|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Pretraining with T5-like span-masked language modeling on a streaming dataset. |
|
Here is the full list of checkpoints on the hub that can be pretrained by this script: |
|
https://huggingface.co/models?filter=t5 |
|
""" |
|
import logging |
|
import os |
|
import sys |
|
import time |
|
from collections import defaultdict |
|
from dataclasses import dataclass, field |
|
from pathlib import Path |
|
from typing import Dict, Optional |
|
|
|
import datasets |
|
import numpy as np |
|
from datasets import load_dataset |
|
from tqdm import tqdm |
|
|
|
import flax |
|
import jax |
|
import jax.numpy as jnp |
|
import optax |
|
from flax import jax_utils, traverse_util |
|
from flax.training import train_state |
|
from flax.training.common_utils import get_metrics, onehot, shard |
|
from transformers import ( |
|
CONFIG_MAPPING, |
|
FLAX_MODEL_FOR_MASKED_LM_MAPPING, |
|
BatchEncoding, |
|
FlaxT5ForConditionalGeneration, |
|
HfArgumentParser, |
|
PreTrainedTokenizerBase, |
|
T5Config, |
|
T5TokenizerFast, |
|
TrainingArguments, |
|
is_tensorboard_available, |
|
set_seed, |
|
) |
|
from transformers.models.t5.modeling_flax_t5 import shift_tokens_right |
|
|
|
|
|
|
|
|
|
MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys()) |
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. |
|
""" |
|
|
|
model_name_or_path: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The model checkpoint for weights initialization." |
|
"Don't set if you want to train a model from scratch." |
|
}, |
|
) |
|
model_type: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
dtype: Optional[str] = field( |
|
default="float32", |
|
metadata={ |
|
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`." |
|
}, |
|
) |
|
auth_token: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Auth token for private repositories on the Huggingface Hub" |
|
} |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: Optional[str] = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
max_seq_length: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The maximum total input sequence length after tokenization and masking. Sequences longer than this will be truncated. Default to the max input length of the model." |
|
}, |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
mlm_probability: float = field( |
|
default=0.15, metadata={"help": "Ratio of tokens to mask for span masked language modeling loss"} |
|
) |
|
mean_noise_span_length: float = field( |
|
default=3.0, |
|
metadata={"help": "Mean span length of masked tokens"}, |
|
) |
|
text_column_name: str = field( |
|
default="text", metadata={"help": "The name of the column to retrieve the training text."} |
|
) |
|
shuffle_buffer_size: int = field( |
|
default=10000, metadata={"help": "The number of examples to pre-load for shuffling."} |
|
) |
|
num_train_steps: int = field(default=50000, metadata={"help": "The number of training steps."}) |
|
num_eval_samples: int = field(default=50000, metadata={"help": "The number of samples to be used for evaluation"}) |
|
|
|
def __post_init__(self): |
|
if self.dataset_name is None: |
|
raise ValueError("Need a dataset name for streaming.") |
|
|
|
|
|
def compute_input_and_target_lengths(inputs_length, noise_density, mean_noise_span_length): |
|
"""This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2466>`__ . |
|
Training parameters to avoid padding with random_spans_noise_mask. |
|
When training a model with random_spans_noise_mask, we would like to set the other |
|
training hyperparmeters in a way that avoids padding. |
|
This function helps us compute these hyperparameters. |
|
We assume that each noise span in the input is replaced by extra_tokens_per_span_inputs sentinel tokens, |
|
and each non-noise span in the targets is replaced by extra_tokens_per_span_targets sentinel tokens. |
|
This function tells us the required number of tokens in the raw example (for split_tokens()) |
|
as well as the length of the encoded targets. Note that this function assumes |
|
the inputs and targets will have EOS appended and includes that in the reported length. |
|
Args: |
|
inputs_length: an integer - desired length of the tokenized inputs sequence |
|
noise_density: a float |
|
mean_noise_span_length: a float |
|
Returns: |
|
tokens_length: length of original text in tokens |
|
targets_length: an integer - length in tokens of encoded targets sequence |
|
""" |
|
|
|
def _tokens_length_to_inputs_length_targets_length(tokens_length): |
|
num_noise_tokens = int(round(tokens_length * noise_density)) |
|
num_nonnoise_tokens = tokens_length - num_noise_tokens |
|
num_noise_spans = int(round(num_noise_tokens / mean_noise_span_length)) |
|
|
|
|
|
_input_length = num_nonnoise_tokens + num_noise_spans + 1 |
|
_output_length = num_noise_tokens + num_noise_spans + 1 |
|
return _input_length, _output_length |
|
|
|
tokens_length = inputs_length |
|
|
|
while _tokens_length_to_inputs_length_targets_length(tokens_length + 1)[0] <= inputs_length: |
|
tokens_length += 1 |
|
|
|
inputs_length, targets_length = _tokens_length_to_inputs_length_targets_length(tokens_length) |
|
|
|
|
|
|
|
if noise_density == 0.5 and targets_length > inputs_length: |
|
tokens_length -= 1 |
|
targets_length -= 1 |
|
return tokens_length, targets_length |
|
|
|
|
|
@flax.struct.dataclass |
|
class FlaxDataCollatorForT5MLM: |
|
""" |
|
Data collator used for T5 span-masked language modeling. |
|
It is made sure that after masking the inputs are of length `data_args.max_seq_length` and targets are also of fixed length. |
|
For more information on how T5 span-masked language modeling works, one can take a look |
|
at the `official paper <https://arxiv.org/pdf/1910.10683.pdf>`__ |
|
or the `official code for preprocessing <https://github.com/google-research/text-to-text-transfer-transformer/blob/master/t5/data/preprocessors.py>`__ . |
|
Args: |
|
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`): |
|
The tokenizer used for encoding the data. |
|
noise_density (:obj:`float`): |
|
The probability with which to (randomly) mask tokens in the input. |
|
mean_noise_span_length (:obj:`float`): |
|
The average span length of the masked tokens. |
|
input_length (:obj:`int`): |
|
The expected input length after masking. |
|
target_length (:obj:`int`): |
|
The expected target length after masking. |
|
pad_token_id: (:obj:`int`): |
|
The pad token id of the model |
|
decoder_start_token_id: (:obj:`int): |
|
The decoder start token id of the model |
|
""" |
|
|
|
tokenizer: PreTrainedTokenizerBase |
|
noise_density: float |
|
mean_noise_span_length: float |
|
input_length: int |
|
target_length: int |
|
pad_token_id: int |
|
decoder_start_token_id: int |
|
|
|
def __call__(self, examples: Dict[str, np.ndarray]) -> BatchEncoding: |
|
|
|
batch = BatchEncoding( |
|
{k: np.array(examples[k]) for k in examples.keys()} |
|
) |
|
input_ids = batch['input_ids'] |
|
batch_size, expandend_input_length = input_ids.shape |
|
|
|
mask_indices = np.asarray([self.random_spans_noise_mask(expandend_input_length) for i in range(batch_size)]) |
|
labels_mask = ~mask_indices |
|
|
|
input_ids_sentinel = self.create_sentinel_ids(mask_indices.astype(np.int8)) |
|
labels_sentinel = self.create_sentinel_ids(labels_mask.astype(np.int8)) |
|
|
|
batch["input_ids"] = self.filter_input_ids(input_ids, input_ids_sentinel) |
|
batch["labels"] = self.filter_input_ids(input_ids, labels_sentinel) |
|
|
|
if batch["input_ids"].shape[-1] != self.input_length: |
|
raise ValueError( |
|
f"`input_ids` are incorrectly preprocessed. `input_ids` length is {batch['input_ids'].shape[-1]}, but should be {self.target_length}." |
|
) |
|
|
|
if batch["labels"].shape[-1] != self.target_length: |
|
raise ValueError( |
|
f"`labels` are incorrectly preprocessed. `labels` length is {batch['labels'].shape[-1]}, but should be {self.target_length}." |
|
) |
|
|
|
|
|
batch["decoder_input_ids"] = shift_tokens_right( |
|
batch["labels"], self.pad_token_id, self.decoder_start_token_id |
|
) |
|
|
|
return batch |
|
|
|
def create_sentinel_ids(self, mask_indices): |
|
""" |
|
Sentinel ids creation given the indices that should be masked. |
|
The start indices of each mask are replaced by the sentinel ids in increasing |
|
order. Consecutive mask indices to be deleted are replaced with `-1`. |
|
""" |
|
start_indices = mask_indices - np.roll(mask_indices, 1, axis=-1) * mask_indices |
|
start_indices[:, 0] = mask_indices[:, 0] |
|
|
|
sentinel_ids = np.where(start_indices != 0, np.cumsum(start_indices, axis=-1), start_indices) |
|
sentinel_ids = np.where(sentinel_ids != 0, (sentinel_ids + self.tokenizer.vocab_size - 1), 0) |
|
sentinel_ids -= mask_indices - start_indices |
|
|
|
return sentinel_ids |
|
|
|
def filter_input_ids(self, input_ids, sentinel_ids): |
|
""" |
|
Puts sentinel mask on `input_ids` and fuse consecutive mask tokens into a single mask token by deleting. |
|
This will reduce the sequence length from `expanded_inputs_length` to `input_length`. |
|
""" |
|
batch_size = input_ids.shape[0] |
|
|
|
input_ids_full = np.where(sentinel_ids != 0, sentinel_ids, input_ids) |
|
input_ids = input_ids_full[input_ids_full > 0].reshape((batch_size, -1)) |
|
input_ids = np.concatenate( |
|
[input_ids, np.full((batch_size, 1), self.tokenizer.eos_token_id, dtype=np.int32)], axis=-1 |
|
) |
|
return input_ids |
|
|
|
def random_spans_noise_mask(self, length): |
|
|
|
"""This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2682>`__ . |
|
Noise mask consisting of random spans of noise tokens. |
|
The number of noise tokens and the number of noise spans and non-noise spans |
|
are determined deterministically as follows: |
|
num_noise_tokens = round(length * noise_density) |
|
num_nonnoise_spans = num_noise_spans = round(num_noise_tokens / mean_noise_span_length) |
|
Spans alternate between non-noise and noise, beginning with non-noise. |
|
Subject to the above restrictions, all masks are equally likely. |
|
Args: |
|
length: an int32 scalar (length of the incoming token sequence) |
|
noise_density: a float - approximate density of output mask |
|
mean_noise_span_length: a number |
|
Returns: |
|
a boolean tensor with shape [length] |
|
""" |
|
|
|
orig_length = length |
|
|
|
num_noise_tokens = int(np.round(length * self.noise_density)) |
|
|
|
num_noise_tokens = min(max(num_noise_tokens, 1), length - 1) |
|
num_noise_spans = int(np.round(num_noise_tokens / self.mean_noise_span_length)) |
|
|
|
|
|
num_noise_spans = max(num_noise_spans, 1) |
|
num_nonnoise_tokens = length - num_noise_tokens |
|
|
|
|
|
def _random_segmentation(num_items, num_segments): |
|
"""Partition a sequence of items randomly into non-empty segments. |
|
Args: |
|
num_items: an integer scalar > 0 |
|
num_segments: an integer scalar in [1, num_items] |
|
Returns: |
|
a Tensor with shape [num_segments] containing positive integers that add |
|
up to num_items |
|
""" |
|
mask_indices = np.arange(num_items - 1) < (num_segments - 1) |
|
np.random.shuffle(mask_indices) |
|
first_in_segment = np.pad(mask_indices, [[1, 0]]) |
|
segment_id = np.cumsum(first_in_segment) |
|
|
|
_, segment_length = np.unique(segment_id, return_counts=True) |
|
return segment_length |
|
|
|
noise_span_lengths = _random_segmentation(num_noise_tokens, num_noise_spans) |
|
nonnoise_span_lengths = _random_segmentation(num_nonnoise_tokens, num_noise_spans) |
|
|
|
interleaved_span_lengths = np.reshape( |
|
np.stack([nonnoise_span_lengths, noise_span_lengths], axis=1), [num_noise_spans * 2] |
|
) |
|
span_starts = np.cumsum(interleaved_span_lengths)[:-1] |
|
span_start_indicator = np.zeros((length,), dtype=np.int8) |
|
span_start_indicator[span_starts] = True |
|
span_num = np.cumsum(span_start_indicator) |
|
is_noise = np.equal(span_num % 2, 1) |
|
|
|
return is_noise[:orig_length] |
|
|
|
|
|
def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray: |
|
num_samples = len(samples_idx) |
|
samples_to_remove = num_samples % batch_size |
|
|
|
if samples_to_remove != 0: |
|
samples_idx = samples_idx[:-samples_to_remove] |
|
sections_split = num_samples // batch_size |
|
batch_idx = np.split(samples_idx, sections_split) |
|
return batch_idx |
|
|
|
|
|
def advance_iter_and_group_samples(train_iterator, num_samples, max_seq_length): |
|
""" |
|
The training iterator is advanced so that after groupifying the samples, |
|
`num_samples` of length `max_seq_length` are returned. |
|
""" |
|
num_total_tokens = max_seq_length * num_samples |
|
samples = defaultdict(list) |
|
|
|
i = 0 |
|
while i < num_total_tokens: |
|
tokenized_samples = next(train_iterator) |
|
i += len(tokenized_samples["input_ids"]) |
|
|
|
|
|
samples = {k: samples[k] + tokenized_samples[k] for k in tokenized_samples.keys()} |
|
|
|
|
|
|
|
def group_texts(examples): |
|
result = { |
|
k: [t[i : i + max_seq_length] for i in range(0, num_total_tokens, max_seq_length)] |
|
for k, t in examples.items() |
|
} |
|
return result |
|
|
|
grouped_samples = group_texts(samples) |
|
return grouped_samples |
|
|
|
|
|
def write_train_metric(summary_writer, train_metrics, train_time, step): |
|
summary_writer.scalar("train_time", train_time, step) |
|
|
|
train_metrics = get_metrics(train_metrics) |
|
for key, vals in train_metrics.items(): |
|
tag = f"train_{key}" |
|
for i, val in enumerate(vals): |
|
summary_writer.scalar(tag, val, step - len(vals) + i + 1) |
|
|
|
|
|
def write_eval_metric(summary_writer, eval_metrics, step): |
|
for metric_name, value in eval_metrics.items(): |
|
summary_writer.scalar(f"eval_{metric_name}", value, step) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
if ( |
|
os.path.exists(training_args.output_dir) |
|
and os.listdir(training_args.output_dir) |
|
and training_args.do_train |
|
and not training_args.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty." |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
level="INFO", |
|
datefmt="[%X]", |
|
) |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
|
|
|
|
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.dataset_name is not None: |
|
|
|
datasets = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
cache_dir=model_args.cache_dir, |
|
streaming=True, |
|
split="train" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if model_args.tokenizer_name: |
|
tokenizer = T5TokenizerFast.from_pretrained( |
|
model_args.tokenizer_name, |
|
cache_dir=model_args.cache_dir, |
|
use_fast=model_args.use_fast_tokenizer, |
|
use_auth_token=model_args.auth_token |
|
) |
|
elif model_args.model_name_or_path: |
|
tokenizer = T5TokenizerFast.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
use_fast=model_args.use_fast_tokenizer, |
|
use_auth_token=model_args.auth_token |
|
) |
|
else: |
|
raise ValueError( |
|
"You are instantiating a new tokenizer from scratch. This is not supported by this script." |
|
"You can do it from another script, save it, and load it from here, using --tokenizer_name." |
|
) |
|
|
|
if model_args.config_name: |
|
config = T5Config.from_pretrained( |
|
model_args.config_name, cache_dir=model_args.cache_dir, vocab_size=len(tokenizer) |
|
) |
|
elif model_args.model_name_or_path: |
|
config = T5Config.from_pretrained( |
|
model_args.model_name_or_path, cache_dir=model_args.cache_dir, vocab_size=len(tokenizer) |
|
) |
|
else: |
|
config = CONFIG_MAPPING[model_args.model_type]() |
|
logger.warning("You are instantiating a new config instance from scratch.") |
|
|
|
|
|
|
|
|
|
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) |
|
|
|
|
|
|
|
def tokenize_function(examples): |
|
return tokenizer(examples[data_args.text_column_name], return_attention_mask=False) |
|
|
|
tokenized_datasets = datasets.map( |
|
tokenize_function, |
|
batched=True |
|
) |
|
|
|
|
|
|
|
|
|
expanded_inputs_length, targets_length = compute_input_and_target_lengths( |
|
inputs_length=max_seq_length, |
|
noise_density=data_args.mlm_probability, |
|
mean_noise_span_length=data_args.mean_noise_span_length, |
|
) |
|
|
|
shuffle_seed = training_args.seed |
|
tokenized_datasets = tokenized_datasets.shuffle(buffer_size=data_args.shuffle_buffer_size, seed=shuffle_seed) |
|
|
|
|
|
has_tensorboard = is_tensorboard_available() |
|
if has_tensorboard and jax.process_index() == 0: |
|
try: |
|
from flax.metrics.tensorboard import SummaryWriter |
|
|
|
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) |
|
except ImportError as ie: |
|
has_tensorboard = False |
|
logger.warning( |
|
f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" |
|
) |
|
else: |
|
logger.warning( |
|
"Unable to display metrics through TensorBoard because the package is not installed: " |
|
"Please run pip install tensorboard to enable." |
|
) |
|
|
|
|
|
rng = jax.random.PRNGKey(training_args.seed) |
|
dropout_rngs = jax.random.split(rng, jax.local_device_count()) |
|
|
|
|
|
|
|
|
|
if model_args.model_name_or_path: |
|
model = FlaxT5ForConditionalGeneration.from_pretrained( |
|
model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) |
|
) |
|
else: |
|
model = FlaxT5ForConditionalGeneration.from_pretrained( |
|
config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) |
|
) |
|
|
|
|
|
|
|
|
|
data_collator = FlaxDataCollatorForT5MLM( |
|
tokenizer=tokenizer, |
|
noise_density=data_args.mlm_probability, |
|
mean_noise_span_length=data_args.mean_noise_span_length, |
|
input_length=max_seq_length, |
|
target_length=targets_length, |
|
pad_token_id=model.config.pad_token_id, |
|
decoder_start_token_id=model.config.decoder_start_token_id, |
|
) |
|
|
|
|
|
num_epochs = int(training_args.num_train_epochs) |
|
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() |
|
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() |
|
|
|
num_train_steps = data_args.num_train_steps |
|
|
|
|
|
warmup_fn = optax.linear_schedule( |
|
init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps |
|
) |
|
decay_fn = optax.linear_schedule( |
|
init_value=training_args.learning_rate, |
|
end_value=0, |
|
transition_steps=num_train_steps - training_args.warmup_steps, |
|
) |
|
linear_decay_lr_schedule_fn = optax.join_schedules( |
|
schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps] |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def decay_mask_fn(params): |
|
flat_params = traverse_util.flatten_dict(params) |
|
flat_mask = { |
|
path: (path[-1] != "bias" and path[-2:] not in [("layer_norm", "scale"), ("final_layer_norm", "scale")]) |
|
for path in flat_params |
|
} |
|
return traverse_util.unflatten_dict(flat_mask) |
|
|
|
|
|
if training_args.adafactor: |
|
|
|
|
|
optimizer = optax.adafactor( |
|
learning_rate=linear_decay_lr_schedule_fn, |
|
) |
|
else: |
|
optimizer = optax.adamw( |
|
learning_rate=linear_decay_lr_schedule_fn, |
|
b1=training_args.adam_beta1, |
|
b2=training_args.adam_beta2, |
|
weight_decay=training_args.weight_decay, |
|
mask=decay_mask_fn, |
|
) |
|
|
|
|
|
state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer) |
|
|
|
|
|
def train_step(state, batch, dropout_rng): |
|
dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) |
|
|
|
def loss_fn(params): |
|
labels = batch.pop("labels") |
|
|
|
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] |
|
|
|
|
|
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean() |
|
|
|
return loss |
|
|
|
grad_fn = jax.value_and_grad(loss_fn) |
|
loss, grad = grad_fn(state.params) |
|
grad = jax.lax.pmean(grad, "batch") |
|
new_state = state.apply_gradients(grads=grad) |
|
|
|
metrics = jax.lax.pmean( |
|
{"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch" |
|
) |
|
|
|
return new_state, metrics, new_dropout_rng |
|
|
|
|
|
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) |
|
|
|
|
|
def eval_step(params, batch): |
|
labels = batch.pop("labels") |
|
|
|
logits = model(**batch, params=params, train=False)[0] |
|
|
|
|
|
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) |
|
|
|
|
|
accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels) |
|
|
|
|
|
metrics = {"loss": loss.mean(), "accuracy": accuracy.mean()} |
|
metrics = jax.lax.pmean(metrics, axis_name="batch") |
|
|
|
return metrics |
|
|
|
p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,)) |
|
|
|
|
|
state = jax_utils.replicate(state) |
|
|
|
train_time = 0 |
|
train_start = time.time() |
|
train_metrics = [] |
|
eval_metrics = [] |
|
|
|
training_iter = iter(tokenized_datasets) |
|
|
|
eval_samples = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, expanded_inputs_length) |
|
|
|
steps = tqdm(range(num_train_steps), desc="Training...", position=0) |
|
for step in range(num_train_steps): |
|
|
|
try: |
|
samples = advance_iter_and_group_samples(training_iter, train_batch_size, expanded_inputs_length) |
|
except StopIteration: |
|
|
|
|
|
shuffle_seed += 1 |
|
tokenized_datasets.set_epoch(shuffle_seed) |
|
|
|
training_iter = iter(tokenized_datasets) |
|
|
|
eval_dataset = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, expanded_inputs_length) |
|
samples = advance_iter_and_group_samples(training_iter, train_batch_size, expanded_inputs_length) |
|
|
|
|
|
model_inputs = data_collator(samples) |
|
model_inputs = shard(model_inputs.data) |
|
state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs) |
|
train_metrics.append(train_metric) |
|
|
|
if step % training_args.logging_steps == 0 and step > 0: |
|
train_metric = jax_utils.unreplicate(train_metric) |
|
steps.write( |
|
f"Step... ({step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})" |
|
) |
|
train_time += time.time() - train_start |
|
if has_tensorboard and jax.process_index() == 0: |
|
write_train_metric(summary_writer, train_metrics, train_time, step) |
|
train_metrics = [] |
|
|
|
if step % training_args.eval_steps == 0 and step > 0: |
|
eval_samples_idx = jnp.arange(data_args.num_eval_samples) |
|
eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size) |
|
|
|
for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=1)): |
|
|
|
batch_eval_samples = {k: [v[idx] for idx in batch_idx] for k, v in eval_samples.items()} |
|
model_inputs = data_collator(batch_eval_samples) |
|
|
|
|
|
model_inputs = shard(model_inputs.data) |
|
metrics = p_eval_step(state.params, model_inputs) |
|
eval_metrics.append(metrics) |
|
|
|
|
|
eval_metrics = get_metrics(eval_metrics) |
|
eval_metrics = jax.tree_map(jnp.sum, eval_metrics) |
|
|
|
|
|
steps.desc = f"Step... ({step + 1}/{num_train_steps} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})" |
|
|
|
if has_tensorboard and jax.process_index() == 0: |
|
write_eval_metric(summary_writer, eval_metrics, step) |
|
eval_metrics = [] |
|
|
|
if step % training_args.save_steps == 0 and step > 0: |
|
|
|
if jax.process_index() == 0: |
|
params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) |
|
model.save_pretrained( |
|
training_args.output_dir, |
|
params=params, |
|
push_to_hub=training_args.push_to_hub, |
|
commit_message=f"Saving weights and logs of step {step+1}", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
steps.update(1) |
|
|
|
|