File size: 1,714 Bytes
973d0c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import joblib import pandas as pd import streamlit as st model = joblib.load("daimond.joblib") unique_values = joblib.load("unique_values.joblib") unique_cut = unique_values["cut"] unique_color = unique_values["color"] unique_clarity = unique_values["clarity"] def main(): st.title("Diamond Prices") with st.form("questionaire"): carat = st.slider("Carat",min_value=0.00,max_value=5.00) cut = st.selectbox("Cut", options=unique_cut) color = st.selectbox("Color", options=unique_color) clarity = st.selectbox("Clarity", options=unique_clarity) depth = st.slider("Depth",min_value=0.00,max_value=100.00) table = st.slider("table",min_value=0.00,max_value=100.00) x = st.slider("length(mm)",min_value=0.01,max_value=10.00) y = st.slider("width(mm)",min_value=0.01,max_value=10.00) z = st.slider("depth(mm)",min_value=0.01,max_value=10.00) # clicked==True only when the button is clicked clicked = st.form_submit_button("Predict Price") if clicked: result=model.predict(pd.DataFrame({"carat": [carat], "cut": [cut], "color": [color], "clarity": [clarity], "depth":[depth], "table": [table], "size": [size], "length(mm)":[x], "width(mm)":[y], "depth(mm)":[z]})) # Show prediction st.success("Your predicted income is"+result) if name == "main": main() |