pere commited on
Commit
f563bca
·
1 Parent(s): 34006a8

first commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *json* filter=lfs diff=lfs merge=lfs -text
29
+ *model* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: no
3
+ license: CC-BY 4.0
4
+ tags:
5
+ - translation
6
+ datasets:
7
+ - oscar
8
+ widget:
9
+ - text: "Skriv inn en tekst som du ønsker å oversette til en annen målform."
10
+ ---
11
+ # Norwegian mT5 - Translation Bokmål Nynorsk - Development
12
+
13
+ ## Description
14
+
15
+ This is the development version of the Bokmål-Nynorsk translator. If you want something that is stable, Please do run [this version](https://huggingface.co/pere/nb-nn-translation/) instead.
16
+
17
+
18
+ Here is an example of how to use the model from Python
19
+ ```python
20
+ # Import libraries
21
+ from transformers import T5ForConditionalGeneration, AutoTokenizer
22
+ model = T5ForConditionalGeneration.from_pretrained('pere/nb-nn-dev',from_flax=True)
23
+ tokenizer = AutoTokenizer.from_pretrained('pere/nb-nn-dev')
24
+
25
+ #Encode the text
26
+ text = "Hun vil ikke gi bort sine personlige data."
27
+ inputs = tokenizer.encode(text, return_tensors="pt")
28
+ outputs = model.generate(inputs, max_length=255, num_beams=4, early_stopping=True)
29
+
30
+ #Decode and print the result
31
+ print(tokenizer.decode(outputs[0]))
32
+
33
+ ```
34
+
35
+ Or if you like to use the pipeline instead
36
+
37
+ ```python
38
+ # Set up the pipeline
39
+ from transformers import pipeline
40
+ translator = pipeline("translation", model='pere/nb-nn-dev')
41
+
42
+ # Do the translation
43
+ text = "Hun vil ikke gi bort sine personlige data."
44
+ print(translator(text, max_length=255))
45
+
46
+ ```
config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b58bfa74027999a2fd69e0201df83f18541b6242a907be04d76537d5f6737373
3
+ size 688
flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03a54383bbd554e991d7a35d4b3da347b60ad4c188c9b7e03f60064bcc3d0c33
3
+ size 1100762015
nb_nn_nb.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:971a3e904e82bac8a629cc01242bd5c1f47eb97fc5c416bd52547eda2a8cdecd
3
+ size 89741402
nor-mt5-flax_model.msgpack ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c94d65a650ba188aea5879969e54cd1d99b88c941a0a1b497c959a6d31673c4
3
+ size 2329543587
npk_dev.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fd6cab7e0a56c309edaedb1f793f5e4d6d37c58d556d8eea653129d2aa2354b
3
+ size 6064322
npk_test.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59969a33a70d7866f7e29f7c99e69ca0036571b26d005059883c803a195e52b6
3
+ size 6074473
npk_train.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5edbf831e8bf71989f724725c47ed52f3fc0ba976ac5e7e69a93a37917b22ac3
3
+ size 24178991
parallel_dev.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05a3b96919cfa8dd1dd789e40dcd5b16f2f98aa0306cc14fa3830920776f00e0
3
+ size 4775873
parallel_src_tgt_dev.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24365bea5d23ded5e0b00310612c2e7cffb200d39da5dced2143108b76494855
3
+ size 4975873
parallel_src_tgt_test.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bfe0f22381943cb2137000540c1fd8d1db6f9a1dfd268f529c894bed8ddc2d1
3
+ size 4977496
parallel_test.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81f6651046722a77acb3fd3f5cda0fc0af8f395197ff094a3184a5b93e9f476d
3
+ size 4777496
parallel_train.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9997f562b27af9e7cb412616a01613c466ebd1326bfdee6ae843be507e1b250
3
+ size 19091710
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:881b699ed1f849f5764af7c95359d38f458e69378f99543c3ecae61c57e9557d
3
+ size 1100872781
run_ncc.sh ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ python run_translation_t5_flax.py \
2
+ --output_dir "." \
3
+ --model_name_or_path NbAiLab/nb-t5-base \
4
+ --tokenizer_name NbAiLab/nb-t5-base \
5
+ --train_file nb_nn_nb.json \
6
+ --validation_file parallel_src_tgt_dev.json \
7
+ --test_file parallel_src_tgt_test.json \
8
+ --do_train --do_eval --do_predict \
9
+ --predict_with_generate \
10
+ --num_train_epochs 10 \
11
+ --learning_rate 7e-4 \
12
+ --warmup_steps 3000 \
13
+ --per_device_train_batch_size 8 \
14
+ --per_device_eval_batch_size 8 \
15
+ --overwrite_output_dir \
16
+ --max_source_length 512 \
17
+ --max_target_length 512 \
18
+ --adafactor
run_translation_t5_flax.py ADDED
@@ -0,0 +1,817 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Team All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for summarization.
18
+ """
19
+ # You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
20
+
21
+ import logging
22
+ import os
23
+ import sys
24
+ import time
25
+ from dataclasses import dataclass, field
26
+ from functools import partial
27
+ from pathlib import Path
28
+ from typing import Callable, Optional
29
+
30
+ import datasets
31
+ import nltk # Here to have a nice missing dependency error message early on
32
+ import numpy as np
33
+ from datasets import Dataset, load_dataset, load_metric
34
+ from tqdm import tqdm
35
+
36
+ import jax
37
+ import jax.numpy as jnp
38
+ import optax
39
+ import transformers
40
+ from filelock import FileLock
41
+ from flax import jax_utils, traverse_util
42
+ from flax.jax_utils import unreplicate
43
+ from flax.training import train_state
44
+ from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
45
+ from transformers import (
46
+ CONFIG_MAPPING,
47
+ FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
48
+ AutoConfig,
49
+ AutoTokenizer,
50
+ FlaxAutoModelForSeq2SeqLM,
51
+ HfArgumentParser,
52
+ TrainingArguments,
53
+ FlaxT5ForConditionalGeneration,
54
+ is_tensorboard_available,
55
+ )
56
+ from transformers.file_utils import is_offline_mode
57
+
58
+
59
+ logger = logging.getLogger(__name__)
60
+
61
+ try:
62
+ nltk.data.find("tokenizers/punkt")
63
+ except (LookupError, OSError):
64
+ if is_offline_mode():
65
+ raise LookupError(
66
+ "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
67
+ )
68
+ with FileLock(".lock") as lock:
69
+ nltk.download("punkt", quiet=True)
70
+
71
+
72
+ MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys())
73
+ MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
74
+
75
+
76
+ @dataclass
77
+ class ModelArguments:
78
+ """
79
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
80
+ """
81
+
82
+ model_name_or_path: Optional[str] = field(
83
+ default=None,
84
+ metadata={
85
+ "help": "The model checkpoint for weights initialization."
86
+ "Don't set if you want to train a model from scratch."
87
+ },
88
+ )
89
+ model_type: Optional[str] = field(
90
+ default=None,
91
+ metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
92
+ )
93
+ config_name: Optional[str] = field(
94
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
95
+ )
96
+ tokenizer_name: Optional[str] = field(
97
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
98
+ )
99
+ cache_dir: Optional[str] = field(
100
+ default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
101
+ )
102
+ use_fast_tokenizer: bool = field(
103
+ default=True,
104
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
105
+ )
106
+ dtype: Optional[str] = field(
107
+ default="float32",
108
+ metadata={
109
+ "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
110
+ },
111
+ )
112
+
113
+
114
+ @dataclass
115
+ class DataTrainingArguments:
116
+ """
117
+ Arguments pertaining to what data we are going to input our model for training and eval.
118
+ """
119
+
120
+ dataset_name: Optional[str] = field(
121
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
122
+ )
123
+ dataset_config_name: Optional[str] = field(
124
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
125
+ )
126
+ text_column: Optional[str] = field(
127
+ default=None,
128
+ metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
129
+ )
130
+ summary_column: Optional[str] = field(
131
+ default=None,
132
+ metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
133
+ )
134
+ train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
135
+ test_file: Optional[str] = field(default=None, metadata={"help": "The input test data file (a text file)."})
136
+ validation_file: Optional[str] = field(
137
+ default=None,
138
+ metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
139
+ )
140
+ max_source_length: Optional[int] = field(
141
+ default=1024,
142
+ metadata={
143
+ "help": "The maximum total input sequence length after tokenization. Sequences longer "
144
+ "than this will be truncated, sequences shorter will be padded."
145
+ },
146
+ )
147
+ max_target_length: Optional[int] = field(
148
+ default=128,
149
+ metadata={
150
+ "help": "The maximum total sequence length for target text after tokenization. Sequences longer "
151
+ "than this will be truncated, sequences shorter will be padded."
152
+ },
153
+ )
154
+ val_max_target_length: Optional[int] = field(
155
+ default=None,
156
+ metadata={
157
+ "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
158
+ "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
159
+ "This argument is also used to override the `max_length` param of `model.generate`, which is used "
160
+ "during evaluation."
161
+ },
162
+ )
163
+ max_train_samples: Optional[int] = field(
164
+ default=None,
165
+ metadata={
166
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
167
+ "value if set."
168
+ },
169
+ )
170
+ max_eval_samples: Optional[int] = field(
171
+ default=None,
172
+ metadata={
173
+ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
174
+ "value if set."
175
+ },
176
+ )
177
+ max_predict_samples: Optional[int] = field(
178
+ default=None,
179
+ metadata={
180
+ "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
181
+ "value if set."
182
+ },
183
+ )
184
+ preprocessing_num_workers: Optional[int] = field(
185
+ default=None,
186
+ metadata={"help": "The number of processes to use for the preprocessing."},
187
+ )
188
+ source_prefix: Optional[str] = field(
189
+ default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
190
+ )
191
+ predict_with_generate: bool = field(
192
+ default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."}
193
+ )
194
+ num_beams: Optional[int] = field(
195
+ default=None,
196
+ metadata={
197
+ "help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`, "
198
+ "which is used during evaluation."
199
+ },
200
+ )
201
+ overwrite_cache: bool = field(
202
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
203
+ )
204
+
205
+ def __post_init__(self):
206
+ if self.dataset_name is None and self.train_file is None and self.validation_file is None:
207
+ raise ValueError("Need either a dataset name or a training/validation file.")
208
+ else:
209
+ if self.train_file is not None:
210
+ extension = self.train_file.split(".")[-1]
211
+ assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
212
+ if self.validation_file is not None:
213
+ extension = self.validation_file.split(".")[-1]
214
+ assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
215
+ if self.val_max_target_length is None:
216
+ self.val_max_target_length = self.max_target_length
217
+
218
+
219
+ summarization_name_mapping = {
220
+ "translation": ("source", "target"),
221
+ }
222
+
223
+
224
+ class TrainState(train_state.TrainState):
225
+ dropout_rng: jnp.ndarray
226
+
227
+ def replicate(self):
228
+ return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
229
+
230
+
231
+ def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False):
232
+ """
233
+ Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
234
+ Shuffle batches if `shuffle` is `True`.
235
+ """
236
+ steps_per_epoch = len(dataset) // batch_size
237
+
238
+ if shuffle:
239
+ batch_idx = jax.random.permutation(rng, len(dataset))
240
+ else:
241
+ batch_idx = jnp.arange(len(dataset))
242
+
243
+ batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch.
244
+ batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
245
+
246
+ for idx in batch_idx:
247
+ batch = dataset[idx]
248
+ batch = {k: jnp.array(v) for k, v in batch.items()}
249
+
250
+ batch = shard(batch)
251
+
252
+ yield batch
253
+
254
+
255
+ def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
256
+ summary_writer.scalar("train_time", train_time, step)
257
+
258
+ train_metrics = get_metrics(train_metrics)
259
+ for key, vals in train_metrics.items():
260
+ tag = f"train_{key}"
261
+ for i, val in enumerate(vals):
262
+ summary_writer.scalar(tag, val, step - len(vals) + i + 1)
263
+
264
+ #Pere - dropping all values that are not float
265
+ for metric_name, value in eval_metrics.items():
266
+ if isinstance(value,float):
267
+ summary_writer.scalar(f"eval_{metric_name}", value, step)
268
+
269
+
270
+ def create_learning_rate_fn(
271
+ train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
272
+ ) -> Callable[[int], jnp.array]:
273
+ """Returns a linear warmup, linear_decay learning rate function."""
274
+ steps_per_epoch = train_ds_size // train_batch_size
275
+ num_train_steps = steps_per_epoch * num_train_epochs
276
+ warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
277
+ decay_fn = optax.linear_schedule(
278
+ init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
279
+ )
280
+ schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
281
+ return schedule_fn
282
+
283
+
284
+ def main():
285
+ # See all possible arguments in src/transformers/training_args.py
286
+ # or by passing the --help flag to this script.
287
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
288
+
289
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
290
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
291
+ # If we pass only one argument to the script and it's the path to a json file,
292
+ # let's parse it to get our arguments.
293
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
294
+ else:
295
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
296
+
297
+ if (
298
+ os.path.exists(training_args.output_dir)
299
+ and os.listdir(training_args.output_dir)
300
+ and training_args.do_train
301
+ and not training_args.overwrite_output_dir
302
+ ):
303
+ raise ValueError(
304
+ f"Output directory ({training_args.output_dir}) already exists and is not empty."
305
+ "Use --overwrite_output_dir to overcome."
306
+ )
307
+
308
+ # Make one log on every process with the configuration for debugging.
309
+ logging.basicConfig(
310
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
311
+ datefmt="%m/%d/%Y %H:%M:%S",
312
+ level=logging.INFO,
313
+ )
314
+ # Setup logging, we only want one process per machine to log things on the screen.
315
+ logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
316
+ if jax.process_index() == 0:
317
+ datasets.utils.logging.set_verbosity_warning()
318
+ transformers.utils.logging.set_verbosity_info()
319
+ else:
320
+ datasets.utils.logging.set_verbosity_error()
321
+ transformers.utils.logging.set_verbosity_error()
322
+
323
+ # Set the verbosity to info of the Transformers logger (on main process only):
324
+ logger.info(f"Training/evaluation parameters {training_args}")
325
+
326
+ # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
327
+ # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
328
+ # (the dataset will be downloaded automatically from the datasets Hub).
329
+ #
330
+ # For CSV/JSON files this script will use the first column for the full texts and the second column for the
331
+ # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
332
+ #
333
+ if data_args.dataset_name is not None:
334
+ # Downloading and loading a dataset from the hub.
335
+ dataset = load_dataset(
336
+ data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False
337
+ )
338
+ else:
339
+ data_files = {}
340
+ if data_args.train_file is not None:
341
+ data_files["train"] = data_args.train_file
342
+ extension = data_args.train_file.split(".")[-1]
343
+ if data_args.validation_file is not None:
344
+ data_files["validation"] = data_args.validation_file
345
+ extension = data_args.validation_file.split(".")[-1]
346
+ if data_args.test_file is not None:
347
+ data_files["test"] = data_args.test_file
348
+ extension = data_args.test_file.split(".")[-1]
349
+ dataset = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
350
+ # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
351
+ # https://huggingface.co/docs/datasets/loading_datasets.html.
352
+
353
+ # Load pretrained model and tokenizer
354
+
355
+ if model_args.config_name:
356
+ config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir)
357
+ elif model_args.model_name_or_path:
358
+ config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir)
359
+ else:
360
+ config = CONFIG_MAPPING[model_args.model_type]()
361
+ logger.warning("You are instantiating a new config instance from scratch.")
362
+
363
+ if model_args.tokenizer_name:
364
+ tokenizer = AutoTokenizer.from_pretrained(
365
+ model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
366
+ )
367
+ elif model_args.model_name_or_path:
368
+ tokenizer = AutoTokenizer.from_pretrained(
369
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
370
+ )
371
+ else:
372
+ raise ValueError(
373
+ "You are instantiating a new tokenizer from scratch. This is not supported by this script."
374
+ "You can do it from another script, save it, and load it from here, using --tokenizer_name."
375
+ )
376
+
377
+ if model_args.model_name_or_path:
378
+ # from_flax, from_pt
379
+
380
+
381
+ model = FlaxT5ForConditionalGeneration.from_pretrained(
382
+
383
+ model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
384
+ )
385
+ else:
386
+ model = FlaxT5ForConditionalGeneration.from_config(
387
+ config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
388
+ )
389
+
390
+ if model.config.decoder_start_token_id is None:
391
+ raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
392
+
393
+ prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
394
+
395
+ # Preprocessing the datasets.
396
+ # We need to tokenize inputs and targets.
397
+ if training_args.do_train:
398
+ column_names = dataset["train"].column_names
399
+ elif training_args.do_eval:
400
+ column_names = dataset["validation"].column_names
401
+ elif training_args.do_predict:
402
+ column_names = dataset["test"].column_names
403
+ else:
404
+ logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
405
+ return
406
+
407
+ # Get the column names for input/target.
408
+ dataset_columns = summarization_name_mapping.get("translation", None)
409
+ if data_args.text_column is None:
410
+ text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
411
+ else:
412
+ text_column = data_args.text_column
413
+ if text_column not in column_names:
414
+ raise ValueError(
415
+ f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
416
+ )
417
+ if data_args.summary_column is None:
418
+ summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
419
+ else:
420
+ summary_column = data_args.summary_column
421
+ if summary_column not in column_names:
422
+ raise ValueError(
423
+ f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
424
+ )
425
+
426
+ # Temporarily set max_target_length for training.
427
+ max_target_length = data_args.max_target_length
428
+
429
+ # In Flax, for seq2seq models we need to pass `decoder_input_ids`
430
+ # as the Flax models don't accept `labels`, we need to prepare the decoder_input_ids here
431
+ # for that dynamically import the `shift_tokens_right` function from the model file
432
+ model_module = __import__(model.__module__, fromlist=["shift_tokens_tight"])
433
+ shift_tokens_right_fn = getattr(model_module, "shift_tokens_right")
434
+
435
+ # Setting padding="max_length" as we need fixed length inputs for jitted functions
436
+ def preprocess_function(examples):
437
+ inputs = examples[text_column]
438
+ targets = examples[summary_column]
439
+ inputs = [prefix + inp for inp in inputs]
440
+ model_inputs = tokenizer(
441
+ inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np"
442
+ )
443
+
444
+ # Setup the tokenizer for targets
445
+ with tokenizer.as_target_tokenizer():
446
+ labels = tokenizer(
447
+ targets, max_length=max_target_length, padding="max_length", truncation=True, return_tensors="np"
448
+ )
449
+
450
+ model_inputs["labels"] = labels["input_ids"]
451
+ decoder_input_ids = shift_tokens_right_fn(
452
+ jnp.array(labels["input_ids"]), config.pad_token_id, config.decoder_start_token_id
453
+ )
454
+ model_inputs["decoder_input_ids"] = np.asarray(decoder_input_ids)
455
+
456
+ # We need decoder_attention_mask so we can ignore pad tokens from loss
457
+ model_inputs["decoder_attention_mask"] = labels["attention_mask"]
458
+
459
+ return model_inputs
460
+
461
+ if training_args.do_train:
462
+ if "train" not in dataset:
463
+ raise ValueError("--do_train requires a train dataset")
464
+ train_dataset = dataset["train"]
465
+ if data_args.max_train_samples is not None:
466
+ train_dataset = train_dataset.select(range(data_args.max_train_samples))
467
+ train_dataset = train_dataset.map(
468
+ preprocess_function,
469
+ batched=True,
470
+ num_proc=data_args.preprocessing_num_workers,
471
+ remove_columns=column_names,
472
+ load_from_cache_file=not data_args.overwrite_cache,
473
+ desc="Running tokenizer on train dataset",
474
+ )
475
+
476
+ if training_args.do_eval:
477
+ max_target_length = data_args.val_max_target_length
478
+ if "validation" not in dataset:
479
+ raise ValueError("--do_eval requires a validation dataset")
480
+ eval_dataset = dataset["validation"]
481
+ if data_args.max_eval_samples is not None:
482
+ eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
483
+ eval_dataset = eval_dataset.map(
484
+ preprocess_function,
485
+ batched=True,
486
+ num_proc=data_args.preprocessing_num_workers,
487
+ remove_columns=column_names,
488
+ load_from_cache_file=not data_args.overwrite_cache,
489
+ desc="Running tokenizer on validation dataset",
490
+ )
491
+
492
+ if training_args.do_predict:
493
+ max_target_length = data_args.val_max_target_length
494
+ if "test" not in dataset:
495
+ raise ValueError("--do_predict requires a test dataset")
496
+ predict_dataset = dataset["test"]
497
+ if data_args.max_predict_samples is not None:
498
+ predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
499
+ predict_dataset = predict_dataset.map(
500
+ preprocess_function,
501
+ batched=True,
502
+ num_proc=data_args.preprocessing_num_workers,
503
+ remove_columns=column_names,
504
+ load_from_cache_file=not data_args.overwrite_cache,
505
+ desc="Running tokenizer on prediction dataset",
506
+ )
507
+
508
+ # Metric
509
+ metric = load_metric("sacrebleu")
510
+
511
+ def postprocess_text(preds, labels):
512
+ preds = [pred.strip() for pred in preds]
513
+ labels = [label.strip() for label in labels]
514
+
515
+ # rougeLSum expects newline after each sentence
516
+ preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
517
+ labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
518
+
519
+ return preds, labels
520
+
521
+ def compute_metrics(preds, labels):
522
+ decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
523
+ decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
524
+
525
+ # Some simple post-processing
526
+ #Probably not needed for bleu - pere
527
+ #decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
528
+
529
+ #breakpoint()
530
+ #result = metric.compute(predictions=decoded_preds, references=decoded_labels)
531
+ decoded_labels_list = [[d] for d in decoded_labels]
532
+ result = metric.compute(predictions=decoded_preds, references=decoded_labels_list)
533
+
534
+ #Debug stuff - pere
535
+ print("Example translations")
536
+ for i in range(0,5):
537
+ print(f'{decoded_preds[i]} - {decoded_labels_list[i]}')
538
+ #breakpoint()
539
+ # Extract a few results from ROUGE
540
+ #result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
541
+
542
+ #prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
543
+ #result["gen_len"] = np.mean(prediction_lens)
544
+ #result = {k: round(v, 4) for k, v in result.items()}
545
+ return result
546
+
547
+ # Enable tensorboard only on the master node
548
+ has_tensorboard = is_tensorboard_available()
549
+ if has_tensorboard and jax.process_index() == 0:
550
+ try:
551
+ from flax.metrics.tensorboard import SummaryWriter
552
+
553
+ summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
554
+ except ImportError as ie:
555
+ has_tensorboard = False
556
+ logger.warning(
557
+ f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
558
+ )
559
+ else:
560
+ logger.warning(
561
+ "Unable to display metrics through TensorBoard because the package is not installed: "
562
+ "Please run pip install tensorboard to enable."
563
+ )
564
+
565
+ # Initialize our training
566
+ rng = jax.random.PRNGKey(training_args.seed)
567
+ rng, dropout_rng = jax.random.split(rng)
568
+
569
+ # Store some constant
570
+ num_epochs = int(training_args.num_train_epochs)
571
+ train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
572
+ eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
573
+ steps_per_epoch = len(train_dataset) // train_batch_size
574
+ total_train_steps = steps_per_epoch * num_epochs
575
+
576
+ # Create learning rate schedule
577
+ linear_decay_lr_schedule_fn = create_learning_rate_fn(
578
+ len(train_dataset),
579
+ train_batch_size,
580
+ training_args.num_train_epochs,
581
+ training_args.warmup_steps,
582
+ training_args.learning_rate,
583
+ )
584
+
585
+ # We use Optax's "masking" functionality to not apply weight decay
586
+ # to bias and LayerNorm scale parameters. decay_mask_fn returns a
587
+ # mask boolean with the same structure as the parameters.
588
+ # The mask is True for parameters that should be decayed.
589
+ # Note that this mask is specifically adapted for FlaxBart.
590
+ # For FlaxT5, one should correct the layer norm parameter naming
591
+ # accordingly - see `run_t5_mlm_flax.py` e.g.
592
+ def decay_mask_fn(params):
593
+ flat_params = traverse_util.flatten_dict(params)
594
+ layer_norm_params = [
595
+ (name, "scale") for name in ["self_attn_layer_norm", "layernorm_embedding", "final_layer_norm"]
596
+ ]
597
+ flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_params) for path in flat_params}
598
+ return traverse_util.unflatten_dict(flat_mask)
599
+
600
+ # TODO: adafactor?
601
+ # create adam optimizer
602
+ adamw = optax.adamw(
603
+ learning_rate=linear_decay_lr_schedule_fn,
604
+ b1=training_args.adam_beta1,
605
+ b2=training_args.adam_beta2,
606
+ eps=training_args.adam_epsilon,
607
+ weight_decay=training_args.weight_decay,
608
+ mask=decay_mask_fn,
609
+ )
610
+
611
+ # Setup train state
612
+ state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng)
613
+
614
+ # label smoothed cross entropy
615
+ def loss_fn(logits, labels, padding_mask, label_smoothing_factor=0.0):
616
+ """
617
+ The label smoothing implementation is adapted from Flax's official example:
618
+ https://github.com/google/flax/blob/87a211135c6a377c8f29048a1cac3840e38b9da4/examples/wmt/train.py#L104
619
+ """
620
+ vocab_size = logits.shape[-1]
621
+ confidence = 1.0 - label_smoothing_factor
622
+ low_confidence = (1.0 - confidence) / (vocab_size - 1)
623
+ normalizing_constant = -(
624
+ confidence * jnp.log(confidence) + (vocab_size - 1) * low_confidence * jnp.log(low_confidence + 1e-20)
625
+ )
626
+ soft_labels = onehot(labels, vocab_size, on_value=confidence, off_value=low_confidence)
627
+
628
+ loss = optax.softmax_cross_entropy(logits, soft_labels)
629
+ loss = loss - normalizing_constant
630
+
631
+ # ignore padded tokens from loss
632
+ loss = loss * padding_mask
633
+ loss = loss.sum() / padding_mask.sum()
634
+ return loss
635
+
636
+ # Define gradient update step fn
637
+ def train_step(state, batch, label_smoothing_factor=0.0):
638
+ dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
639
+
640
+ def compute_loss(params):
641
+ labels = batch.pop("labels")
642
+ logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
643
+ loss = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor)
644
+ return loss
645
+
646
+ grad_fn = jax.value_and_grad(compute_loss)
647
+ loss, grad = grad_fn(state.params)
648
+ grad = jax.lax.pmean(grad, "batch")
649
+
650
+ new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
651
+
652
+ metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
653
+ metrics = jax.lax.pmean(metrics, axis_name="batch")
654
+
655
+ return new_state, metrics
656
+
657
+ # Define eval fn
658
+ def eval_step(params, batch, label_smoothing_factor=0.0):
659
+ labels = batch.pop("labels")
660
+ logits = model(**batch, params=params, train=False)[0]
661
+ loss = loss_fn(logits, labels, batch["decoder_attention_mask"], label_smoothing_factor)
662
+
663
+ # summarize metrics
664
+ metrics = {"loss": loss}
665
+ metrics = jax.lax.pmean(metrics, axis_name="batch")
666
+ return metrics
667
+
668
+ # Define generation function
669
+ max_length = (
670
+ data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length
671
+ )
672
+ num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams
673
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
674
+
675
+ def generate_step(params, batch):
676
+ model.params = params
677
+ output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs)
678
+ return output_ids.sequences
679
+
680
+ # Create parallel version of the train and eval step
681
+ p_train_step = jax.pmap(
682
+ partial(train_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch", donate_argnums=(0,)
683
+ )
684
+ p_eval_step = jax.pmap(partial(eval_step, label_smoothing_factor=training_args.label_smoothing_factor), "batch")
685
+ p_generate_step = jax.pmap(generate_step, "batch")
686
+
687
+ # Replicate the train state on each device
688
+ state = state.replicate()
689
+
690
+ logger.info("***** Running training *****")
691
+ logger.info(f" Num examples = {len(train_dataset)}")
692
+ logger.info(f" Num Epochs = {num_epochs}")
693
+ logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
694
+ logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}")
695
+ logger.info(f" Total optimization steps = {total_train_steps}")
696
+
697
+ train_time = 0
698
+ epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
699
+ for epoch in epochs:
700
+ # ======================== Training ================================
701
+ train_start = time.time()
702
+
703
+ # Create sampling rng
704
+ rng, input_rng = jax.random.split(rng)
705
+ train_metrics = []
706
+
707
+ # Generate an epoch by shuffling sampling indices from the train dataset
708
+ train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
709
+ steps_per_epoch = len(train_dataset) // train_batch_size
710
+ # train
711
+ for _ in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
712
+ batch = next(train_loader)
713
+ state, train_metric = p_train_step(state, batch)
714
+ train_metrics.append(train_metric)
715
+
716
+ train_time += time.time() - train_start
717
+
718
+ train_metric = unreplicate(train_metric)
719
+
720
+ epochs.write(
721
+ f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
722
+ )
723
+
724
+ # ======================== Evaluating ==============================
725
+ eval_metrics = []
726
+ eval_preds = []
727
+ eval_labels = []
728
+
729
+ eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
730
+ eval_steps = len(eval_dataset) // eval_batch_size
731
+ for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
732
+ # Model forward
733
+ batch = next(eval_loader)
734
+ labels = batch["labels"]
735
+
736
+ metrics = p_eval_step(state.params, batch)
737
+ eval_metrics.append(metrics)
738
+
739
+ # generation
740
+ if data_args.predict_with_generate:
741
+ generated_ids = p_generate_step(state.params, batch)
742
+ eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
743
+ eval_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1])))
744
+
745
+ # normalize eval metrics
746
+ eval_metrics = get_metrics(eval_metrics)
747
+ eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
748
+
749
+ # compute ROUGE metrics
750
+ rouge_desc = ""
751
+ if data_args.predict_with_generate:
752
+ rouge_metrics = compute_metrics(eval_preds, eval_labels)
753
+ eval_metrics.update(rouge_metrics)
754
+ rouge_desc = " ".join([f"Eval {key}: {value} |" for key, value in rouge_metrics.items()])
755
+
756
+ # Print metrics and update progress bar
757
+ desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {rouge_desc})"
758
+ epochs.write(desc)
759
+ epochs.desc = desc
760
+
761
+ # Save metrics
762
+ if has_tensorboard and jax.process_index() == 0:
763
+ cur_step = epoch * (len(train_dataset) // train_batch_size)
764
+ write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step)
765
+
766
+ # ======================== Prediction loop ==============================
767
+ if training_args.do_predict:
768
+ logger.info("*** Predict ***")
769
+
770
+ pred_metrics = []
771
+ pred_generations = []
772
+ pred_labels = []
773
+
774
+ pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size)
775
+ pred_steps = len(predict_dataset) // eval_batch_size
776
+ for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False):
777
+ # Model forward
778
+ batch = next(pred_loader)
779
+ labels = batch["labels"]
780
+
781
+ metrics = p_eval_step(state.params, batch)
782
+ pred_metrics.append(metrics)
783
+
784
+ # generation
785
+ if data_args.predict_with_generate:
786
+ generated_ids = p_generate_step(state.params, batch)
787
+ pred_generations.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
788
+ pred_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1])))
789
+
790
+ # normalize prediction metrics
791
+ pred_metrics = get_metrics(pred_metrics)
792
+ pred_metrics = jax.tree_map(jnp.mean, pred_metrics)
793
+
794
+ # compute ROUGE metrics
795
+ rouge_desc = ""
796
+ if data_args.predict_with_generate:
797
+ rouge_metrics = compute_metrics(pred_generations, pred_labels)
798
+ pred_metrics.update(rouge_metrics)
799
+ rouge_desc = " ".join([f"Predict {key}: {value} |" for key, value in rouge_metrics.items()])
800
+
801
+ # Print metrics
802
+ desc = f"Predict Loss: {pred_metrics['loss']} | {rouge_desc})"
803
+ logger.info(desc)
804
+
805
+ # save checkpoint after each epoch and push checkpoint to the hub
806
+ if jax.process_index() == 0:
807
+ params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
808
+ model.save_pretrained(
809
+ training_args.output_dir,
810
+ params=params,
811
+ push_to_hub=training_args.push_to_hub,
812
+ commit_message=f"Saving weights and logs of epoch {epoch+1}",
813
+ )
814
+
815
+
816
+ if __name__ == "__main__":
817
+ main()
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09059cedc26bc46bc09a52f05b92d4922e11917e87f3b92059bb1a63a59ab2c4
3
+ size 65
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef78f86560d809067d12bac6c09f19a462cb3af3f54d2b8acbba26e1433125d6
3
+ size 4309802
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a45a3502ba77d86b2ffb251212b1db55b926c5c1da45cf5462a60051b8eb96fe
3
+ size 8311027
tokenizer_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ca0f02ca646d30f4a442c005ecba1769bfcf9ccc8a4c1a07196ee5f30b07631
3
+ size 394