pesi
/

Luigi commited on
Commit
0bf1eb7
1 Parent(s): 846e714

Show bounding box on screen too

Browse files
Files changed (3) hide show
  1. rtmo_demo.py +3 -2
  2. rtmo_demo_batch.py +7 -3
  3. rtmo_gpu.py +27 -17
rtmo_demo.py CHANGED
@@ -5,7 +5,7 @@ import cv2
5
  from pathlib import Path
6
  import argparse
7
  import os
8
- from rtmo_gpu import RTMO_GPU_Batch, draw_skeleton, resize_to_fit_screen
9
 
10
  if __name__ == "__main__":
11
 
@@ -36,7 +36,7 @@ if __name__ == "__main__":
36
  if not success:
37
  break
38
 
39
- frame_out, keypoints, scores = body(frame)
40
 
41
  if keypoints is not None:
42
  if frame_idx % args.batch_size == 0 and frame_idx:
@@ -56,6 +56,7 @@ if __name__ == "__main__":
56
  scores,
57
  kpt_thr=0.3,
58
  line_width=2)
 
59
  img_show = resize_to_fit_screen(img_show, 720, 480)
60
  cv2.putText(img_show, f'{fps:.1f}', (10, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 255, 0), 1, cv2.LINE_AA)
61
  cv2.imshow(f'{model}', img_show)
 
5
  from pathlib import Path
6
  import argparse
7
  import os
8
+ from rtmo_gpu import RTMO_GPU_Batch, draw_skeleton, resize_to_fit_screen, draw_bbox
9
 
10
  if __name__ == "__main__":
11
 
 
36
  if not success:
37
  break
38
 
39
+ frame_out, bboxes, keypoints, scores = body(frame)
40
 
41
  if keypoints is not None:
42
  if frame_idx % args.batch_size == 0 and frame_idx:
 
56
  scores,
57
  kpt_thr=0.3,
58
  line_width=2)
59
+ img_show = draw_bbox(img_show, bboxes)
60
  img_show = resize_to_fit_screen(img_show, 720, 480)
61
  cv2.putText(img_show, f'{fps:.1f}', (10, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 255, 0), 1, cv2.LINE_AA)
62
  cv2.imshow(f'{model}', img_show)
rtmo_demo_batch.py CHANGED
@@ -4,7 +4,7 @@ import time
4
  import cv2
5
  from pathlib import Path
6
  import argparse
7
- from rtmo_gpu import RTMO_GPU_Batch, draw_skeleton, resize_to_fit_screen # Ensure to import RTMO_GPU_Batch
8
 
9
  def process_video(video_path, body_estimator, batch_size=4):
10
  cap = cv2.VideoCapture(video_path)
@@ -24,7 +24,7 @@ def process_video(video_path, body_estimator, batch_size=4):
24
  # Process the batch when it's full
25
  if len(batch_frames) == batch_size:
26
  s = time.time()
27
- batch_keypoints, batch_scores = body_estimator.__batch_call__(batch_frames)
28
  det_time = time.time() - s
29
  fps = round(batch_size / det_time, 1)
30
  print(f'Batch det: {fps} FPS')
@@ -32,8 +32,10 @@ def process_video(video_path, body_estimator, batch_size=4):
32
  for i, keypoints in enumerate(batch_keypoints):
33
  scores = batch_scores[i]
34
  frame = batch_frames[i]
 
35
  img_show = frame.copy()
36
  img_show = draw_skeleton(img_show, keypoints, scores, kpt_thr=0.3, line_width=2)
 
37
  img_show = resize_to_fit_screen(img_show, 720, 480)
38
  cv2.putText(img_show, f'{fps:.1f}', (10, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 255, 0), 1, cv2.LINE_AA)
39
  cv2.imshow(f'{video_path}', img_show)
@@ -52,12 +54,14 @@ def process_video(video_path, body_estimator, batch_size=4):
52
 
53
  # Option 2: Duplicate the last frame
54
  batch_frames.append(batch_frames[-1])
55
- batch_keypoints, batch_scores = body_estimator.__batch_call__(batch_frames)
56
  for i, keypoints in enumerate(batch_keypoints):
57
  scores = batch_scores[i]
58
  frame = batch_frames[i]
 
59
  img_show = frame.copy()
60
  img_show = draw_skeleton(img_show, keypoints, scores, kpt_thr=0.3, line_width=2)
 
61
  img_show = resize_to_fit_screen(img_show, 720, 480)
62
  cv2.imshow(f'{video_path}', img_show)
63
  #cv2.waitKey(10)
 
4
  import cv2
5
  from pathlib import Path
6
  import argparse
7
+ from rtmo_gpu import RTMO_GPU_Batch, draw_skeleton, resize_to_fit_screen, draw_bbox # Ensure to import RTMO_GPU_Batch
8
 
9
  def process_video(video_path, body_estimator, batch_size=4):
10
  cap = cv2.VideoCapture(video_path)
 
24
  # Process the batch when it's full
25
  if len(batch_frames) == batch_size:
26
  s = time.time()
27
+ batch_bboxes, batch_keypoints, batch_scores = body_estimator.__batch_call__(batch_frames)
28
  det_time = time.time() - s
29
  fps = round(batch_size / det_time, 1)
30
  print(f'Batch det: {fps} FPS')
 
32
  for i, keypoints in enumerate(batch_keypoints):
33
  scores = batch_scores[i]
34
  frame = batch_frames[i]
35
+ bboxes = batch_bboxes[i]
36
  img_show = frame.copy()
37
  img_show = draw_skeleton(img_show, keypoints, scores, kpt_thr=0.3, line_width=2)
38
+ img_show = draw_bbox(img_show, bboxes)
39
  img_show = resize_to_fit_screen(img_show, 720, 480)
40
  cv2.putText(img_show, f'{fps:.1f}', (10, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 255, 0), 1, cv2.LINE_AA)
41
  cv2.imshow(f'{video_path}', img_show)
 
54
 
55
  # Option 2: Duplicate the last frame
56
  batch_frames.append(batch_frames[-1])
57
+ batch_bboxes, batch_keypoints, batch_scores = body_estimator.__batch_call__(batch_frames)
58
  for i, keypoints in enumerate(batch_keypoints):
59
  scores = batch_scores[i]
60
  frame = batch_frames[i]
61
+ bboxes = batch_bboxes[i]
62
  img_show = frame.copy()
63
  img_show = draw_skeleton(img_show, keypoints, scores, kpt_thr=0.3, line_width=2)
64
+ img_show = draw_bbox(img_show, bboxes)
65
  img_show = resize_to_fit_screen(img_show, 720, 480)
66
  cv2.imshow(f'{video_path}', img_show)
67
  #cv2.waitKey(10)
rtmo_gpu.py CHANGED
@@ -207,6 +207,12 @@ def draw_mmpose(img,
207
 
208
  return img
209
 
 
 
 
 
 
 
210
  # with simplification to use onnxruntime only
211
  def draw_skeleton(img,
212
  keypoints,
@@ -339,7 +345,7 @@ class RTMO_GPU(object):
339
  final_boxes /= ratio
340
  isscore = final_scores > 0.3
341
  isbbox = [i for i in isscore]
342
- # final_boxes = final_boxes[isbbox]
343
 
344
  # decode pose outputs
345
  keypoints, scores = pose_outputs[0, :, :, :2], pose_outputs[0, :, :, 2]
@@ -352,14 +358,15 @@ class RTMO_GPU(object):
352
  flat_predictions = outputs[0]
353
  if flat_predictions.shape[0] > 0: # at least one person found
354
  mask = flat_predictions[:, 0] == 0
355
- pred_bboxes = flat_predictions[mask, 1:5]
356
- pred_joints = flat_predictions[mask, 6:].reshape((len(pred_bboxes), -1, 3))
357
  keypoints, scores = pred_joints[:,:,:2], pred_joints[:,:,-1]
358
  keypoints = keypoints / ratio
 
359
  else: # no detection
360
- keypoints, scores = np.zeros((0, 17, 2)), np.zeros((0, 17))
361
 
362
- return keypoints, scores
363
 
364
  def inference(self, img: np.ndarray):
365
  """Inference model.
@@ -418,9 +425,9 @@ class RTMO_GPU(object):
418
 
419
  outputs = self.inference(image)
420
 
421
- keypoints, scores = self.postprocess(outputs, ratio)
422
 
423
- return keypoints, scores
424
 
425
  def __init__(self,
426
  model: str = None,
@@ -561,38 +568,41 @@ class RTMO_GPU_Batch(RTMO_GPU):
561
  """
562
  batch_keypoints = []
563
  batch_scores = []
 
564
 
565
  b_dets, b_keypoints = outputs
566
  for i, ratio in enumerate(ratios):
567
  output = [np.expand_dims(b_dets[i], axis=0), np.expand_dims(b_keypoints[i],axis=0)]
568
- keypoints, scores = super().postprocess(output, ratio)
569
  batch_keypoints.append(keypoints)
570
  batch_scores.append(scores)
 
571
 
572
- return batch_keypoints, batch_scores
573
 
574
  def __batch_call__(self, images: List[np.ndarray]):
575
  batch_img, ratios = self.preprocess_batch(images)
576
  outputs = self.inference(batch_img)
577
- keypoints, scores = self.postprocess_batch(outputs, ratios)
578
- return keypoints, scores
579
 
580
  def __call__(self, image: np.array):
581
  self.buffer.append(image)
582
  self.in_queue.put(image)
583
 
584
  if len(self.buffer) == self.batch_size:
585
- b_keypoints, b_scores = self.__batch_call__(self.buffer)
586
- for keypoints, scores in zip(b_keypoints, b_scores):
587
- self.out_queue.put((keypoints, scores))
 
588
  self.buffer = []
589
 
590
- frame, keypoints, scores = None, None, None
591
  if not self.out_queue.empty():
592
- keypoints, scores = self.out_queue.get()
593
  frame = self.in_queue.get()
594
 
595
- return frame, keypoints, scores
596
 
597
 
598
  def __init__(self,
 
207
 
208
  return img
209
 
210
+ def draw_bbox(img, bboxes, color=(0, 255, 0)):
211
+ for bbox in bboxes:
212
+ img = cv2.rectangle(img, (int(bbox[0]), int(bbox[1])),
213
+ (int(bbox[2]), int(bbox[3])), color, 2)
214
+ return img
215
+
216
  # with simplification to use onnxruntime only
217
  def draw_skeleton(img,
218
  keypoints,
 
345
  final_boxes /= ratio
346
  isscore = final_scores > 0.3
347
  isbbox = [i for i in isscore]
348
+ final_boxes = final_boxes[isbbox]
349
 
350
  # decode pose outputs
351
  keypoints, scores = pose_outputs[0, :, :, :2], pose_outputs[0, :, :, 2]
 
358
  flat_predictions = outputs[0]
359
  if flat_predictions.shape[0] > 0: # at least one person found
360
  mask = flat_predictions[:, 0] == 0
361
+ final_boxes = flat_predictions[mask, 1:5]
362
+ pred_joints = flat_predictions[mask, 6:].reshape((len(final_boxes), -1, 3))
363
  keypoints, scores = pred_joints[:,:,:2], pred_joints[:,:,-1]
364
  keypoints = keypoints / ratio
365
+ final_boxes = final_boxes / ratio
366
  else: # no detection
367
+ final_boxes, keypoints, scores = np.zeros((0, 4)),np.zeros((0, 17, 2)), np.zeros((0, 17))
368
 
369
+ return final_boxes, keypoints, scores
370
 
371
  def inference(self, img: np.ndarray):
372
  """Inference model.
 
425
 
426
  outputs = self.inference(image)
427
 
428
+ bboxes, keypoints, scores = self.postprocess(outputs, ratio)
429
 
430
+ return bboxes, keypoints, scores
431
 
432
  def __init__(self,
433
  model: str = None,
 
568
  """
569
  batch_keypoints = []
570
  batch_scores = []
571
+ batch_bboxes = []
572
 
573
  b_dets, b_keypoints = outputs
574
  for i, ratio in enumerate(ratios):
575
  output = [np.expand_dims(b_dets[i], axis=0), np.expand_dims(b_keypoints[i],axis=0)]
576
+ bboxes, keypoints, scores = super().postprocess(output, ratio)
577
  batch_keypoints.append(keypoints)
578
  batch_scores.append(scores)
579
+ batch_bboxes.append(bboxes)
580
 
581
+ return batch_bboxes, batch_keypoints, batch_scores
582
 
583
  def __batch_call__(self, images: List[np.ndarray]):
584
  batch_img, ratios = self.preprocess_batch(images)
585
  outputs = self.inference(batch_img)
586
+ bboxes, keypoints, scores = self.postprocess_batch(outputs, ratios)
587
+ return bboxes, keypoints, scores
588
 
589
  def __call__(self, image: np.array):
590
  self.buffer.append(image)
591
  self.in_queue.put(image)
592
 
593
  if len(self.buffer) == self.batch_size:
594
+ b_bboxes, b_keypoints, b_scores = self.__batch_call__(self.buffer)
595
+ for i, (keypoints, scores) in enumerate(zip(b_keypoints, b_scores)):
596
+ bboxes = b_bboxes[i]
597
+ self.out_queue.put((bboxes, keypoints, scores))
598
  self.buffer = []
599
 
600
+ frame, bboxes, keypoints, scores = None, None, None, None
601
  if not self.out_queue.empty():
602
+ bboxes, keypoints, scores = self.out_queue.get()
603
  frame = self.in_queue.get()
604
 
605
+ return frame, bboxes, keypoints, scores
606
 
607
 
608
  def __init__(self,