File size: 3,100 Bytes
bc770b1 588ccff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
We offer a TensorRT model in various precisions including int8, fp16, fp32, and mixed, converted from Deci-AI's YOLO-NAS-Pose pre-trained weights in PyTorch. This model is compatible with Jetson Orin Nano hardware.
# Large
| Model Name | ONNX Precision | TensorRT Preicion | Throughput (TensorRT) |
|---|---|---|---|
| yolo_nas_pose_l_fp16.onnx.best.engine | FP16 | FP32+FP16+INT8 | 46.7231 qps |
| yolo_nas_pose_l_fp16.onnx.fp16.engine | FP16 | FP32+FP16 | 29.6093 qps |
| yolo_nas_pose_l_fp32.onnx.best.engine | FP32 | FP32+FP16+INT8 | 47.4032 qps |
| yolo_nas_pose_l_fp32.onnx.engine | FP32 | FP32 | 15.0654 qps |
| yolo_nas_pose_l_fp32.onnx.fp16.engine | FP32 | FP32+FP16 | 29.0005 qps |
| yolo_nas_pose_l_fp32.onnx.int8.engine | FP32 | FP32+INT8 | 47.9071 qps |
| yolo_nas_pose_l_int8.onnx.best.engine | INT8 | FP32+FP16+INT8 | 36.9695 qps |
| yolo_nas_pose_l_int8.onnx.int8.engine | INT8 | FP32+INT8 | 30.9676 qps |
# Medium
| Model Name | ONNX Precision | TensorRT Preicion | Throughput (TensorRT) |
|---|---|---|---|
| yolo_nas_pose_m_fp16.onnx.best.engine | FP16 | FP32+FP16+INT8 | 58.254 qps |
| yolo_nas_pose_m_fp16.onnx.fp16.engine | FP16 | FP32+FP16 | 37.8547 qps |
| yolo_nas_pose_m_fp32.onnx.best.engine | FP32 | FP32+FP16+INT8 | 58.0306 qps |
| yolo_nas_pose_m_fp32.onnx.engine | FP32 | FP32 | 18.9603 qps |
| yolo_nas_pose_m_fp32.onnx.fp16.engine | FP32 | FP32+FP16 | 37.193 qps |
| yolo_nas_pose_m_fp32.onnx.int8.engine | FP32 | FP32+INT8 | 59.9746 qps |
| yolo_nas_pose_m_int8.onnx.best.engine | INT8 | FP32+FP16+INT8 | 44.8046 qps |
| yolo_nas_pose_m_int8.onnx.int8.engine | INT8 | FP32+INT8 | 38.6757 qps |
# Small
| Model Name | ONNX Precision | TensorRT Preicion | Throughput (TensorRT) |
|---|---|---|---|
| yolo_nas_pose_s_fp16.onnx.best.engine | FP16 | FP32+FP16+INT8 |84.7072 qps|
| yolo_nas_pose_s_fp16.onnx.fp16.engine | FP16 | FP32+FP16 | 66.0151 qps |
| yolo_nas_pose_s_fp32.onnx.best.engine | FP32 | FP32+FP16+INT8 | 85.5718 qps |
| yolo_nas_pose_s_fp32.onnx.engine | FP32 | FP32 | 33.5963 qps |
| yolo_nas_pose_s_fp32.onnx.fp16.engine | FP32 | FP32+FP16 | 65.4357 qps |
| yolo_nas_pose_s_fp32.onnx.int8.engine | FP32 | FP32+INT8 | 86.3202 qps|
| yolo_nas_pose_s_int8.onnx.best.engine | INT8 | FP32+FP16+INT8 | 74.2494 qps |
| yolo_nas_pose_s_int8.onnx.int8.engine | INT8 | FP32+INT8 | 63.7546 qps |
# Nano
| Model Name | ONNX Precision | TensorRT Preicion | Throughput (TensorRT) |
|---|---|---|---|
| yolo_nas_pose_s_fp16.onnx.best.engine | FP16 | FP32+FP16+INT8 | 91.8287 qps |
| yolo_nas_pose_s_fp16.onnx.fp16.engine | FP16 | FP32+FP16 | 85.4187 qps|
| yolo_nas_pose_s_fp32.onnx.best.engine | FP32 | FP32+FP16+INT8 | 105.519 qps|
| yolo_nas_pose_s_fp32.onnx.engine | FP32 | FP32 | 47.8265 qps |
| yolo_nas_pose_s_fp32.onnx.fp16.engine | FP32 | FP32+FP16 | 82.3834 qps|
| yolo_nas_pose_s_fp32.onnx.int8.engine | FP32 | FP32+INT8 | 88.0719 qps |
| yolo_nas_pose_s_int8.onnx.best.engine | INT8 | FP32+FP16+INT8 | 80.8271 qps |
| yolo_nas_pose_s_int8.onnx.int8.engine | INT8 | FP32+INT8 | 74.2658 qps |
![alt text](benchmark.png "Benchmark")
|