File size: 15,169 Bytes
95fc077 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/dqn/#dqn_ataripy
import argparse
import os
import random
import time
from distutils.util import strtobool
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from stable_baselines3.common.atari_wrappers import (
ClipRewardEnv,
EpisodicLifeEnv,
FireResetEnv,
MaxAndSkipEnv,
NoopResetEnv,
)
from stable_baselines3.common.buffers import ReplayBuffer
from torch.utils.tensorboard import SummaryWriter
def parse_args():
# fmt: off
parser = argparse.ArgumentParser()
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
help="the name of this experiment")
parser.add_argument("--seed", type=int, default=1,
help="seed of the experiment")
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, `torch.backends.cudnn.deterministic=False`")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="if toggled, this experiment will be tracked with Weights and Biases")
parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
help="the wandb's project name")
parser.add_argument("--wandb-entity", type=str, default=None,
help="the entity (team) of wandb's project")
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="whether to capture videos of the agent performances (check out `videos` folder)")
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="whether to save model into the `runs/{run_name}` folder")
parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="whether to upload the saved model to huggingface")
parser.add_argument("--hf-entity", type=str, default="",
help="the user or org name of the model repository from the Hugging Face Hub")
# Algorithm specific arguments
parser.add_argument("--env-id", type=str, default="PongNoFrameskip-v4",
help="the id of the environment")
parser.add_argument("--total-timesteps", type=int, default=10000000,
help="total timesteps of the experiments")
parser.add_argument("--learning-rate", type=float, default=0.0001,
help="the learning rate of the optimizer")
parser.add_argument("--max-gradient-norm", type=float, default=float('inf'),
help="gradient clipping value")
parser.add_argument("--double-learning", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
help="enable double learning DDQN")
parser.add_argument("--buffer-size", type=int, default=1000000,
help="the replay memory buffer size")
parser.add_argument("--gamma", type=float, default=0.99,
help="the discount factor gamma")
parser.add_argument("--target-tau", type=float, default=1.0,
help="the target network update rate")
parser.add_argument("--target-network-frequency", type=int, default=1000,
help="the timesteps it takes to update the target network")
parser.add_argument("--batch-size", type=int, default=32,
help="the batch size of sample from the reply memory")
parser.add_argument("--start-e", type=float, default=1.0,
help="the starting epsilon for exploration")
parser.add_argument("--end-e", type=float, default=0.05,
help="the ending epsilon for exploration")
parser.add_argument("--exploration-fraction", type=float, default=0.2,
help="the fraction of `total-timesteps` it takes from start-e to go end-e")
parser.add_argument("--learning-starts", type=int, default=10000,
help="timestep to start learning")
parser.add_argument("--train-frequency", type=int, default=1,
help="the frequency of training")
args = parser.parse_args()
# fmt: on
return args
def make_env(env_id, seed, idx, capture_video, run_name):
def thunk():
env = gym.make(env_id)
env = gym.wrappers.RecordEpisodeStatistics(env)
if capture_video:
if idx == 0:
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
env = NoopResetEnv(env, noop_max=30)
env = MaxAndSkipEnv(env, skip=4)
env = EpisodicLifeEnv(env)
if "FIRE" in env.unwrapped.get_action_meanings():
env = FireResetEnv(env)
env = ClipRewardEnv(env)
env = gym.wrappers.ResizeObservation(env, (84, 84))
env = gym.wrappers.GrayScaleObservation(env)
env = gym.wrappers.FrameStack(env, 4)
env.seed(seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
return env
return thunk
# ALGO LOGIC: initialize agent here:
class QNetwork(nn.Module):
def __init__(self, env):
super().__init__()
self.network = nn.Sequential(
nn.Conv2d(4, 32, 8, stride=4),
nn.ReLU(),
nn.Conv2d(32, 64, 4, stride=2),
nn.ReLU(),
nn.Conv2d(64, 64, 3, stride=1),
nn.ReLU(),
nn.Flatten(),
nn.Linear(3136, 512),
nn.ReLU(),
nn.Linear(512, env.single_action_space.n),
)
def forward(self, x):
return self.network(x / 255.0)
def linear_schedule(start_e: float, end_e: float, duration: int, t: int):
slope = (end_e - start_e) / duration
return max(slope * t + start_e, end_e)
if __name__ == "__main__":
args = parse_args()
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
if args.track:
import wandb
args.alg_type = os.path.basename(__file__)
wandb_sess = wandb.init(
project=args.wandb_project_name,
entity=args.wandb_entity,
config=vars(args),
save_code=True,
# group='string',
name=run_name,
sync_tensorboard=False,
monitor_gym=True,
)
writer = SummaryWriter(f"runs/{run_name}")
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
def log_value(name: str, x: float, y: int):
# writer.add_scalar(name, x, y)
wandb.log({name: x, "global_step": y})
# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
# env setup
envs = gym.vector.SyncVectorEnv([make_env(args.env_id, args.seed, 0, args.capture_video, run_name)])
assert isinstance(envs.single_action_space, gym.spaces.Discrete), "only discrete action space is supported"
q_network = QNetwork(envs).to(device)
optimizer = optim.RMSprop(q_network.parameters(), lr=args.learning_rate)
target_network = QNetwork(envs).to(device)
target_network.load_state_dict(q_network.state_dict())
rb = ReplayBuffer(
args.buffer_size,
envs.single_observation_space,
envs.single_action_space,
device,
optimize_memory_usage=True,
handle_timeout_termination=True,
)
start_time = time.time()
target_update_counter = 0
policy_update_counter = 0
episode_returns = []
# TRY NOT TO MODIFY: start the game
obs = envs.reset()
for global_step in range(args.total_timesteps):
# ALGO LOGIC: put action logic here
epsilon = linear_schedule(args.start_e, args.end_e, args.exploration_fraction * args.total_timesteps, global_step)
if random.random() < epsilon:
actions = np.array([envs.single_action_space.sample() for _ in range(envs.num_envs)])
else:
q_values = q_network(torch.Tensor(obs).to(device))
actions = torch.argmax(q_values, dim=1).cpu().numpy()
# TRY NOT TO MODIFY: execute the game and log data.
next_obs, rewards, dones, infos = envs.step(actions)
# TRY NOT TO MODIFY: record rewards for plotting purposes
for info in infos:
if "episode" in info.keys():
episode_returns.append(info['episode']['r'])
episode_returns = episode_returns[-100:]
print(f"step={global_step}, return={info['episode']['r']}, sps={int(global_step / (time.time() - start_time))}")
log_value("perf/episodic_return", info["episode"]["r"], global_step)
log_value("perf/episodic_return_mean_100", np.mean(episode_returns), global_step)
log_value("perf/episodic_return_std_100", np.std(episode_returns), global_step)
log_value("debug/episodic_length", info["episode"]["l"], global_step)
log_value("ex2/epsilon", epsilon, global_step)
break
# TRY NOT TO MODIFY: save data to reply buffer; handle `terminal_observation`
real_next_obs = next_obs.copy()
for idx, d in enumerate(dones):
if d:
real_next_obs[idx] = infos[idx]["terminal_observation"]
rb.add(obs, real_next_obs, actions, rewards, dones, infos)
# TRY NOT TO MODIFY: CRUCIAL step easy to overlook
obs = next_obs
# ALGO LOGIC: training.
if global_step > args.learning_starts:
if global_step % args.train_frequency == 0:
data = rb.sample(args.batch_size)
with torch.no_grad():
if args.double_learning:
argmax_a = q_network(data.next_observations).max(1)[1].unsqueeze(1)
else:
argmax_a = target_network(data.next_observations).max(1)[1].unsqueeze(1)
target_max = target_network(data.next_observations).gather(1, argmax_a).squeeze()
td_target = data.rewards.flatten() + args.gamma * target_max * (1 - data.dones.flatten())
old_val = q_network(data.observations).gather(1, data.actions).squeeze()
loss = F.mse_loss(td_target, old_val)
if global_step % 100 == 0:
prev = old_val.detach().cpu().numpy()
new = td_target.detach().cpu().numpy()
diff, a_diff = new-prev, np.abs(new-prev)
mean, a_mean = np.mean(diff), np.mean(a_diff)
median, a_median = np.median(diff), np.median(a_diff)
maximum, a_maximum = np.max(diff), np.max(a_diff)
minimum, a_minimum = np.min(diff), np.min(a_diff)
std, a_std = np.std(diff), np.std(a_diff)
below, a_below = mean - std, a_mean - a_std
above, a_above = mean + std, a_mean + a_std
pu_scalar, a_pu_scalar = 2 * mean / maximum, 2 * a_mean / a_maximum
policy_frequency_scalar_ratio = 1.0 * pu_scalar
a_policy_frequency_scalar_ratio = 1.0 * a_pu_scalar
log_value("losses/td_loss", loss, global_step)
log_value("losses/q_values", old_val.mean().item(), global_step)
log_value("td/mean", mean, global_step)
log_value("td/a_mean", a_mean, global_step)
log_value("td/median", median, global_step)
log_value("td/a_median", a_median, global_step)
log_value("td/max", maximum, global_step)
log_value("td/a_max", a_maximum, global_step)
log_value("td/min", minimum, global_step)
log_value("td/a_min", a_minimum, global_step)
log_value("td/std", std, global_step)
log_value("td/a_std", a_std, global_step)
log_value("td/below", below, global_step)
log_value("td/a_below", a_below, global_step)
log_value("td/above", above, global_step)
log_value("td/a_above", a_above, global_step)
log_value("alg/pu_scalar", pu_scalar, global_step)
log_value("alg/a_pu_scalar", a_pu_scalar, global_step)
log_value("alg/policy_frequency_scalar_ratio", policy_frequency_scalar_ratio, global_step)
log_value("alg/a_policy_frequency_scalar_ratio", a_policy_frequency_scalar_ratio, global_step)
log_value("debug/steps_per_second", int(global_step / (time.time() - start_time)), global_step)
# optimize the model
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(q_network.parameters(),
args.max_gradient_norm)
optimizer.step()
# update target network
if global_step % args.target_network_frequency == 0:
target_update_counter += 1
for target_network_param, q_network_param in zip(target_network.parameters(), q_network.parameters()):
target_network_param.data.copy_(
args.target_tau * q_network_param.data + (1.0 - args.target_tau) * target_network_param.data
)
policy_update_counter += 1
if global_step % 100 == 0:
log_value("alg/n_target_update", target_update_counter, global_step)
log_value("alg/n_policy_update", policy_update_counter, global_step)
if args.save_model:
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
torch.save(q_network.state_dict(), model_path)
print(f"model saved to {model_path}")
from cleanrl_utils.evals.dqn_eval import evaluate
episodic_returns = evaluate(
model_path,
make_env,
args.env_id,
eval_episodes=10,
run_name=f"{run_name}-eval",
Model=QNetwork,
device=device,
epsilon=0.05,
)
for idx, episodic_return in enumerate(episodic_returns):
log_value("eval/episodic_return", episodic_return, idx)
if args.upload_model:
from cleanrl_utils.huggingface import push_to_hub
repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
push_to_hub(args, np.mean(episode_returns), repo_id, "DQN", f"runs/{run_name}", f"videos/{run_name}-eval")
wandb_sess.finish()
envs.close()
writer.close()
|