peterdamn commited on
Commit
81a6665
·
1 Parent(s): f53dec4

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - marsyas/gtzan
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: distil-ast-audioset-finetuned-gtzan-finetuned-gtzan
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # distil-ast-audioset-finetuned-gtzan-finetuned-gtzan
17
+
18
+ This model is a fine-tuned version of [peterdamn/distil-ast-audioset-finetuned-gtzan](https://huggingface.co/peterdamn/distil-ast-audioset-finetuned-gtzan) on the GTZAN dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.8269
21
+ - Accuracy: 0.84
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 4
42
+ - eval_batch_size: 4
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_ratio: 0.1
47
+ - num_epochs: 5
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
53
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
54
+ | 0.2642 | 1.0 | 225 | 1.0594 | 0.8 |
55
+ | 0.1655 | 2.0 | 450 | 0.9670 | 0.84 |
56
+ | 0.0009 | 3.0 | 675 | 0.9774 | 0.79 |
57
+ | 0.0093 | 4.0 | 900 | 0.9330 | 0.83 |
58
+ | 0.0 | 5.0 | 1125 | 0.8269 | 0.84 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.29.2
64
+ - Pytorch 2.0.1
65
+ - Datasets 2.12.0
66
+ - Tokenizers 0.13.2