File size: 8,325 Bytes
74a5e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copy and modify https://github.com/huggingface/text-generation-inference/blob/main/server/text_generation_server/utils/layers.py
from typing import List

import torch
import torch.distributed
from accelerate import init_empty_weights
from torch import nn
from torch.nn import functional as F


# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = nn.Parameter(bias)
    return ln


@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = None
    return ln


torch.nn.LayerNorm.load = load_layer_norm
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias


class FastLinear(nn.Module):
    def __init__(
        self,
        weight,
        bias,
    ) -> None:
        super().__init__()
        self.weight = nn.Parameter(weight)
        if bias is not None:
            self.bias = nn.Parameter(bias)
        else:
            self.bias = None

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(weight, bias)

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return F.linear(input, self.weight, self.bias)


def get_linear(weight, bias):
    linear = FastLinear(weight, bias)
    return linear


class SuperLayer(nn.Module):
    def __init__(self, linear):
        super().__init__()
        self.linear = linear

    def forward(self, x):
        return self.linear.forward(x)


class TensorParallelHead(SuperLayer):
    def __init__(self, linear, process_group, should_gather: bool):
        super().__init__(linear)
        self.process_group = process_group
        self.should_gather = should_gather

    @staticmethod
    def load(config, prefix: str, weights):
        if weights.process_group.size() > 1:
            try:
                weight = weights.get_sharded(f"{prefix}.weight", dim=0)
                should_gather = True
            except AssertionError:
                # If the vocab size is not divisible by number of shards
                # just load the entire thing.
                weight = weights.get_tensor(f"{prefix}.weight")
                should_gather = False
        else:
            weight = weights.get_tensor(f"{prefix}.weight")
            should_gather = False

        return TensorParallelHead(
            get_linear(weight, bias=None),
            process_group=weights.process_group,
            should_gather=should_gather,
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        if not self.should_gather:
            return super().forward(input)

        world_size = self.process_group.size()
        if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
            out_dim = self.linear.weight.shape[0]

            if input.shape[0] == 1:
                world_out = input.new_empty(1, out_dim * world_size)
                local_out = input.new_empty(1, out_dim)
                gather_input = local_out
            else:
                world_out = input.new_empty(out_dim * world_size, input.shape[0])
                gather_input = input.new_empty(out_dim, input.shape[0])
                local_out = gather_input.T

            torch.mm(input, self.linear.weight.T, out=local_out)

            torch.distributed.all_gather_into_tensor(world_out, gather_input, group=self.process_group)

            if input.shape[0] == 1:
                return world_out
            return world_out.T

        output = super().forward(input)
        world_output = [torch.empty_like(output) for _ in range(self.process_group.size())]
        torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)
        return world_output


class TensorParallelColumnLinear(SuperLayer):
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        return cls.load_multi(config, [prefix], weights, bias, dim=0)

    @classmethod
    def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
        weight = weights.get_multi_weights_col(prefixes, dim=dim, quantize=config.quantize)

        if bias:
            b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
            bias = torch.cat(b, dim=dim)
        else:
            bias = None
        linear = get_linear(weight, bias)
        return cls(linear)


class TensorParallelRowLinear(SuperLayer):
    def __init__(self, linear, process_group):
        super().__init__(linear)
        self.process_group = process_group

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)

        if bias and weights.process_group.rank() == 0:
            # Rank is only on the first rank process
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(
            get_linear(weight, bias),
            process_group=weights.process_group,
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        out = super().forward(input)
        if self.process_group.size() > 1:
            torch.distributed.all_reduce(out, group=self.process_group)
        return out


class TensorParallelEmbedding(nn.Module):
    def __init__(self, prefix: str, weights, reduce=True):
        super().__init__()
        weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
        num_embeddings = weights.get_shape(f"{prefix}.weight")[0]

        process_group = weights.process_group

        world_size = process_group.size()
        rank = process_group.rank()

        block_size = num_embeddings // world_size
        self.min_id = rank * block_size
        self.max_id = min(num_embeddings, (rank + 1) * block_size)
        self.null_idx = block_size
        self.process_group = weights.process_group
        self.reduce = reduce

        """Additional 0 entry used for masking"""
        self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1)))

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        # default all out of bounds values to `self.null_idx` that will then be mapped to 0
        # translate for [0, self.max_id - self.min_id[
        input = torch.where(
            (self.min_id > input) | (input >= self.max_id),
            self.null_idx,
            input - self.min_id,
        )
        out = torch.nn.functional.embedding(input, self.weight)
        if self.reduce and self.process_group.size() > 1:
            torch.distributed.all_reduce(out, group=self.process_group)
        return out


try:
    import dropout_layer_norm

    class FastLayerNorm(nn.LayerNorm):
        def forward(self, hidden_states, residual=None):
            if hidden_states.shape[-1] > 8192:
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                return super(FastLayerNorm, self).forward(hidden_states), residual
            else:
                (
                    normed_hidden_states,
                    residual,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
                    hidden_states,
                    residual,
                    self.weight,
                    self.bias,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.eps,
                    1.0,
                    0,
                    None,
                    False,
                    False,
                )
                if residual is None:
                    residual = hidden_states

                return normed_hidden_states, residual

except ImportError:
    pass