a2c-AntBulletEnv-v0 / config.json
pete88b's picture
Initial commit
ea7936e
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f26f041b550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f26f041b5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f26f041b670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f26f041b700>", "_build": "<function ActorCriticPolicy._build at 0x7f26f041b790>", "forward": "<function ActorCriticPolicy.forward at 0x7f26f041b820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f26f041b8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f26f041b940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f26f041b9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f26f041ba60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f26f041baf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f26f041bb80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f26f041c4c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681669374498450177, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAARySj4l02m+cT0bP3vXWj90jje+seIyvam2Rb95slS/Bj1hP2GHgb0+AoM/u0onP9mvyb+Ivom3F7EcP7pOKMB2Bje/6wcCP2JqGD89m+i94dv9P4JtfkDHUCA/RHACwEBlmz9ud9G/x7iTPpfIwL/gKj4/kgZ/vXVpAz9HU0s/FhJAP4rIF8BtmCe9RhgMvwZzXz87bIa8MlXFPlYO3D+t+8Q+rcUGwEDG2z5pvuE/gsF6PctSC8D4hC68X8wkv4cnmL76bpE/8yj/PigRBT9P3lK/bnfRv8e4kz6XyMC/zRNEP/x4ZL4+jxo/twWsP+Cypz9SN74/4qhTP96AEL+H/+G+u4WMv9hXTTymkbi/KcuUveD5jz+Hj4W/vOg8Pnqbg7/W8UQ/RpsWP2aIizw+9BE+vWbJv0lElj+2UZ+9T95Sv3xvHD/HuJM+FvkpP51wTT3TPWA8f97tPsoJoj+LCzo//FiYP5J9dD7bsL2+nDFfPx9lQLwfnr8/QGwWvjEIh7+XGyY/elMWv4Zwrb6hl52/O2t8PkpcGT+9XBe+ERPJP2u9h7+0oGU/RyReP0Blmz9ud9G/x7iTPhb5KT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAV2G82AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAF4KUuwAAAADE29u/AAAAABMV0T0AAAAA3iL8PwAAAACrVQQ+AAAAAPmz3D8AAAAAYN6ePQAAAAAfnv2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyWnNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCYT5r0AAAAAfhjfvwAAAABqnzO9AAAAAD6r8T8AAAAA+p8JvgAAAAD0tNw/AAAAALXRrL0AAAAAiE/9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ9BkjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDsJvu9AAAAAPqX9L8AAAAAPT6SPQAAAAC57fc/AAAAAFJ/Jb0AAAAAPjzpPwAAAABenN68AAAAAEEj6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACKhK02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAmVsOvgAAAADZCPa/AAAAAMpWF7sAAAAAPnTePwAAAABqv8I9AAAAAK4a8D8AAAAAnuBWPAAAAABR3/y/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrKyQeV9neMAWyUTegDjAF0lEdAsYvVhb4agnV9lChoBkdAnXQF/6O5rmgHTegDaAhHQLGOF9/SYw91fZQoaAZHQJx8gkIHC41oB03oA2gIR0CxjqEnTiKjdX2UKGgGR0CcmGXWvr4WaAdN6ANoCEdAsZDjFAE+xHV9lChoBkdAnFKzGgi/wmgHTegDaAhHQLGS3rsjVx11fZQoaAZHQJsNCIqLCN1oB03oA2gIR0CxlSH2M85kdX2UKGgGR0CeJcNMGorGaAdN6ANoCEdAsZWv8iwB53V9lChoBkdAnJ513Y+SsGgHTegDaAhHQLGZMjxkNF11fZQoaAZHQJzHKZOSGJxoB03oA2gIR0CxnDY5tFa0dX2UKGgGR0Cbv4+IMz/IaAdN6ANoCEdAsZ56Ij4YanV9lChoBkdAnI9eu7pV0mgHTegDaAhHQLGfBGr0aqF1fZQoaAZHQJluG5OJtSBoB03oA2gIR0CxoULm+0w8dX2UKGgGR0CZOeFvhqCZaAdN6ANoCEdAsaNAB7u2JHV9lChoBkdAnamQvHtF8WgHTegDaAhHQLGlkFKCg9N1fZQoaAZHQJ4v4cDKYAtoB03oA2gIR0Cxpki66J66dX2UKGgGR0CaXHPcSGrTaAdN6ANoCEdAsanOjj7yhHV9lChoBkdAnT6h3JPqLWgHTegDaAhHQLGsnxqwhW51fZQoaAZHQKAKD1OCXhRoB03oA2gIR0CxrueR9w3pdX2UKGgGR0CbA2F6zE75aAdN6ANoCEdAsa91gTh5xHV9lChoBkdAnjmAMUh3aGgHTegDaAhHQLGxutYSxqx1fZQoaAZHQJ0oq4Vh1DBoB03oA2gIR0Cxs7efEn9fdX2UKGgGR0CdeyRuCPIXaAdN6ANoCEdAsbX/oGIKt3V9lChoBkdAneEL/0dzXGgHTegDaAhHQLG22DwH7gt1fZQoaAZHQJ3JhPl+3H9oB03oA2gIR0CxumQte2NOdX2UKGgGR0CcV+A+6iCbaAdN6ANoCEdAsb0B90A93nV9lChoBkdAnVQ/T9bX6WgHTegDaAhHQLG/QiO/+Kl1fZQoaAZHQJxGhN/OMVFoB03oA2gIR0Cxv8w0waisdX2UKGgGR0CbuKQ/HHWCaAdN6ANoCEdAscIfSiM5wXV9lChoBkdAnMvpRsMy8GgHTegDaAhHQLHEEz5oGpx1fZQoaAZHQJyh1VPva11oB03oA2gIR0CxxoFAmiQDdX2UKGgGR0CbP+9wFTvRaAdN6ANoCEdAscdRZgXuV3V9lChoBkdAneAnOKO1fGgHTegDaAhHQLHK3+9rXUZ1fZQoaAZHQIuU761stTVoB03oA2gIR0CxzU3Heaa1dX2UKGgGR0CeJxfUnXumaAdN6ANoCEdAsc+LgDRtxnV9lChoBkdAoBHLCzkZJmgHTegDaAhHQLHQE8Md92J1fZQoaAZHQKEo5+kP+XJoB03oA2gIR0Cx0mK5TZQIdX2UKGgGR0CgXYctPHktaAdN6ANoCEdAsdRVO1v2oXV9lChoBkdAnitoK2KEWmgHTegDaAhHQLHW14jrzGx1fZQoaAZHQKA1XkQwsXloB03oA2gIR0Cx16ebVjI8dX2UKGgGR0CfrkzFdcB2aAdN6ANoCEdAsdtOP4mCy3V9lChoBkdAnzcPcer+52gHTegDaAhHQLHdt9tMwlB1fZQoaAZHQJ8X+EK3NLVoB03oA2gIR0Cx4BGykbgkdX2UKGgGR0Cem0tEG7jDaAdN6ANoCEdAseCb4O+ZgHV9lChoBkdAnzMYkVvddmgHTegDaAhHQLHi26hxo7F1fZQoaAZHQJ7itnrY5DJoB03oA2gIR0Cx5N3HFPzndX2UKGgGR0CfURjXWe6JaAdN6ANoCEdAseek4ku6E3V9lChoBkdAnqNcwxnFpGgHTegDaAhHQLHodIiC8OF1fZQoaAZHQKDF1Zha1TloB03oA2gIR0Cx7CPES/TLdX2UKGgGR0Cf9CxjriVCaAdN6ANoCEdAse4+5iExqXV9lChoBkdAoI0Q77sOXmgHTegDaAhHQLHwkO9FnZl1fZQoaAZHQKAFC9kjHGVoB03oA2gIR0Cx8Rgo5PuYdX2UKGgGR0CgF7T9CNS7aAdN6ANoCEdAsfNWnP3SKHV9lChoBkdAn1qA/PgNw2gHTegDaAhHQLH1V8VpKz11fZQoaAZHQKBdKAKfFrFoB03oA2gIR0Cx+DTAWSEEdX2UKGgGR0CfigvuPV/daAdN6ANoCEdAsfkPoSteU3V9lChoBkdAn1yro8p1BGgHTegDaAhHQLH8zWCEpRZ1fZQoaAZHQJ8TvWwu/URoB03oA2gIR0Cx/sxcqvvCdX2UKGgGR0CYNv495hScaAdN6ANoCEdAsgEVdnkDIXV9lChoBkdAmxuAf+0gKWgHTegDaAhHQLIBnyzolld1fZQoaAZHQJiUY7QswtdoB03oA2gIR0CyA+4DPnjidX2UKGgGR0CZ3iq0dBBzaAdN6ANoCEdAsgXulWOp9HV9lChoBkdAnYLGQfZElWgHTegDaAhHQLIJDwm3OOd1fZQoaAZHQJ4o5Tzd1uBoB03oA2gIR0CyCfNJjDsMdX2UKGgGR0CcYtZPl+3IaAdN6ANoCEdAsg1WTFERa3V9lChoBkdAnmdeoHcDbWgHTegDaAhHQLIPUeYlY2d1fZQoaAZHQJ2pEfQrtmdoB03oA2gIR0CyEaPeUILPdX2UKGgGR0CdWCTHKfWdaAdN6ANoCEdAshIt1JUYK3V9lChoBkdAnlqPxtpEhWgHTegDaAhHQLIUcJvo/zJ1fZQoaAZHQJ+ZWEcsDnxoB03oA2gIR0CyFm67VawEdX2UKGgGR0CcU4LlFMIvaAdN6ANoCEdAshm6ZDzAe3V9lChoBkdAnucbIT4+KWgHTegDaAhHQLIasF9a2Wp1fZQoaAZHQJ+dNCv5gw5oB03oA2gIR0CyHeREjPfLdX2UKGgGR0CgS/Rb0OEvaAdN6ANoCEdAsh/e/SH/LnV9lChoBkdAn+po6jnFHmgHTegDaAhHQLIiLd/J/5N1fZQoaAZHQKE/1/EOy3VoB03oA2gIR0CyIrzriVB2dX2UKGgGR0ChQnr876pHaAdN6ANoCEdAsiUG7yxzJnV9lChoBkdAoNCldxAB1mgHTegDaAhHQLIm9a1TisJ1fZQoaAZHQKD7X+Vkc0doB03oA2gIR0CyKo01/DtPdX2UKGgGR0CgdGcq4H5aaAdN6ANoCEdAsit9eY2KmHV9lChoBkdAnucki+tbLWgHTegDaAhHQLIudLUCq6x1fZQoaAZHQJyDBgMMI/toB03oA2gIR0CyMGYbS7XhdX2UKGgGR0Cf0/dcjZ+QaAdN6ANoCEdAsjKslu3tr3V9lChoBkdAnvVljEvTPWgHTegDaAhHQLIzM3uuzQh1fZQoaAZHQJ2TAq0+kgxoB03oA2gIR0CyNWWnXNC7dX2UKGgGR0CeghBTXJ5naAdN6ANoCEdAsjdqluWKM3V9lChoBkdAnw1/3ztkWmgHTegDaAhHQLI683H7xd91fZQoaAZHQJ2Non4O+ZhoB03oA2gIR0CyO9fQa72+dX2UKGgGR0CfKadhiLEUaAdN6ANoCEdAsj6kR5C4SnV9lChoBkdAnp2oODrZ8WgHTegDaAhHQLJAlEcbR4R1fZQoaAZHQKApzPxhDw9oB03oA2gIR0CyQs67mMfjdX2UKGgGR0CfvZp5eJHiaAdN6ANoCEdAskNXVf/m1nV9lChoBkdAn/kZ17pmmWgHTegDaAhHQLJFkW3jMmp1fZQoaAZHQJ78DwBo24xoB03oA2gIR0CyR5lQqI8AdX2UKGgGR0CetY7O3UhFaAdN6ANoCEdAsksdJAdGRXV9lChoBkdAnRvXfl6qsGgHTegDaAhHQLJL/g5imVJ1fZQoaAZHQJxQkNG3F1loB03oA2gIR0CyTrvReC04dX2UKGgGR0Cc8Wucc2itaAdN6ANoCEdAslCnRXwLE3V9lChoBkdAnVqINNJvpGgHTegDaAhHQLJS5TpPhyd1fZQoaAZHQJrNaaF23a1oB03oA2gIR0CyU25Oi35OdX2UKGgGR0Cdwhdy1eByaAdN6ANoCEdAslWakLx7RnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}