer object, so we are checking that the numbers are within the right range
299
+ align_to = 2 * world_size
300
+
301
+ def zero2_align(x):
302
+ return align_to * math.ceil(x / align_to)
303
+
304
+ if debug:
305
+ print(f"original offset={offset}, avail_numel={avail_numel}")
306
+
307
+ offset = zero2_align(offset)
308
+ avail_numel = zero2_align(avail_numel)
309
+
310
+ if debug:
311
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
312
+
313
+ # Sanity check
314
+ if offset != avail_numel:
315
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
316
+
317
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
318
+
319
+
320
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
321
+ state_dict = OrderedDict()
322
+
323
+ # buffers
324
+ buffers = zero_model_states[0].buffers
325
+ state_dict.update(buffers)
326
+ if debug:
327
+ print(f"added {len(buffers)} buffers")
328
+
329
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
330
+
331
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
332
+
333
+ # recover shared parameters
334
+ for pair in zero_model_states[0].shared_params:
335
+ if pair[1] in state_dict:
336
+ state_dict[pair[0]] = state_dict[pair[1]]
337
+
338
+ return state_dict
339
+
340
+
341
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
342
+ remainder = unpartitioned_numel % world_size
343
+ padding_numel = (world_size - remainder) if remainder else 0
344
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
345
+ return partitioned_numel, padding_numel
346
+
347
+
348
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
349
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
350
+ return
351
+
352
+ if debug:
353
+ for i in range(world_size):
354
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
355
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
356
+
357
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
358
+ wanted_params = len(frozen_param_shapes)
359
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
360
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
361
+ print(f'Frozen params: Have {avail_numel} numels to process.')
362
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
363
+
364
+ total_params = 0
365
+ total_numel = 0
366
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
367
+ total_params += 1
368
+ unpartitioned_numel = shape.numel()
369
+ total_numel += unpartitioned_numel
370
+
371
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
372
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
373
+
374
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
375
+
376
+ if debug:
377
+ print(
378
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
379
+ )
380
+
381
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
382
+
383
+
384
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
385
+ param_shapes = zero_model_states[0].param_shapes
386
+ avail_numel = fp32_flat_groups[0].numel() * world_size
387
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
388
+ # param, re-consolidating each param, while dealing with padding if any
389
+
390
+ # merge list of dicts, preserving order
391
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
392
+
393
+ if debug:
394
+ for i in range(world_size):
395
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
396
+
397
+ wanted_params = len(param_shapes)
398
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
399
+ # not asserting if there is a mismatch due to possible padding
400
+ avail_numel = fp32_flat_groups[0].numel() * world_size
401
+ print(f"Trainable params: Have {avail_numel} numels to process.")
402
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
403
+
404
+ # params
405
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
406
+ # out-of-core computing solution
407
+ offset = 0
408
+ total_numel = 0
409
+ total_params = 0
410
+ for name, shape in param_shapes.items():
411
+
412
+ unpartitioned_numel = shape.numel()
413
+ total_numel += unpartitioned_numel
414
+ total_params += 1
415
+
416
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
417
+
418
+ if debug:
419
+ print(
420
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
421
+ )
422
+
423
+ # XXX: memory usage doubles here
424
+ state_dict[name] = torch.cat(
425
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
426
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
427
+ offset += partitioned_numel
428
+
429
+ offset *= world_size
430
+
431
+ # Sanity check
432
+ if offset != avail_numel:
433
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
434
+
435
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
436
+
437
+
438
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
439
+ state_dict = OrderedDict()
440
+
441
+ # buffers
442
+ buffers = zero_model_states[0].buffers
443
+ state_dict.update(buffers)
444
+ if debug:
445
+ print(f"added {len(buffers)} buffers")
446
+
447
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
448
+
449
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
450
+
451
+ # recover shared parameters
452
+ for pair in zero_model_states[0].shared_params:
453
+ if pair[1] in state_dict:
454
+ state_dict[pair[0]] = state_dict[pair[1]]
455
+
456
+ return state_dict
457
+
458
+
459
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
460
+ """
461
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
462
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
463
+ via a model hub.
464
+
465
+ Args:
466
+ - ``checkpoint_dir``: path to the desired checkpoint folder
467
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
468
+
469
+ Returns:
470
+ - pytorch ``state_dict``
471
+
472
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
473
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
474
+ the checkpoint.
475
+
476
+ A typical usage might be ::
477
+
478
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
479
+ # do the training and checkpoint saving
480
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
481
+ model = model.cpu() # move to cpu
482
+ model.load_state_dict(state_dict)
483
+ # submit to model hub or save the model to share with others
484
+
485
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
486
+ application. i.e. you will need to re-initialize the deepspeed engine, since
487
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
488
+
489
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
490
+
491
+ """
492
+ if tag is None:
493
+ latest_path = os.path.join(checkpoint_dir, 'latest')
494
+ if os.path.isfile(latest_path):
495
+ with open(latest_path, 'r') as fd:
496
+ tag = fd.read().strip()
497
+ else:
498
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
499
+
500
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
501
+
502
+ if not os.path.isdir(ds_checkpoint_dir):
503
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
504
+
505
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
506
+
507
+
508
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
509
+ """
510
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
511
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
512
+
513
+ Args:
514
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
515
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
516
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
517
+ """
518
+
519
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
520
+ print(f"Saving fp32 state dict to {output_file}")
521
+ torch.save(state_dict, output_file)
522
+
523
+
524
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
525
+ """
526
+ 1. Put the provided model to cpu
527
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
528
+ 3. Load it into the provided model
529
+
530
+ Args:
531
+ - ``model``: the model object to update
532
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
533
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
534
+
535
+ Returns:
536
+ - ``model`: modified model
537
+
538
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
539
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
540
+ conveniently placed for you in the checkpoint folder.
541
+
542
+ A typical usage might be ::
543
+
544
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
545
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
546
+ # submit to model hub or save the model to share with others
547
+
548
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
549
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
550
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
551
+
552
+ """
553
+ logger.info(f"Extracting fp32 weights")
554
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
555
+
556
+ logger.info(f"Overwriting model with fp32 weights")
557
+ model = model.cpu()
558
+ model.load_state_dict(state_dict, strict=False)
559
+
560
+ return model
561
+
562
+
563
+ if __name__ == "__main__":
564
+
565
+ parser = argparse.ArgumentParser()
566
+ parser.add_argument("checkpoint_dir",
567
+ type=str,
568
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
569
+ parser.add_argument(
570
+ "output_file",
571
+ type=str,
572
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
573
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
574
+ args = parser.parse_args()
575
+
576
+ debug = args.debug
577
+
578
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)