--- tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distil-ast-audioset-finetuned-gtzan-finetuned-gtzan results: [] --- # distil-ast-audioset-finetuned-gtzan-finetuned-gtzan This model is a fine-tuned version of [peterdamn/distil-ast-audioset-finetuned-gtzan](https://huggingface.co/peterdamn/distil-ast-audioset-finetuned-gtzan) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.8269 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2642 | 1.0 | 225 | 1.0594 | 0.8 | | 0.1655 | 2.0 | 450 | 0.9670 | 0.84 | | 0.0009 | 3.0 | 675 | 0.9774 | 0.79 | | 0.0093 | 4.0 | 900 | 0.9330 | 0.83 | | 0.0 | 5.0 | 1125 | 0.8269 | 0.84 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2