pere commited on
Commit
23c8cf2
1 Parent(s): 6e16ce1

changed README

Browse files
README.md CHANGED
@@ -15,28 +15,29 @@ Currently the model is training. It is expected that it should be finished by th
15
 
16
  The following setting were used in training:
17
  ```bash
18
- ./run_t5_mlm_flax.py \
19
  --output_dir="./" \
20
  --model_type="t5" \
21
  --config_name="./" \
22
  --tokenizer_name="./" \
23
- --train_file /mnt/disks/flaxdisk/corpus/norwegian_colossal_corpus_train.json \
24
- --validation_file /mnt/disks/flaxdisk/corpus/norwegian_colossal_corpus_validation.json \
25
- --max_seq_length="128" \
26
  --weight_decay="0.01" \
27
- --per_device_train_batch_size="128" \
28
- --per_device_eval_batch_size="128" \
29
  --learning_rate="8e-3" \
30
- --warmup_steps="2000" \
31
  --overwrite_output_dir \
32
  --cache_dir /mnt/disks/flaxdisk/cache/ \
33
- --num_train_epochs="3" \
34
  --adam_beta1="0.9" \
35
  --adam_beta2="0.98" \
36
- --logging_steps="100" \
37
- --save_steps="2500" \
38
- --eval_steps="2500" \
 
 
39
  --preprocessing_num_workers 96 \
40
  --adafactor \
41
  --push_to_hub
42
- ```
 
15
 
16
  The following setting were used in training:
17
  ```bash
18
+ ./run_t5_mlm_flax_streaming.py \
19
  --output_dir="./" \
20
  --model_type="t5" \
21
  --config_name="./" \
22
  --tokenizer_name="./" \
23
+ --dataset_name="pere/norwegian_colossal_corpus_v2_short100k" \
24
+ --max_seq_length="512" \
 
25
  --weight_decay="0.01" \
26
+ --per_device_train_batch_size="32" \
27
+ --per_device_eval_batch_size="32" \
28
  --learning_rate="8e-3" \
29
+ --warmup_steps="5000" \
30
  --overwrite_output_dir \
31
  --cache_dir /mnt/disks/flaxdisk/cache/ \
32
+ --num_train_epochs="5" \
33
  --adam_beta1="0.9" \
34
  --adam_beta2="0.98" \
35
+ --logging_steps="500" \
36
+ --num_train_steps="1000000" \
37
+ --num_eval_samples="5000" \
38
+ --save_steps="5000" \
39
+ --eval_steps="5000" \
40
  --preprocessing_num_workers 96 \
41
  --adafactor \
42
  --push_to_hub
43
+ ```
events.out.tfevents.1628276093.t1v-n-1a0a7c50-w-0.1590501.3.v2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c0d3a5c92f2fe2957520468ab05b91b066470122ff1601cb094a5d4a9269a0a
3
+ size 40
run_streaming.sh CHANGED
@@ -16,7 +16,7 @@
16
  --adam_beta1="0.9" \
17
  --adam_beta2="0.98" \
18
  --logging_steps="500" \
19
- --num_train_steps="500000" \
20
  --num_eval_samples="5000" \
21
  --save_steps="5000" \
22
  --eval_steps="5000" \
 
16
  --adam_beta1="0.9" \
17
  --adam_beta2="0.98" \
18
  --logging_steps="500" \
19
+ --num_train_steps="1000000" \
20
  --num_eval_samples="5000" \
21
  --save_steps="5000" \
22
  --eval_steps="5000" \
run_streaming_fix.sh DELETED
@@ -1,26 +0,0 @@
1
- ./run_t5_mlm_flax_streaming.py \
2
- --output_dir="./" \
3
- --model_type="t5" \
4
- --config_name="./" \
5
- --tokenizer_name="./" \
6
- --dataset_name="pere/norwegian_colossal_corpus_v2_short100k" \
7
- --max_seq_length="512" \
8
- --weight_decay="0.01" \
9
- --per_device_train_batch_size="32" \
10
- --per_device_eval_batch_size="32" \
11
- --learning_rate="8e-3" \
12
- --warmup_steps="5000" \
13
- --overwrite_output_dir \
14
- --cache_dir /mnt/disks/flaxdisk/cache/ \
15
- --num_train_epochs="5" \
16
- --adam_beta1="0.9" \
17
- --adam_beta2="0.98" \
18
- --logging_steps="500" \
19
- --num_train_steps="1000000" \
20
- --num_eval_samples="5000" \
21
- --save_steps="5000" \
22
- --eval_steps="5000" \
23
- --preprocessing_num_workers 96 \
24
- --adafactor \
25
- --push_to_hub
26
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
run_t5_mlm_flax_streaming.py CHANGED
@@ -227,7 +227,7 @@ class FlaxDataCollatorForT5MLM:
227
  decoder_start_token_id: int
228
 
229
  def __call__(self, examples: Dict[str, np.ndarray]) -> BatchEncoding:
230
-
231
  batch = BatchEncoding(
232
  {k: np.array(examples[k]) for k in examples.keys()}
233
  )
@@ -332,7 +332,8 @@ class FlaxDataCollatorForT5MLM:
332
  np.random.shuffle(mask_indices)
333
  first_in_segment = np.pad(mask_indices, [[1, 0]])
334
  segment_id = np.cumsum(first_in_segment)
335
- segment_length = np.asarray(jax.ops.segment_sum(np.ones_like(segment_id), segment_id))
 
336
  return segment_length
337
 
338
  noise_span_lengths = _random_segmentation(num_noise_tokens, num_noise_spans)
@@ -458,8 +459,8 @@ if __name__ == "__main__":
458
  if data_args.dataset_name is not None:
459
  # Downloading and loading a dataset from the hub.
460
  datasets = load_dataset(
461
- data_args.dataset_name,
462
- data_args.dataset_config_name,
463
  cache_dir=model_args.cache_dir,
464
  streaming=True,
465
  split="train"
@@ -472,15 +473,15 @@ if __name__ == "__main__":
472
 
473
  if model_args.tokenizer_name:
474
  tokenizer = T5TokenizerFast.from_pretrained(
475
- model_args.tokenizer_name,
476
- cache_dir=model_args.cache_dir,
477
  use_fast=model_args.use_fast_tokenizer,
478
  use_auth_token=model_args.auth_token
479
  )
480
  elif model_args.model_name_or_path:
481
  tokenizer = T5TokenizerFast.from_pretrained(
482
- model_args.model_name_or_path,
483
- cache_dir=model_args.cache_dir,
484
  use_fast=model_args.use_fast_tokenizer,
485
  use_auth_token=model_args.auth_token
486
  )
@@ -759,3 +760,4 @@ if __name__ == "__main__":
759
 
760
  # update tqdm bar
761
  steps.update(1)
 
 
227
  decoder_start_token_id: int
228
 
229
  def __call__(self, examples: Dict[str, np.ndarray]) -> BatchEncoding:
230
+
231
  batch = BatchEncoding(
232
  {k: np.array(examples[k]) for k in examples.keys()}
233
  )
 
332
  np.random.shuffle(mask_indices)
333
  first_in_segment = np.pad(mask_indices, [[1, 0]])
334
  segment_id = np.cumsum(first_in_segment)
335
+ # count length of sub segments assuming that list is sorted
336
+ _, segment_length = np.unique(segment_id, return_counts=True)
337
  return segment_length
338
 
339
  noise_span_lengths = _random_segmentation(num_noise_tokens, num_noise_spans)
 
459
  if data_args.dataset_name is not None:
460
  # Downloading and loading a dataset from the hub.
461
  datasets = load_dataset(
462
+ data_args.dataset_name,
463
+ data_args.dataset_config_name,
464
  cache_dir=model_args.cache_dir,
465
  streaming=True,
466
  split="train"
 
473
 
474
  if model_args.tokenizer_name:
475
  tokenizer = T5TokenizerFast.from_pretrained(
476
+ model_args.tokenizer_name,
477
+ cache_dir=model_args.cache_dir,
478
  use_fast=model_args.use_fast_tokenizer,
479
  use_auth_token=model_args.auth_token
480
  )
481
  elif model_args.model_name_or_path:
482
  tokenizer = T5TokenizerFast.from_pretrained(
483
+ model_args.model_name_or_path,
484
+ cache_dir=model_args.cache_dir,
485
  use_fast=model_args.use_fast_tokenizer,
486
  use_auth_token=model_args.auth_token
487
  )
 
760
 
761
  # update tqdm bar
762
  steps.update(1)
763
+
run_t5_mlm_flax_streaming_fix.py DELETED
@@ -1,763 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding=utf-8
3
- # Copyright 2021 The HuggingFace Team All rights reserved.
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
- """
17
- Pretraining with T5-like span-masked language modeling on a streaming dataset.
18
- Here is the full list of checkpoints on the hub that can be pretrained by this script:
19
- https://huggingface.co/models?filter=t5
20
- """
21
- import logging
22
- import os
23
- import sys
24
- import time
25
- from collections import defaultdict
26
- from dataclasses import dataclass, field
27
- from pathlib import Path
28
- from typing import Dict, Optional
29
-
30
- import datasets
31
- import numpy as np
32
- from datasets import load_dataset
33
- from tqdm import tqdm
34
-
35
- import flax
36
- import jax
37
- import jax.numpy as jnp
38
- import optax
39
- from flax import jax_utils, traverse_util
40
- from flax.training import train_state
41
- from flax.training.common_utils import get_metrics, onehot, shard
42
- from transformers import (
43
- CONFIG_MAPPING,
44
- FLAX_MODEL_FOR_MASKED_LM_MAPPING,
45
- BatchEncoding,
46
- FlaxT5ForConditionalGeneration,
47
- HfArgumentParser,
48
- PreTrainedTokenizerBase,
49
- T5Config,
50
- T5TokenizerFast,
51
- TrainingArguments,
52
- is_tensorboard_available,
53
- set_seed,
54
- )
55
- from transformers.models.t5.modeling_flax_t5 import shift_tokens_right
56
-
57
- #if datasets.__version__ <= "1.8.0":
58
- # raise ValueError("Make sure to upgrade `datasets` to a version >= 1.9.0 to use dataset streaming")
59
-
60
- MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_MASKED_LM_MAPPING.keys())
61
- MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
62
-
63
-
64
- @dataclass
65
- class ModelArguments:
66
- """
67
- Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
68
- """
69
-
70
- model_name_or_path: Optional[str] = field(
71
- default=None,
72
- metadata={
73
- "help": "The model checkpoint for weights initialization."
74
- "Don't set if you want to train a model from scratch."
75
- },
76
- )
77
- model_type: Optional[str] = field(
78
- default=None,
79
- metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
80
- )
81
- config_name: Optional[str] = field(
82
- default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
83
- )
84
- tokenizer_name: Optional[str] = field(
85
- default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
86
- )
87
- cache_dir: Optional[str] = field(
88
- default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
89
- )
90
- use_fast_tokenizer: bool = field(
91
- default=True,
92
- metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
93
- )
94
- dtype: Optional[str] = field(
95
- default="float32",
96
- metadata={
97
- "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
98
- },
99
- )
100
- auth_token: Optional[str] = field(
101
- default=None,
102
- metadata={
103
- "help": "Auth token for private repositories on the Huggingface Hub"
104
- }
105
- )
106
-
107
-
108
- @dataclass
109
- class DataTrainingArguments:
110
- """
111
- Arguments pertaining to what data we are going to input our model for training and eval.
112
- """
113
-
114
- dataset_name: Optional[str] = field(
115
- default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
116
- )
117
- dataset_config_name: Optional[str] = field(
118
- default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
119
- )
120
- max_seq_length: Optional[int] = field(
121
- default=None,
122
- metadata={
123
- "help": "The maximum total input sequence length after tokenization and masking. Sequences longer than this will be truncated. Default to the max input length of the model."
124
- },
125
- )
126
- preprocessing_num_workers: Optional[int] = field(
127
- default=None,
128
- metadata={"help": "The number of processes to use for the preprocessing."},
129
- )
130
- mlm_probability: float = field(
131
- default=0.15, metadata={"help": "Ratio of tokens to mask for span masked language modeling loss"}
132
- )
133
- mean_noise_span_length: float = field(
134
- default=3.0,
135
- metadata={"help": "Mean span length of masked tokens"},
136
- )
137
- text_column_name: str = field(
138
- default="text", metadata={"help": "The name of the column to retrieve the training text."}
139
- )
140
- shuffle_buffer_size: int = field(
141
- default=10000, metadata={"help": "The number of examples to pre-load for shuffling."}
142
- )
143
- num_train_steps: int = field(default=50000, metadata={"help": "The number of training steps."})
144
- num_eval_samples: int = field(default=50000, metadata={"help": "The number of samples to be used for evaluation"})
145
-
146
- def __post_init__(self):
147
- if self.dataset_name is None:
148
- raise ValueError("Need a dataset name for streaming.")
149
-
150
-
151
- def compute_input_and_target_lengths(inputs_length, noise_density, mean_noise_span_length):
152
- """This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2466>`__ .
153
- Training parameters to avoid padding with random_spans_noise_mask.
154
- When training a model with random_spans_noise_mask, we would like to set the other
155
- training hyperparmeters in a way that avoids padding.
156
- This function helps us compute these hyperparameters.
157
- We assume that each noise span in the input is replaced by extra_tokens_per_span_inputs sentinel tokens,
158
- and each non-noise span in the targets is replaced by extra_tokens_per_span_targets sentinel tokens.
159
- This function tells us the required number of tokens in the raw example (for split_tokens())
160
- as well as the length of the encoded targets. Note that this function assumes
161
- the inputs and targets will have EOS appended and includes that in the reported length.
162
- Args:
163
- inputs_length: an integer - desired length of the tokenized inputs sequence
164
- noise_density: a float
165
- mean_noise_span_length: a float
166
- Returns:
167
- tokens_length: length of original text in tokens
168
- targets_length: an integer - length in tokens of encoded targets sequence
169
- """
170
-
171
- def _tokens_length_to_inputs_length_targets_length(tokens_length):
172
- num_noise_tokens = int(round(tokens_length * noise_density))
173
- num_nonnoise_tokens = tokens_length - num_noise_tokens
174
- num_noise_spans = int(round(num_noise_tokens / mean_noise_span_length))
175
- # inputs contain all nonnoise tokens, sentinels for all noise spans
176
- # and one EOS token.
177
- _input_length = num_nonnoise_tokens + num_noise_spans + 1
178
- _output_length = num_noise_tokens + num_noise_spans + 1
179
- return _input_length, _output_length
180
-
181
- tokens_length = inputs_length
182
-
183
- while _tokens_length_to_inputs_length_targets_length(tokens_length + 1)[0] <= inputs_length:
184
- tokens_length += 1
185
-
186
- inputs_length, targets_length = _tokens_length_to_inputs_length_targets_length(tokens_length)
187
-
188
- # minor hack to get the targets length to be equal to inputs length
189
- # which is more likely to have been set to a nice round number.
190
- if noise_density == 0.5 and targets_length > inputs_length:
191
- tokens_length -= 1
192
- targets_length -= 1
193
- return tokens_length, targets_length
194
-
195
-
196
- @flax.struct.dataclass
197
- class FlaxDataCollatorForT5MLM:
198
- """
199
- Data collator used for T5 span-masked language modeling.
200
- It is made sure that after masking the inputs are of length `data_args.max_seq_length` and targets are also of fixed length.
201
- For more information on how T5 span-masked language modeling works, one can take a look
202
- at the `official paper <https://arxiv.org/pdf/1910.10683.pdf>`__
203
- or the `official code for preprocessing <https://github.com/google-research/text-to-text-transfer-transformer/blob/master/t5/data/preprocessors.py>`__ .
204
- Args:
205
- tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
206
- The tokenizer used for encoding the data.
207
- noise_density (:obj:`float`):
208
- The probability with which to (randomly) mask tokens in the input.
209
- mean_noise_span_length (:obj:`float`):
210
- The average span length of the masked tokens.
211
- input_length (:obj:`int`):
212
- The expected input length after masking.
213
- target_length (:obj:`int`):
214
- The expected target length after masking.
215
- pad_token_id: (:obj:`int`):
216
- The pad token id of the model
217
- decoder_start_token_id: (:obj:`int):
218
- The decoder start token id of the model
219
- """
220
-
221
- tokenizer: PreTrainedTokenizerBase
222
- noise_density: float
223
- mean_noise_span_length: float
224
- input_length: int
225
- target_length: int
226
- pad_token_id: int
227
- decoder_start_token_id: int
228
-
229
- def __call__(self, examples: Dict[str, np.ndarray]) -> BatchEncoding:
230
-
231
- batch = BatchEncoding(
232
- {k: np.array(examples[k]) for k in examples.keys()}
233
- )
234
- input_ids = batch['input_ids']
235
- batch_size, expandend_input_length = input_ids.shape
236
-
237
- mask_indices = np.asarray([self.random_spans_noise_mask(expandend_input_length) for i in range(batch_size)])
238
- labels_mask = ~mask_indices
239
-
240
- input_ids_sentinel = self.create_sentinel_ids(mask_indices.astype(np.int8))
241
- labels_sentinel = self.create_sentinel_ids(labels_mask.astype(np.int8))
242
-
243
- batch["input_ids"] = self.filter_input_ids(input_ids, input_ids_sentinel)
244
- batch["labels"] = self.filter_input_ids(input_ids, labels_sentinel)
245
-
246
- if batch["input_ids"].shape[-1] != self.input_length:
247
- raise ValueError(
248
- f"`input_ids` are incorrectly preprocessed. `input_ids` length is {batch['input_ids'].shape[-1]}, but should be {self.target_length}."
249
- )
250
-
251
- if batch["labels"].shape[-1] != self.target_length:
252
- raise ValueError(
253
- f"`labels` are incorrectly preprocessed. `labels` length is {batch['labels'].shape[-1]}, but should be {self.target_length}."
254
- )
255
-
256
- # to check that tokens are correctly proprocessed, one can run `self.tokenizer.batch_decode(input_ids)` and `self.tokenizer.batch_decode(labels)` here...
257
- batch["decoder_input_ids"] = shift_tokens_right(
258
- batch["labels"], self.pad_token_id, self.decoder_start_token_id
259
- )
260
-
261
- return batch
262
-
263
- def create_sentinel_ids(self, mask_indices):
264
- """
265
- Sentinel ids creation given the indices that should be masked.
266
- The start indices of each mask are replaced by the sentinel ids in increasing
267
- order. Consecutive mask indices to be deleted are replaced with `-1`.
268
- """
269
- start_indices = mask_indices - np.roll(mask_indices, 1, axis=-1) * mask_indices
270
- start_indices[:, 0] = mask_indices[:, 0]
271
-
272
- sentinel_ids = np.where(start_indices != 0, np.cumsum(start_indices, axis=-1), start_indices)
273
- sentinel_ids = np.where(sentinel_ids != 0, (sentinel_ids + self.tokenizer.vocab_size - 1), 0)
274
- sentinel_ids -= mask_indices - start_indices
275
-
276
- return sentinel_ids
277
-
278
- def filter_input_ids(self, input_ids, sentinel_ids):
279
- """
280
- Puts sentinel mask on `input_ids` and fuse consecutive mask tokens into a single mask token by deleting.
281
- This will reduce the sequence length from `expanded_inputs_length` to `input_length`.
282
- """
283
- batch_size = input_ids.shape[0]
284
-
285
- input_ids_full = np.where(sentinel_ids != 0, sentinel_ids, input_ids)
286
- input_ids = input_ids_full[input_ids_full > 0].reshape((batch_size, -1))
287
- input_ids = np.concatenate(
288
- [input_ids, np.full((batch_size, 1), self.tokenizer.eos_token_id, dtype=np.int32)], axis=-1
289
- )
290
- return input_ids
291
-
292
- def random_spans_noise_mask(self, length):
293
-
294
- """This function is copy of `random_spans_helper <https://github.com/google-research/text-to-text-transfer-transformer/blob/84f8bcc14b5f2c03de51bd3587609ba8f6bbd1cd/t5/data/preprocessors.py#L2682>`__ .
295
- Noise mask consisting of random spans of noise tokens.
296
- The number of noise tokens and the number of noise spans and non-noise spans
297
- are determined deterministically as follows:
298
- num_noise_tokens = round(length * noise_density)
299
- num_nonnoise_spans = num_noise_spans = round(num_noise_tokens / mean_noise_span_length)
300
- Spans alternate between non-noise and noise, beginning with non-noise.
301
- Subject to the above restrictions, all masks are equally likely.
302
- Args:
303
- length: an int32 scalar (length of the incoming token sequence)
304
- noise_density: a float - approximate density of output mask
305
- mean_noise_span_length: a number
306
- Returns:
307
- a boolean tensor with shape [length]
308
- """
309
-
310
- orig_length = length
311
-
312
- num_noise_tokens = int(np.round(length * self.noise_density))
313
- # avoid degeneracy by ensuring positive numbers of noise and nonnoise tokens.
314
- num_noise_tokens = min(max(num_noise_tokens, 1), length - 1)
315
- num_noise_spans = int(np.round(num_noise_tokens / self.mean_noise_span_length))
316
-
317
- # avoid degeneracy by ensuring positive number of noise spans
318
- num_noise_spans = max(num_noise_spans, 1)
319
- num_nonnoise_tokens = length - num_noise_tokens
320
-
321
- # pick the lengths of the noise spans and the non-noise spans
322
- def _random_segmentation(num_items, num_segments):
323
- """Partition a sequence of items randomly into non-empty segments.
324
- Args:
325
- num_items: an integer scalar > 0
326
- num_segments: an integer scalar in [1, num_items]
327
- Returns:
328
- a Tensor with shape [num_segments] containing positive integers that add
329
- up to num_items
330
- """
331
- mask_indices = np.arange(num_items - 1) < (num_segments - 1)
332
- np.random.shuffle(mask_indices)
333
- first_in_segment = np.pad(mask_indices, [[1, 0]])
334
- segment_id = np.cumsum(first_in_segment)
335
- # count length of sub segments assuming that list is sorted
336
- _, segment_length = np.unique(segment_id, return_counts=True)
337
- return segment_length
338
-
339
- noise_span_lengths = _random_segmentation(num_noise_tokens, num_noise_spans)
340
- nonnoise_span_lengths = _random_segmentation(num_nonnoise_tokens, num_noise_spans)
341
-
342
- interleaved_span_lengths = np.reshape(
343
- np.stack([nonnoise_span_lengths, noise_span_lengths], axis=1), [num_noise_spans * 2]
344
- )
345
- span_starts = np.cumsum(interleaved_span_lengths)[:-1]
346
- span_start_indicator = np.zeros((length,), dtype=np.int8)
347
- span_start_indicator[span_starts] = True
348
- span_num = np.cumsum(span_start_indicator)
349
- is_noise = np.equal(span_num % 2, 1)
350
-
351
- return is_noise[:orig_length]
352
-
353
-
354
- def generate_batch_splits(samples_idx: jnp.ndarray, batch_size: int) -> jnp.ndarray:
355
- num_samples = len(samples_idx)
356
- samples_to_remove = num_samples % batch_size
357
-
358
- if samples_to_remove != 0:
359
- samples_idx = samples_idx[:-samples_to_remove]
360
- sections_split = num_samples // batch_size
361
- batch_idx = np.split(samples_idx, sections_split)
362
- return batch_idx
363
-
364
-
365
- def advance_iter_and_group_samples(train_iterator, num_samples, max_seq_length):
366
- """
367
- The training iterator is advanced so that after groupifying the samples,
368
- `num_samples` of length `max_seq_length` are returned.
369
- """
370
- num_total_tokens = max_seq_length * num_samples
371
- samples = defaultdict(list)
372
-
373
- i = 0
374
- while i < num_total_tokens:
375
- tokenized_samples = next(train_iterator)
376
- i += len(tokenized_samples["input_ids"])
377
-
378
- # concatenate tokenized samples to list
379
- samples = {k: samples[k] + tokenized_samples[k] for k in tokenized_samples.keys()}
380
-
381
- # Concatenated tokens are split to lists of length `max_seq_length`.
382
- # Note that remainedr of % max_seq_length are thrown away.
383
- def group_texts(examples):
384
- result = {
385
- k: [t[i : i + max_seq_length] for i in range(0, num_total_tokens, max_seq_length)]
386
- for k, t in examples.items()
387
- }
388
- return result
389
-
390
- grouped_samples = group_texts(samples)
391
- return grouped_samples
392
-
393
-
394
- def write_train_metric(summary_writer, train_metrics, train_time, step):
395
- summary_writer.scalar("train_time", train_time, step)
396
-
397
- train_metrics = get_metrics(train_metrics)
398
- for key, vals in train_metrics.items():
399
- tag = f"train_{key}"
400
- for i, val in enumerate(vals):
401
- summary_writer.scalar(tag, val, step - len(vals) + i + 1)
402
-
403
-
404
- def write_eval_metric(summary_writer, eval_metrics, step):
405
- for metric_name, value in eval_metrics.items():
406
- summary_writer.scalar(f"eval_{metric_name}", value, step)
407
-
408
-
409
- if __name__ == "__main__":
410
- # See all possible arguments in src/transformers/training_args.py
411
- # or by passing the --help flag to this script.
412
- # We now keep distinct sets of args, for a cleaner separation of concerns.
413
-
414
- parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
415
- if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
416
- # If we pass only one argument to the script and it's the path to a json file,
417
- # let's parse it to get our arguments.
418
- model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
419
- else:
420
- model_args, data_args, training_args = parser.parse_args_into_dataclasses()
421
-
422
- if (
423
- os.path.exists(training_args.output_dir)
424
- and os.listdir(training_args.output_dir)
425
- and training_args.do_train
426
- and not training_args.overwrite_output_dir
427
- ):
428
- raise ValueError(
429
- f"Output directory ({training_args.output_dir}) already exists and is not empty."
430
- "Use --overwrite_output_dir to overcome."
431
- )
432
-
433
- # Setup logging
434
- logging.basicConfig(
435
- format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
436
- level="INFO",
437
- datefmt="[%X]",
438
- )
439
-
440
- # Log on each process the small summary:
441
- logger = logging.getLogger(__name__)
442
- #logger.warning(
443
- # f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
444
- # + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
445
- #)
446
-
447
- # Set the verbosity to info of the Transformers logger (on main process only):
448
- logger.info(f"Training/evaluation parameters {training_args}")
449
-
450
- # Set seed before initializing model.
451
- set_seed(training_args.seed)
452
-
453
- # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
454
- # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
455
- # (the dataset will be downloaded automatically from the datasets Hub).
456
- #
457
- # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
458
- # 'text' is found. You can easily tweak this behavior (see below).
459
- if data_args.dataset_name is not None:
460
- # Downloading and loading a dataset from the hub.
461
- datasets = load_dataset(
462
- data_args.dataset_name,
463
- data_args.dataset_config_name,
464
- cache_dir=model_args.cache_dir,
465
- streaming=True,
466
- split="train"
467
- )
468
-
469
- # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
470
- # https://huggingface.co/docs/datasets/loading_datasets.html.
471
-
472
- # Load pretrained model and tokenizer
473
-
474
- if model_args.tokenizer_name:
475
- tokenizer = T5TokenizerFast.from_pretrained(
476
- model_args.tokenizer_name,
477
- cache_dir=model_args.cache_dir,
478
- use_fast=model_args.use_fast_tokenizer,
479
- use_auth_token=model_args.auth_token
480
- )
481
- elif model_args.model_name_or_path:
482
- tokenizer = T5TokenizerFast.from_pretrained(
483
- model_args.model_name_or_path,
484
- cache_dir=model_args.cache_dir,
485
- use_fast=model_args.use_fast_tokenizer,
486
- use_auth_token=model_args.auth_token
487
- )
488
- else:
489
- raise ValueError(
490
- "You are instantiating a new tokenizer from scratch. This is not supported by this script."
491
- "You can do it from another script, save it, and load it from here, using --tokenizer_name."
492
- )
493
-
494
- if model_args.config_name:
495
- config = T5Config.from_pretrained(
496
- model_args.config_name, cache_dir=model_args.cache_dir, vocab_size=len(tokenizer)
497
- )
498
- elif model_args.model_name_or_path:
499
- config = T5Config.from_pretrained(
500
- model_args.model_name_or_path, cache_dir=model_args.cache_dir, vocab_size=len(tokenizer)
501
- )
502
- else:
503
- config = CONFIG_MAPPING[model_args.model_type]()
504
- logger.warning("You are instantiating a new config instance from scratch.")
505
-
506
- # Preprocessing the datasets.
507
- # First we tokenize all the texts.
508
-
509
- max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
510
-
511
- # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
512
- # Since we make sure that all sequences are of the same length, no attention_mask is needed.
513
- def tokenize_function(examples):
514
- return tokenizer(examples[data_args.text_column_name], return_attention_mask=False)
515
-
516
- tokenized_datasets = datasets.map(
517
- tokenize_function,
518
- batched=True
519
- )
520
-
521
- # T5-like span masked language modeling will fuse consecutively masked tokens to a single sentinel token.
522
- # To ensure that the input length is `max_seq_length`, we need to increase the maximum length
523
- # according to `mlm_probability` and `mean_noise_span_length`. We can also define the label length accordingly.
524
- expanded_inputs_length, targets_length = compute_input_and_target_lengths(
525
- inputs_length=max_seq_length,
526
- noise_density=data_args.mlm_probability,
527
- mean_noise_span_length=data_args.mean_noise_span_length,
528
- )
529
-
530
- shuffle_seed = training_args.seed
531
- tokenized_datasets = tokenized_datasets.shuffle(buffer_size=data_args.shuffle_buffer_size, seed=shuffle_seed)
532
-
533
- # Enable tensorboard only on the master node
534
- has_tensorboard = is_tensorboard_available()
535
- if has_tensorboard and jax.process_index() == 0:
536
- try:
537
- from flax.metrics.tensorboard import SummaryWriter
538
-
539
- summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir))
540
- except ImportError as ie:
541
- has_tensorboard = False
542
- logger.warning(
543
- f"Unable to display metrics through TensorBoard because some package are not installed: {ie}"
544
- )
545
- else:
546
- logger.warning(
547
- "Unable to display metrics through TensorBoard because the package is not installed: "
548
- "Please run pip install tensorboard to enable."
549
- )
550
-
551
- # Initialize our training
552
- rng = jax.random.PRNGKey(training_args.seed)
553
- dropout_rngs = jax.random.split(rng, jax.local_device_count())
554
-
555
- model = FlaxT5ForConditionalGeneration(config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype))
556
-
557
- #if model_args.model_name_or_path:
558
- # model = FlaxT5ForConditionalGeneration.from_pretrained(
559
- # model_args.model_name_or_path, config=config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
560
- # )
561
- #else:
562
- # model = FlaxT5ForConditionalGeneration.from_pretrained(
563
- # config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
564
- # )
565
-
566
-
567
- # Data collator
568
- # This one will take care of randomly masking the tokens.
569
- data_collator = FlaxDataCollatorForT5MLM(
570
- tokenizer=tokenizer,
571
- noise_density=data_args.mlm_probability,
572
- mean_noise_span_length=data_args.mean_noise_span_length,
573
- input_length=max_seq_length,
574
- target_length=targets_length,
575
- pad_token_id=model.config.pad_token_id,
576
- decoder_start_token_id=model.config.decoder_start_token_id,
577
- )
578
-
579
- # Store some constant
580
- num_epochs = int(training_args.num_train_epochs)
581
- train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
582
- eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
583
-
584
- num_train_steps = data_args.num_train_steps
585
-
586
- # Create learning rate schedule
587
- warmup_fn = optax.linear_schedule(
588
- init_value=0.0, end_value=training_args.learning_rate, transition_steps=training_args.warmup_steps
589
- )
590
- decay_fn = optax.linear_schedule(
591
- init_value=training_args.learning_rate,
592
- end_value=0,
593
- transition_steps=num_train_steps - training_args.warmup_steps,
594
- )
595
- linear_decay_lr_schedule_fn = optax.join_schedules(
596
- schedules=[warmup_fn, decay_fn], boundaries=[training_args.warmup_steps]
597
- )
598
-
599
- # We use Optax's "masking" functionality to not apply weight decay
600
- # to bias and LayerNorm scale parameters. decay_mask_fn returns a
601
- # mask boolean with the same structure as the parameters.
602
- # The mask is True for parameters that should be decayed.
603
- def decay_mask_fn(params):
604
- flat_params = traverse_util.flatten_dict(params)
605
- flat_mask = {
606
- path: (path[-1] != "bias" and path[-2:] not in [("layer_norm", "scale"), ("final_layer_norm", "scale")])
607
- for path in flat_params
608
- }
609
- return traverse_util.unflatten_dict(flat_mask)
610
-
611
- # create adam optimizer
612
- if training_args.adafactor:
613
- # We use the default parameters here to initialize adafactor,
614
- # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
615
- optimizer = optax.adafactor(
616
- learning_rate=linear_decay_lr_schedule_fn,
617
- )
618
- else:
619
- optimizer = optax.adamw(
620
- learning_rate=linear_decay_lr_schedule_fn,
621
- b1=training_args.adam_beta1,
622
- b2=training_args.adam_beta2,
623
- weight_decay=training_args.weight_decay,
624
- mask=decay_mask_fn,
625
- )
626
-
627
- # Setup train state
628
- state = train_state.TrainState.create(apply_fn=model.__call__, params=model.params, tx=optimizer)
629
-
630
- # Define gradient update step fn
631
- def train_step(state, batch, dropout_rng):
632
- dropout_rng, new_dropout_rng = jax.random.split(dropout_rng)
633
-
634
- def loss_fn(params):
635
- labels = batch.pop("labels")
636
-
637
- logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
638
-
639
- # compute loss
640
- loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean()
641
-
642
- return loss
643
-
644
- grad_fn = jax.value_and_grad(loss_fn)
645
- loss, grad = grad_fn(state.params)
646
- grad = jax.lax.pmean(grad, "batch")
647
- new_state = state.apply_gradients(grads=grad)
648
-
649
- metrics = jax.lax.pmean(
650
- {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}, axis_name="batch"
651
- )
652
-
653
- return new_state, metrics, new_dropout_rng
654
-
655
- # Create parallel version of the train step
656
- p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
657
-
658
- # Define eval fn
659
- def eval_step(params, batch):
660
- labels = batch.pop("labels")
661
-
662
- logits = model(**batch, params=params, train=False)[0]
663
-
664
- # compute loss
665
- loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1]))
666
-
667
- # compute accuracy
668
- accuracy = jnp.equal(jnp.argmax(logits, axis=-1), labels)
669
-
670
- # summarize metrics
671
- metrics = {"loss": loss.mean(), "accuracy": accuracy.mean()}
672
- metrics = jax.lax.pmean(metrics, axis_name="batch")
673
-
674
- return metrics
675
-
676
- p_eval_step = jax.pmap(eval_step, "batch", donate_argnums=(0,))
677
-
678
- # Replicate the train state on each device
679
- state = jax_utils.replicate(state)
680
-
681
- train_time = 0
682
- train_start = time.time()
683
- train_metrics = []
684
- eval_metrics = []
685
-
686
- training_iter = iter(tokenized_datasets)
687
-
688
- eval_samples = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, expanded_inputs_length)
689
-
690
- steps = tqdm(range(num_train_steps), desc="Training...", position=0)
691
- for step in range(num_train_steps):
692
- # ======================== Training ================================
693
- try:
694
- samples = advance_iter_and_group_samples(training_iter, train_batch_size, expanded_inputs_length)
695
- except StopIteration:
696
- # Once the end of the dataset stream is reached, the training iterator
697
- # is reinitialized and reshuffled and a new eval dataset is randomely chosen.
698
- shuffle_seed += 1
699
- tokenized_datasets.set_epoch(shuffle_seed)
700
-
701
- training_iter = iter(tokenized_datasets)
702
-
703
- eval_dataset = advance_iter_and_group_samples(training_iter, data_args.num_eval_samples, expanded_inputs_length)
704
- samples = advance_iter_and_group_samples(training_iter, train_batch_size, expanded_inputs_length)
705
-
706
- # Model forward
707
- model_inputs = data_collator(samples)
708
- model_inputs = shard(model_inputs.data)
709
- state, train_metric, dropout_rngs = p_train_step(state, model_inputs, dropout_rngs)
710
- train_metrics.append(train_metric)
711
-
712
- if step % training_args.logging_steps == 0 and step > 0:
713
- train_metric = jax_utils.unreplicate(train_metric)
714
- steps.write(
715
- f"Step... ({step} | Loss: {train_metric['loss'].mean()}, Learning Rate: {train_metric['learning_rate'].mean()})"
716
- )
717
- train_time += time.time() - train_start
718
- if has_tensorboard and jax.process_index() == 0:
719
- write_train_metric(summary_writer, train_metrics, train_time, step)
720
- train_metrics = []
721
- # ======================== Evaluating ==============================
722
- if step % training_args.eval_steps == 0 and step > 0:
723
- eval_samples_idx = jnp.arange(data_args.num_eval_samples)
724
- eval_batch_idx = generate_batch_splits(eval_samples_idx, eval_batch_size)
725
-
726
- for i, batch_idx in enumerate(tqdm(eval_batch_idx, desc="Evaluating ...", position=1)):
727
- # process input samples
728
- batch_eval_samples = {k: [v[idx] for idx in batch_idx] for k, v in eval_samples.items()}
729
- model_inputs = data_collator(batch_eval_samples)
730
-
731
- # Model forward
732
- model_inputs = shard(model_inputs.data)
733
- metrics = p_eval_step(state.params, model_inputs)
734
- eval_metrics.append(metrics)
735
-
736
- # normalize eval metrics
737
- eval_metrics = get_metrics(eval_metrics)
738
- eval_metrics = jax.tree_map(jnp.sum, eval_metrics)
739
-
740
- # Update progress bar
741
- steps.desc = f"Step... ({step + 1}/{num_train_steps} | Loss: {eval_metrics['loss']}, Acc: {eval_metrics['accuracy']})"
742
-
743
- if has_tensorboard and jax.process_index() == 0:
744
- write_eval_metric(summary_writer, eval_metrics, step)
745
- eval_metrics = []
746
-
747
- if step % training_args.save_steps == 0 and step > 0:
748
- # save checkpoint after each save_steps and push checkpoint to the hub
749
- if jax.process_index() == 0:
750
- params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))
751
- model.save_pretrained(
752
- training_args.output_dir,
753
- params=params,
754
- push_to_hub=training_args.push_to_hub,
755
- commit_message=f"Saving weights and logs of step {step+1}",
756
- )
757
- tokenizer.save_pretrained(
758
- training_args.output_dir
759
- )
760
-
761
- # update tqdm bar
762
- steps.update(1)
763
-