peulsilva commited on
Commit
7f852f0
·
verified ·
1 Parent(s): 6859b78

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: whaleloops/phrase-bert
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - pearson_cosine
6
+ - spearman_cosine
7
+ pipeline_tag: sentence-similarity
8
+ tags:
9
+ - sentence-transformers
10
+ - sentence-similarity
11
+ - feature-extraction
12
+ - generated_from_trainer
13
+ - dataset_size:100000
14
+ - loss:CosineSimilarityLoss
15
+ widget:
16
+ - source_sentence: 'RT @AnfieldBond: Xherdan Shaqiri, who has been linked with a summer
17
+ move to Liverpool, has just scored a hat-trick against Honduras. #LFC'
18
+ sentences:
19
+ - Honduras is fucking it up for ecuador
20
+ - Some strike Shakira. Just need a couple more one from Honduras.
21
+ - "RT @2014WorIdCup: HALF TIME: France and Ecuador 0-0. \nSwitzerland leads Honduras\
22
+ \ 2-0."
23
+ - source_sentence: Yall watching the Honduras game when im watching france😂😂 Honduras
24
+ poo
25
+ sentences:
26
+ - 'I’m following Honduras versus Switzerland in the FIFA Global Stadium #HONSUI
27
+ #worldcup #joinin'
28
+ - 'RT @SportsCenter: That''s it for Group E! France wins group after 0-0 tie, Switzerland
29
+ advances thanks to 3-0 win. Ecuador and Honduras are …'
30
+ - 'RT @worldsoccershop: HAT TRICK FOR @XS_11official! #HON 0-3 #SUI. #WorldCup2014'
31
+ - source_sentence: 'RT @rffuk: Xherdan Shaqiri just scored this absolute wonder goal
32
+ to put #SWI 1-0 ahead v #HON. What a strike son! https://t.co/vHuIPCucpV'
33
+ sentences:
34
+ - 'RT @trueSCRlife: If #Shaqiri scores vs #HON we''ll give away a pair of Magistas.
35
+ Follow & RT to enter. Winner DMed! #HONvsSUI http://t.co/EG…'
36
+ - 'RT @soccerdotcom: Los Catrachos! Follow @soccerdotcom and RT for the chance to
37
+ win a Joma #HON Jersey signed by the team! http://t.co/2NTfw…'
38
+ - 'Shaqiri has 2 goals in the first half! Can he score the first hat trick of the
39
+ #WorldCup? #HON #SUI http://t.co/M21zGv0qw4'
40
+ - source_sentence: Honduras copped the fendi
41
+ sentences:
42
+ - 'RT @worldsoccershop: If #Costly scores for #HON we''ll give away a pair of adidas
43
+ #Nitrocharge. Follow & RT to enter! #allin or nothing. htt…'
44
+ - '#SUI get a second against #HON. Shaqiri scores once again!
45
+
46
+
47
+ #iMOTM?'
48
+ - 'RT @soccerdotcom: Los Catrachos! Follow @soccerdotcom and RT for the chance to
49
+ win a Joma #HON Jersey signed by the team! http://t.co/2NTfw…'
50
+ - source_sentence: Honduras is technically still in the World Cup and Italy plus England
51
+ are out means Honduras is better than them😂
52
+ sentences:
53
+ - wtf Honduras has to win 😩
54
+ - 'Honduras still better than the #CGHS JV Female Soccer Team 😂😂'
55
+ - 'RT @iambolar: FT:Honduras 0-3 Switzerland. Shaqiri nets d 50th hat trick in #WorldCup
56
+ history as Switzerland qualify 4d next round. http://…'
57
+ model-index:
58
+ - name: SentenceTransformer based on whaleloops/phrase-bert
59
+ results:
60
+ - task:
61
+ type: semantic-similarity
62
+ name: Semantic Similarity
63
+ dataset:
64
+ name: validation
65
+ type: validation
66
+ metrics:
67
+ - type: pearson_cosine
68
+ value: 0.14803022870400553
69
+ name: Pearson Cosine
70
+ - type: spearman_cosine
71
+ value: 0.1536611594776976
72
+ name: Spearman Cosine
73
+ ---
74
+
75
+ # SentenceTransformer based on whaleloops/phrase-bert
76
+
77
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [whaleloops/phrase-bert](https://huggingface.co/whaleloops/phrase-bert). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
78
+
79
+ ## Model Details
80
+
81
+ ### Model Description
82
+ - **Model Type:** Sentence Transformer
83
+ - **Base model:** [whaleloops/phrase-bert](https://huggingface.co/whaleloops/phrase-bert) <!-- at revision 6f68f4dc2d28aadefa038c79023dc7dfd51f6495 -->
84
+ - **Maximum Sequence Length:** 128 tokens
85
+ - **Output Dimensionality:** 768 dimensions
86
+ - **Similarity Function:** Cosine Similarity
87
+ <!-- - **Training Dataset:** Unknown -->
88
+ <!-- - **Language:** Unknown -->
89
+ <!-- - **License:** Unknown -->
90
+
91
+ ### Model Sources
92
+
93
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
94
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
95
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
96
+
97
+ ### Full Model Architecture
98
+
99
+ ```
100
+ SentenceTransformer(
101
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': None}) with Transformer model: BertModel
102
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
103
+ )
104
+ ```
105
+
106
+ ## Usage
107
+
108
+ ### Direct Usage (Sentence Transformers)
109
+
110
+ First install the Sentence Transformers library:
111
+
112
+ ```bash
113
+ pip install -U sentence-transformers
114
+ ```
115
+
116
+ Then you can load this model and run inference.
117
+ ```python
118
+ from sentence_transformers import SentenceTransformer
119
+
120
+ # Download from the 🤗 Hub
121
+ model = SentenceTransformer("peulsilva/sentence-transformer-trained-tweet")
122
+ # Run inference
123
+ sentences = [
124
+ 'Honduras is technically still in the World Cup and Italy plus England are out means Honduras is better than them😂',
125
+ 'RT @iambolar: FT:Honduras 0-3 Switzerland. Shaqiri nets d 50th hat trick in #WorldCup history as Switzerland qualify 4d next round. http://…',
126
+ 'Honduras still better than the #CGHS JV Female Soccer Team 😂😂',
127
+ ]
128
+ embeddings = model.encode(sentences)
129
+ print(embeddings.shape)
130
+ # [3, 768]
131
+
132
+ # Get the similarity scores for the embeddings
133
+ similarities = model.similarity(embeddings, embeddings)
134
+ print(similarities.shape)
135
+ # [3, 3]
136
+ ```
137
+
138
+ <!--
139
+ ### Direct Usage (Transformers)
140
+
141
+ <details><summary>Click to see the direct usage in Transformers</summary>
142
+
143
+ </details>
144
+ -->
145
+
146
+ <!--
147
+ ### Downstream Usage (Sentence Transformers)
148
+
149
+ You can finetune this model on your own dataset.
150
+
151
+ <details><summary>Click to expand</summary>
152
+
153
+ </details>
154
+ -->
155
+
156
+ <!--
157
+ ### Out-of-Scope Use
158
+
159
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
160
+ -->
161
+
162
+ ## Evaluation
163
+
164
+ ### Metrics
165
+
166
+ #### Semantic Similarity
167
+
168
+ * Dataset: `validation`
169
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
170
+
171
+ | Metric | Value |
172
+ |:--------------------|:-----------|
173
+ | pearson_cosine | 0.148 |
174
+ | **spearman_cosine** | **0.1537** |
175
+
176
+ <!--
177
+ ## Bias, Risks and Limitations
178
+
179
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
180
+ -->
181
+
182
+ <!--
183
+ ### Recommendations
184
+
185
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
186
+ -->
187
+
188
+ ## Training Details
189
+
190
+ ### Training Dataset
191
+
192
+ #### Unnamed Dataset
193
+
194
+
195
+ * Size: 100,000 training samples
196
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
197
+ * Approximate statistics based on the first 1000 samples:
198
+ | | sentence_0 | sentence_1 | label |
199
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
200
+ | type | string | string | float |
201
+ | details | <ul><li>min: 6 tokens</li><li>mean: 37.81 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 38.01 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.56</li><li>max: 1.0</li></ul> |
202
+ * Samples:
203
+ | sentence_0 | sentence_1 | label |
204
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
205
+ | <code>Early lead for #SUI over #HON thanks to Shaqiri taking a page out of Robben's book. He paid attention during Bayern practices. #ShaqAttaq ⚽️</code> | <code>RT @soccerdotcom: Los Catrachos! Follow @soccerdotcom and RT for the chance to win a Joma #HON Jersey signed by the team! http://t.co/2NTfw…</code> | <code>0.0</code> |
206
+ | <code>RT @RTEsoccer: Group E result: #HON 0-3 #SUI. Shaqiri the hat-trick hero as the Swiss progress: http://t.co/fZYw9NFghO #rteworldcup http://…</code> | <code>RT @trueSCRlife: If #Shaqiri scores vs #HON we'll give away a pair of Magistas. Follow & RT to enter. Winner DMed! #HONvsSUI http://t.co/EG…</code> | <code>1.0</code> |
207
+ | <code>RT @TheSCRLife: If #HON wins we’ll give away a pair of Superflys. FOLLOW & RETWEET. Not following?Won’t win. (I’m checking). http://t.co/xw…</code> | <code>Yup Honduras say goodbye lll</code> | <code>0.0</code> |
208
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
209
+ ```json
210
+ {
211
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
212
+ }
213
+ ```
214
+
215
+ ### Training Hyperparameters
216
+ #### Non-Default Hyperparameters
217
+
218
+ - `per_device_train_batch_size`: 128
219
+ - `per_device_eval_batch_size`: 128
220
+ - `num_train_epochs`: 1
221
+ - `fp16`: True
222
+ - `multi_dataset_batch_sampler`: round_robin
223
+
224
+ #### All Hyperparameters
225
+ <details><summary>Click to expand</summary>
226
+
227
+ - `overwrite_output_dir`: False
228
+ - `do_predict`: False
229
+ - `eval_strategy`: no
230
+ - `prediction_loss_only`: True
231
+ - `per_device_train_batch_size`: 128
232
+ - `per_device_eval_batch_size`: 128
233
+ - `per_gpu_train_batch_size`: None
234
+ - `per_gpu_eval_batch_size`: None
235
+ - `gradient_accumulation_steps`: 1
236
+ - `eval_accumulation_steps`: None
237
+ - `torch_empty_cache_steps`: None
238
+ - `learning_rate`: 5e-05
239
+ - `weight_decay`: 0.0
240
+ - `adam_beta1`: 0.9
241
+ - `adam_beta2`: 0.999
242
+ - `adam_epsilon`: 1e-08
243
+ - `max_grad_norm`: 1
244
+ - `num_train_epochs`: 1
245
+ - `max_steps`: -1
246
+ - `lr_scheduler_type`: linear
247
+ - `lr_scheduler_kwargs`: {}
248
+ - `warmup_ratio`: 0.0
249
+ - `warmup_steps`: 0
250
+ - `log_level`: passive
251
+ - `log_level_replica`: warning
252
+ - `log_on_each_node`: True
253
+ - `logging_nan_inf_filter`: True
254
+ - `save_safetensors`: True
255
+ - `save_on_each_node`: False
256
+ - `save_only_model`: False
257
+ - `restore_callback_states_from_checkpoint`: False
258
+ - `no_cuda`: False
259
+ - `use_cpu`: False
260
+ - `use_mps_device`: False
261
+ - `seed`: 42
262
+ - `data_seed`: None
263
+ - `jit_mode_eval`: False
264
+ - `use_ipex`: False
265
+ - `bf16`: False
266
+ - `fp16`: True
267
+ - `fp16_opt_level`: O1
268
+ - `half_precision_backend`: auto
269
+ - `bf16_full_eval`: False
270
+ - `fp16_full_eval`: False
271
+ - `tf32`: None
272
+ - `local_rank`: 0
273
+ - `ddp_backend`: None
274
+ - `tpu_num_cores`: None
275
+ - `tpu_metrics_debug`: False
276
+ - `debug`: []
277
+ - `dataloader_drop_last`: False
278
+ - `dataloader_num_workers`: 0
279
+ - `dataloader_prefetch_factor`: None
280
+ - `past_index`: -1
281
+ - `disable_tqdm`: False
282
+ - `remove_unused_columns`: True
283
+ - `label_names`: None
284
+ - `load_best_model_at_end`: False
285
+ - `ignore_data_skip`: False
286
+ - `fsdp`: []
287
+ - `fsdp_min_num_params`: 0
288
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
289
+ - `fsdp_transformer_layer_cls_to_wrap`: None
290
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
291
+ - `deepspeed`: None
292
+ - `label_smoothing_factor`: 0.0
293
+ - `optim`: adamw_torch
294
+ - `optim_args`: None
295
+ - `adafactor`: False
296
+ - `group_by_length`: False
297
+ - `length_column_name`: length
298
+ - `ddp_find_unused_parameters`: None
299
+ - `ddp_bucket_cap_mb`: None
300
+ - `ddp_broadcast_buffers`: False
301
+ - `dataloader_pin_memory`: True
302
+ - `dataloader_persistent_workers`: False
303
+ - `skip_memory_metrics`: True
304
+ - `use_legacy_prediction_loop`: False
305
+ - `push_to_hub`: False
306
+ - `resume_from_checkpoint`: None
307
+ - `hub_model_id`: None
308
+ - `hub_strategy`: every_save
309
+ - `hub_private_repo`: False
310
+ - `hub_always_push`: False
311
+ - `gradient_checkpointing`: False
312
+ - `gradient_checkpointing_kwargs`: None
313
+ - `include_inputs_for_metrics`: False
314
+ - `eval_do_concat_batches`: True
315
+ - `fp16_backend`: auto
316
+ - `push_to_hub_model_id`: None
317
+ - `push_to_hub_organization`: None
318
+ - `mp_parameters`:
319
+ - `auto_find_batch_size`: False
320
+ - `full_determinism`: False
321
+ - `torchdynamo`: None
322
+ - `ray_scope`: last
323
+ - `ddp_timeout`: 1800
324
+ - `torch_compile`: False
325
+ - `torch_compile_backend`: None
326
+ - `torch_compile_mode`: None
327
+ - `dispatch_batches`: None
328
+ - `split_batches`: None
329
+ - `include_tokens_per_second`: False
330
+ - `include_num_input_tokens_seen`: False
331
+ - `neftune_noise_alpha`: None
332
+ - `optim_target_modules`: None
333
+ - `batch_eval_metrics`: False
334
+ - `eval_on_start`: False
335
+ - `use_liger_kernel`: False
336
+ - `eval_use_gather_object`: False
337
+ - `prompts`: None
338
+ - `batch_sampler`: batch_sampler
339
+ - `multi_dataset_batch_sampler`: round_robin
340
+
341
+ </details>
342
+
343
+ ### Training Logs
344
+ | Epoch | Step | Training Loss | validation_spearman_cosine |
345
+ |:------:|:----:|:-------------:|:--------------------------:|
346
+ | 0.6394 | 500 | 0.2429 | - |
347
+ | 1.0 | 782 | - | 0.1537 |
348
+
349
+
350
+ ### Framework Versions
351
+ - Python: 3.11.9
352
+ - Sentence Transformers: 3.3.0
353
+ - Transformers: 4.45.0.dev0
354
+ - PyTorch: 2.4.1+cu121
355
+ - Accelerate: 0.34.2
356
+ - Datasets: 2.20.0
357
+ - Tokenizers: 0.19.1
358
+
359
+ ## Citation
360
+
361
+ ### BibTeX
362
+
363
+ #### Sentence Transformers
364
+ ```bibtex
365
+ @inproceedings{reimers-2019-sentence-bert,
366
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
367
+ author = "Reimers, Nils and Gurevych, Iryna",
368
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
369
+ month = "11",
370
+ year = "2019",
371
+ publisher = "Association for Computational Linguistics",
372
+ url = "https://arxiv.org/abs/1908.10084",
373
+ }
374
+ ```
375
+
376
+ <!--
377
+ ## Glossary
378
+
379
+ *Clearly define terms in order to be accessible across audiences.*
380
+ -->
381
+
382
+ <!--
383
+ ## Model Card Authors
384
+
385
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
386
+ -->
387
+
388
+ <!--
389
+ ## Model Card Contact
390
+
391
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
392
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "whaleloops/phrase-bert",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.0.dev0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.0",
4
+ "transformers": "4.45.0.dev0",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1245f55c5b335e173508bc2a1617e3b0691926a4b627dc5e16399147da81a3ef
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": null
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff