File size: 8,149 Bytes
0e9ce0b
 
a94cd85
0e9ce0b
 
add7148
 
0e9ce0b
 
 
 
 
 
 
 
 
 
a94cd85
add7148
 
 
 
 
 
 
0e9ce0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
add7148
0e9ce0b
 
 
add7148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e9ce0b
 
 
 
 
7531d14
0e9ce0b
7531d14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
license: apache-2.0
base_model: pengold/t5-vietnamese-summarization
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-vietnamese-summarization
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-vietnamese-summarization

This model is a fine-tuned version of [pengold/t5-vietnamese-summarization](https://huggingface.co/pengold/t5-vietnamese-summarization) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.6288
- Rouge1: 0.4728
- Rouge2: 0.1669
- Rougel: 0.3049
- Rougelsum: 0.3049
- Gen Len: 18.7458

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 70

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 5.2487        | 1.0   | 2007   | 5.0028          | 0.4671 | 0.1595 | 0.2994 | 0.2994    | 18.7618 |
| 5.217         | 2.0   | 4014   | 4.9802          | 0.4639 | 0.1569 | 0.2984 | 0.2983    | 18.7747 |
| 5.2191        | 3.0   | 6021   | 4.9685          | 0.4644 | 0.1594 | 0.2989 | 0.2989    | 18.7613 |
| 5.2254        | 4.0   | 8028   | 4.9477          | 0.4648 | 0.1586 | 0.2988 | 0.2987    | 18.7458 |
| 5.1735        | 5.0   | 10035  | 4.9366          | 0.4654 | 0.1593 | 0.2988 | 0.2987    | 18.761  |
| 5.1735        | 6.0   | 12042  | 4.9214          | 0.4676 | 0.1611 | 0.3004 | 0.3004    | 18.78   |
| 5.1653        | 7.0   | 14049  | 4.9095          | 0.4681 | 0.1616 | 0.3007 | 0.3007    | 18.7523 |
| 5.1154        | 8.0   | 16056  | 4.8971          | 0.4664 | 0.1598 | 0.3002 | 0.3001    | 18.7655 |
| 5.1232        | 9.0   | 18063  | 4.8882          | 0.4683 | 0.1612 | 0.3008 | 0.3008    | 18.761  |
| 5.0995        | 10.0  | 20070  | 4.8758          | 0.4709 | 0.1618 | 0.3021 | 0.302     | 18.7518 |
| 5.1012        | 11.0  | 22077  | 4.8689          | 0.4685 | 0.1616 | 0.3011 | 0.3009    | 18.7665 |
| 5.0916        | 12.0  | 24084  | 4.8486          | 0.4695 | 0.1623 | 0.3024 | 0.3023    | 18.7655 |
| 5.0559        | 13.0  | 26091  | 4.8409          | 0.4699 | 0.1631 | 0.3024 | 0.3023    | 18.7849 |
| 5.0633        | 14.0  | 28098  | 4.8326          | 0.4705 | 0.1613 | 0.302  | 0.302     | 18.7583 |
| 5.0335        | 15.0  | 30105  | 4.8243          | 0.4696 | 0.1612 | 0.3023 | 0.3022    | 18.7638 |
| 5.0271        | 16.0  | 32112  | 4.8046          | 0.4691 | 0.1618 | 0.3022 | 0.3022    | 18.7518 |
| 5.0045        | 17.0  | 34119  | 4.8060          | 0.4708 | 0.1629 | 0.3029 | 0.3028    | 18.7568 |
| 5.0072        | 18.0  | 36126  | 4.7945          | 0.4702 | 0.1633 | 0.3024 | 0.3023    | 18.776  |
| 4.9954        | 19.0  | 38133  | 4.7894          | 0.47   | 0.1639 | 0.3022 | 0.3021    | 18.7785 |
| 4.9994        | 20.0  | 40140  | 4.7773          | 0.4692 | 0.1625 | 0.3028 | 0.3027    | 18.7623 |
| 4.953         | 21.0  | 42147  | 4.7641          | 0.4682 | 0.162  | 0.3015 | 0.3014    | 18.757  |
| 4.9526        | 22.0  | 44154  | 4.7600          | 0.4703 | 0.1626 | 0.3023 | 0.3023    | 18.7625 |
| 4.9571        | 23.0  | 46161  | 4.7592          | 0.4698 | 0.1627 | 0.3025 | 0.3025    | 18.781  |
| 4.9324        | 24.0  | 48168  | 4.7511          | 0.4697 | 0.1631 | 0.3022 | 0.3021    | 18.769  |
| 4.9323        | 25.0  | 50175  | 4.7433          | 0.4723 | 0.1649 | 0.304  | 0.3039    | 18.7757 |
| 4.9381        | 26.0  | 52182  | 4.7378          | 0.4703 | 0.1629 | 0.3026 | 0.3026    | 18.7782 |
| 4.9288        | 27.0  | 54189  | 4.7454          | 0.4709 | 0.1627 | 0.3026 | 0.3026    | 18.7777 |
| 4.9131        | 28.0  | 56196  | 4.7222          | 0.471  | 0.1652 | 0.3037 | 0.3037    | 18.782  |
| 4.9005        | 29.0  | 58203  | 4.7241          | 0.4719 | 0.1638 | 0.3039 | 0.3038    | 18.778  |
| 4.9051        | 30.0  | 60210  | 4.7225          | 0.4715 | 0.1647 | 0.3037 | 0.3036    | 18.7668 |
| 4.8816        | 31.0  | 62217  | 4.7181          | 0.4701 | 0.1631 | 0.3029 | 0.3029    | 18.7416 |
| 4.8687        | 32.0  | 64224  | 4.7061          | 0.4705 | 0.1643 | 0.3032 | 0.3031    | 18.7625 |
| 4.8935        | 33.0  | 66231  | 4.7063          | 0.4697 | 0.1632 | 0.3028 | 0.3028    | 18.7458 |
| 4.88          | 34.0  | 68238  | 4.6984          | 0.471  | 0.164  | 0.3039 | 0.3039    | 18.7663 |
| 4.8473        | 35.0  | 70245  | 4.6934          | 0.4699 | 0.1636 | 0.3034 | 0.3033    | 18.7531 |
| 4.8613        | 36.0  | 72252  | 4.6863          | 0.4705 | 0.1631 | 0.303  | 0.303     | 18.7797 |
| 4.8491        | 37.0  | 74259  | 4.6847          | 0.4703 | 0.1638 | 0.3037 | 0.3037    | 18.78   |
| 4.8239        | 38.0  | 76266  | 4.6804          | 0.4707 | 0.1632 | 0.3032 | 0.3032    | 18.7802 |
| 4.8767        | 39.0  | 78273  | 4.6788          | 0.4703 | 0.1637 | 0.3027 | 0.3026    | 18.7446 |
| 4.8402        | 40.0  | 80280  | 4.6700          | 0.4699 | 0.1633 | 0.3028 | 0.3028    | 18.7516 |
| 4.8261        | 41.0  | 82287  | 4.6660          | 0.4699 | 0.1633 | 0.3029 | 0.3028    | 18.7369 |
| 4.8193        | 42.0  | 84294  | 4.6693          | 0.4711 | 0.1654 | 0.3039 | 0.3038    | 18.7421 |
| 4.8161        | 43.0  | 86301  | 4.6636          | 0.4707 | 0.1642 | 0.303  | 0.303     | 18.7595 |
| 4.832         | 44.0  | 88308  | 4.6619          | 0.4708 | 0.1646 | 0.3036 | 0.3035    | 18.7423 |
| 4.8304        | 45.0  | 90315  | 4.6575          | 0.4711 | 0.1651 | 0.3038 | 0.3037    | 18.7354 |
| 4.7958        | 46.0  | 92322  | 4.6543          | 0.4711 | 0.165  | 0.3032 | 0.3032    | 18.7189 |
| 4.804         | 47.0  | 94329  | 4.6541          | 0.4711 | 0.1656 | 0.3037 | 0.3036    | 18.7396 |
| 4.7968        | 48.0  | 96336  | 4.6495          | 0.4709 | 0.165  | 0.3034 | 0.3034    | 18.7411 |
| 4.7912        | 49.0  | 98343  | 4.6471          | 0.4718 | 0.1655 | 0.3041 | 0.3042    | 18.7361 |
| 4.7721        | 50.0  | 100350 | 4.6469          | 0.4723 | 0.1667 | 0.3047 | 0.3047    | 18.7309 |
| 4.7828        | 51.0  | 102357 | 4.6476          | 0.4712 | 0.1656 | 0.3044 | 0.3045    | 18.7446 |
| 4.7934        | 52.0  | 104364 | 4.6453          | 0.4707 | 0.1645 | 0.3035 | 0.3035    | 18.7329 |
| 4.7724        | 53.0  | 106371 | 4.6425          | 0.4715 | 0.1657 | 0.304  | 0.304     | 18.7403 |
| 4.7804        | 54.0  | 108378 | 4.6362          | 0.4711 | 0.1658 | 0.3041 | 0.3041    | 18.7488 |
| 4.792         | 55.0  | 110385 | 4.6363          | 0.4706 | 0.1653 | 0.3038 | 0.3038    | 18.7281 |
| 4.7528        | 56.0  | 112392 | 4.6357          | 0.4724 | 0.1667 | 0.3044 | 0.3044    | 18.7463 |
| 4.7849        | 57.0  | 114399 | 4.6346          | 0.472  | 0.1661 | 0.3041 | 0.304     | 18.7431 |
| 4.7618        | 58.0  | 116406 | 4.6332          | 0.472  | 0.167  | 0.3046 | 0.3046    | 18.7336 |
| 4.7841        | 59.0  | 118413 | 4.6287          | 0.4716 | 0.1664 | 0.3043 | 0.3043    | 18.7369 |
| 4.7764        | 60.0  | 120420 | 4.6316          | 0.473  | 0.1666 | 0.3048 | 0.3047    | 18.7548 |
| 4.7504        | 61.0  | 122427 | 4.6276          | 0.4721 | 0.1671 | 0.3043 | 0.3044    | 18.7371 |
| 4.7629        | 62.0  | 124434 | 4.6250          | 0.4726 | 0.167  | 0.3046 | 0.3046    | 18.76   |
| 4.7764        | 63.0  | 126441 | 4.6264          | 0.4725 | 0.1666 | 0.3044 | 0.3044    | 18.7446 |
| 4.7524        | 64.0  | 128448 | 4.6275          | 0.4719 | 0.166  | 0.3041 | 0.3041    | 18.7428 |
| 4.7641        | 65.0  | 130455 | 4.6288          | 0.4728 | 0.1669 | 0.3049 | 0.3049    | 18.7458 |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3