Delete fine_tune_tianet_tr_pt.ipynb
Browse files- fine_tune_tianet_tr_pt.ipynb +0 -923
fine_tune_tianet_tr_pt.ipynb
DELETED
@@ -1,923 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 1,
|
6 |
-
"metadata": {
|
7 |
-
"colab": {},
|
8 |
-
"colab_type": "code",
|
9 |
-
"id": "iyLoWDsb9rEs"
|
10 |
-
},
|
11 |
-
"outputs": [],
|
12 |
-
"source": [
|
13 |
-
"# unzip the audio files from commom voice dataset with Turkish language and Portuguese language\n",
|
14 |
-
"#! tar -xf data/cv-corpus-15.0-2023-09-08-pt.tar.gz\n",
|
15 |
-
"#! tar -xf data/cv-corpus-15.0-2023-09-08-tr.tar.gz"
|
16 |
-
]
|
17 |
-
},
|
18 |
-
{
|
19 |
-
"cell_type": "code",
|
20 |
-
"execution_count": 2,
|
21 |
-
"metadata": {},
|
22 |
-
"outputs": [
|
23 |
-
{
|
24 |
-
"name": "stdout",
|
25 |
-
"output_type": "stream",
|
26 |
-
"text": [
|
27 |
-
"/User/en_tr_pt_titanet_large\n"
|
28 |
-
]
|
29 |
-
}
|
30 |
-
],
|
31 |
-
"source": [
|
32 |
-
"# Convert the mp3 files to wav files with 16kHz sampling rate and 16 bits, 1 channel\n",
|
33 |
-
"import os\n",
|
34 |
-
"NEMO_ROOT = os.getcwd()\n",
|
35 |
-
"print(NEMO_ROOT)\n",
|
36 |
-
"import glob\n",
|
37 |
-
"import subprocess\n",
|
38 |
-
"\n",
|
39 |
-
"data_dir = os.path.join(NEMO_ROOT,'data')\n",
|
40 |
-
"#os.makedirs(data_dir, exist_ok=True)\n",
|
41 |
-
"\n",
|
42 |
-
"#print(\"Converting .mp3 to .wav...\")\n",
|
43 |
-
"#mp3_list = glob.glob(data_dir + '/cv-corpus-15.0-2023-09-08/pt/clips/*.mp3', recursive=True)\n",
|
44 |
-
"#for mp3_path in mp3_list:\n",
|
45 |
-
"# wav_path = mp3_path[:-4] + '.wav'\n",
|
46 |
-
"# cmd = [\"sox\", mp3_path, \"--rate\", \"16k\", \"--bits\", \"16\", \"--channels\", \"1\", wav_path]\n",
|
47 |
-
"# subprocess.run(cmd)\n",
|
48 |
-
"#print(\"Finished conversion.\\n******\")"
|
49 |
-
]
|
50 |
-
},
|
51 |
-
{
|
52 |
-
"cell_type": "code",
|
53 |
-
"execution_count": 3,
|
54 |
-
"metadata": {},
|
55 |
-
"outputs": [],
|
56 |
-
"source": [
|
57 |
-
"#print(\"Converting .mp3 to .wav...\")\n",
|
58 |
-
"#mp3_list = glob.glob(data_dir + '/cv-corpus-15.0-2023-09-08/tr/clips/*.mp3', recursive=True)\n",
|
59 |
-
"#for mp3_path in mp3_list:\n",
|
60 |
-
"# wav_path = mp3_path[:-4] + '.wav'\n",
|
61 |
-
"# cmd = [\"sox\", mp3_path, \"--rate\", \"16k\", \"--bits\", \"16\", \"--channels\", \"1\", wav_path]\n",
|
62 |
-
"# subprocess.run(cmd)\n",
|
63 |
-
"#print(\"Finished conversion.\\n******\")"
|
64 |
-
]
|
65 |
-
},
|
66 |
-
{
|
67 |
-
"cell_type": "code",
|
68 |
-
"execution_count": 1,
|
69 |
-
"metadata": {
|
70 |
-
"colab": {},
|
71 |
-
"colab_type": "code",
|
72 |
-
"id": "vqUBayc_Ctcr"
|
73 |
-
},
|
74 |
-
"outputs": [],
|
75 |
-
"source": [
|
76 |
-
"# prepare the train, dev, test dataset for Portuguese language\n",
|
77 |
-
"import pandas as pd\n",
|
78 |
-
"import os\n",
|
79 |
-
"\n",
|
80 |
-
"#pt_duration_df = pd.read_csv('data/cv-corpus-15.0-2023-09-08/pt/clip_durations.tsv', sep='\\t')\n",
|
81 |
-
"#pt_train_df = pd.read_csv('data/cv-corpus-15.0-2023-09-08/pt/train.tsv', sep='\\t')\n",
|
82 |
-
"#pt_dev_df = pd.read_csv('data/cv-corpus-15.0-2023-09-08/pt/dev.tsv', sep='\\t')\n",
|
83 |
-
"#pt_test_df = pd.read_csv('data/cv-corpus-15.0-2023-09-08/pt/test.tsv', sep='\\t')\n",
|
84 |
-
"\n",
|
85 |
-
"#merged_pt_train_df = pd.merge(pt_train_df, pt_duration_df, left_on='path', right_on='clip', how='left')[['path', 'duration[ms]', 'client_id']].rename(columns={'duration[ms]': 'duration', 'client_id': 'label'})\n",
|
86 |
-
"#merged_pt_dev_df = pd.merge(pt_dev_df, pt_duration_df, left_on='path', right_on='clip', how='left')[['path', 'duration[ms]', 'client_id']].rename(columns={'duration[ms]': 'duration', 'client_id': 'label'})\n",
|
87 |
-
"#merged_pt_test_df = pd.merge(pt_test_df, pt_duration_df, left_on='path', right_on='clip', how='left')[['path', 'duration[ms]', 'client_id']].rename(columns={'duration[ms]': 'duration', 'client_id': 'label'})"
|
88 |
-
]
|
89 |
-
},
|
90 |
-
{
|
91 |
-
"cell_type": "code",
|
92 |
-
"execution_count": 6,
|
93 |
-
"metadata": {},
|
94 |
-
"outputs": [],
|
95 |
-
"source": [
|
96 |
-
"#merged_pt_train_df['audio_filepath'] = merged_pt_train_df['path'].apply(lambda x: os.path.join('/Users/Peng_Wei/work/mlrun_related/en_tr_pt_titanet_large/data/cv-corpus-15.0-2023-09-08/pt/clips', x))\n",
|
97 |
-
"#merged_pt_dev_df['audio_filepath'] = merged_pt_dev_df['path'].apply(lambda x: os.path.join('/Users/Peng_Wei/work/mlrun_related/en_tr_pt_titanet_large/data/cv-corpus-15.0-2023-09-08/pt/clips', x))\n",
|
98 |
-
"#merged_pt_test_df['audio_filepath'] = merged_pt_test_df['path'].apply(lambda x: os.path.join('/Users/Peng_Wei/work/mlrun_related/en_tr_pt_titanet_large/data/cv-corpus-15.0-2023-09-08/pt/clips', x))\n",
|
99 |
-
"\n",
|
100 |
-
"#merged_pt_train_df[\"audio_filepath\"] = merged_pt_train_df[\"audio_filepath\"].str.replace(\".mp3\", \".wav\")\n",
|
101 |
-
"#merged_pt_dev_df[\"audio_filepath\"] = merged_pt_dev_df[\"audio_filepath\"].str.replace(\".mp3\", \".wav\")\n",
|
102 |
-
"#merged_pt_test_df[\"audio_filepath\"] = merged_pt_test_df[\"audio_filepath\"].str.replace(\".mp3\", \".wav\")\n",
|
103 |
-
"\n",
|
104 |
-
"#merged_pt_train_df['duration'] = merged_pt_train_df['duration'].apply(lambda x: x / 1000)\n",
|
105 |
-
"#merged_pt_dev_df['duration'] = merged_pt_dev_df['duration'].apply(lambda x: x / 1000)\n",
|
106 |
-
"#merged_pt_test_df['duration'] = merged_pt_test_df['duration'].apply(lambda x: x / 1000)\n",
|
107 |
-
"\n",
|
108 |
-
"#merged_pt_train_df = merged_pt_train_df[['audio_filepath', 'duration', 'label']]\n",
|
109 |
-
"#merged_pt_dev_df = merged_pt_dev_df[['audio_filepath', 'duration', 'label']]\n",
|
110 |
-
"#merged_pt_test_df = merged_pt_test_df[['audio_filepath', 'duration', 'label']]"
|
111 |
-
]
|
112 |
-
},
|
113 |
-
{
|
114 |
-
"cell_type": "code",
|
115 |
-
"execution_count": 7,
|
116 |
-
"metadata": {},
|
117 |
-
"outputs": [
|
118 |
-
{
|
119 |
-
"data": {
|
120 |
-
"text/html": [
|
121 |
-
"<div>\n",
|
122 |
-
"<style scoped>\n",
|
123 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
124 |
-
" vertical-align: middle;\n",
|
125 |
-
" }\n",
|
126 |
-
"\n",
|
127 |
-
" .dataframe tbody tr th {\n",
|
128 |
-
" vertical-align: top;\n",
|
129 |
-
" }\n",
|
130 |
-
"\n",
|
131 |
-
" .dataframe thead th {\n",
|
132 |
-
" text-align: right;\n",
|
133 |
-
" }\n",
|
134 |
-
"</style>\n",
|
135 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
136 |
-
" <thead>\n",
|
137 |
-
" <tr style=\"text-align: right;\">\n",
|
138 |
-
" <th></th>\n",
|
139 |
-
" <th>audio_filepath</th>\n",
|
140 |
-
" <th>duration</th>\n",
|
141 |
-
" <th>label</th>\n",
|
142 |
-
" </tr>\n",
|
143 |
-
" </thead>\n",
|
144 |
-
" <tbody>\n",
|
145 |
-
" <tr>\n",
|
146 |
-
" <th>0</th>\n",
|
147 |
-
" <td>/Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti...</td>\n",
|
148 |
-
" <td>6.504</td>\n",
|
149 |
-
" <td>c1b7c535717cd09b0e3e9de74b0382d810b266e47091d8...</td>\n",
|
150 |
-
" </tr>\n",
|
151 |
-
" <tr>\n",
|
152 |
-
" <th>1</th>\n",
|
153 |
-
" <td>/Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti...</td>\n",
|
154 |
-
" <td>4.656</td>\n",
|
155 |
-
" <td>c1b7c535717cd09b0e3e9de74b0382d810b266e47091d8...</td>\n",
|
156 |
-
" </tr>\n",
|
157 |
-
" <tr>\n",
|
158 |
-
" <th>2</th>\n",
|
159 |
-
" <td>/Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti...</td>\n",
|
160 |
-
" <td>3.504</td>\n",
|
161 |
-
" <td>c1b7c535717cd09b0e3e9de74b0382d810b266e47091d8...</td>\n",
|
162 |
-
" </tr>\n",
|
163 |
-
" <tr>\n",
|
164 |
-
" <th>3</th>\n",
|
165 |
-
" <td>/Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti...</td>\n",
|
166 |
-
" <td>3.456</td>\n",
|
167 |
-
" <td>c1b7c535717cd09b0e3e9de74b0382d810b266e47091d8...</td>\n",
|
168 |
-
" </tr>\n",
|
169 |
-
" <tr>\n",
|
170 |
-
" <th>4</th>\n",
|
171 |
-
" <td>/Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti...</td>\n",
|
172 |
-
" <td>4.224</td>\n",
|
173 |
-
" <td>c1b7c535717cd09b0e3e9de74b0382d810b266e47091d8...</td>\n",
|
174 |
-
" </tr>\n",
|
175 |
-
" <tr>\n",
|
176 |
-
" <th>...</th>\n",
|
177 |
-
" <td>...</td>\n",
|
178 |
-
" <td>...</td>\n",
|
179 |
-
" <td>...</td>\n",
|
180 |
-
" </tr>\n",
|
181 |
-
" <tr>\n",
|
182 |
-
" <th>21052</th>\n",
|
183 |
-
" <td>/Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti...</td>\n",
|
184 |
-
" <td>4.860</td>\n",
|
185 |
-
" <td>d8288aee86a2a6a3ab6f3e8d4028ef097b51698b2f7392...</td>\n",
|
186 |
-
" </tr>\n",
|
187 |
-
" <tr>\n",
|
188 |
-
" <th>21053</th>\n",
|
189 |
-
" <td>/Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti...</td>\n",
|
190 |
-
" <td>2.196</td>\n",
|
191 |
-
" <td>d8288aee86a2a6a3ab6f3e8d4028ef097b51698b2f7392...</td>\n",
|
192 |
-
" </tr>\n",
|
193 |
-
" <tr>\n",
|
194 |
-
" <th>21054</th>\n",
|
195 |
-
" <td>/Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti...</td>\n",
|
196 |
-
" <td>2.124</td>\n",
|
197 |
-
" <td>d8288aee86a2a6a3ab6f3e8d4028ef097b51698b2f7392...</td>\n",
|
198 |
-
" </tr>\n",
|
199 |
-
" <tr>\n",
|
200 |
-
" <th>21055</th>\n",
|
201 |
-
" <td>/Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti...</td>\n",
|
202 |
-
" <td>1.908</td>\n",
|
203 |
-
" <td>d8288aee86a2a6a3ab6f3e8d4028ef097b51698b2f7392...</td>\n",
|
204 |
-
" </tr>\n",
|
205 |
-
" <tr>\n",
|
206 |
-
" <th>21056</th>\n",
|
207 |
-
" <td>/Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti...</td>\n",
|
208 |
-
" <td>5.436</td>\n",
|
209 |
-
" <td>d8288aee86a2a6a3ab6f3e8d4028ef097b51698b2f7392...</td>\n",
|
210 |
-
" </tr>\n",
|
211 |
-
" </tbody>\n",
|
212 |
-
"</table>\n",
|
213 |
-
"<p>21057 rows × 3 columns</p>\n",
|
214 |
-
"</div>"
|
215 |
-
],
|
216 |
-
"text/plain": [
|
217 |
-
" audio_filepath duration \\\n",
|
218 |
-
"0 /Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti... 6.504 \n",
|
219 |
-
"1 /Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti... 4.656 \n",
|
220 |
-
"2 /Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti... 3.504 \n",
|
221 |
-
"3 /Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti... 3.456 \n",
|
222 |
-
"4 /Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti... 4.224 \n",
|
223 |
-
"... ... ... \n",
|
224 |
-
"21052 /Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti... 4.860 \n",
|
225 |
-
"21053 /Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti... 2.196 \n",
|
226 |
-
"21054 /Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti... 2.124 \n",
|
227 |
-
"21055 /Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti... 1.908 \n",
|
228 |
-
"21056 /Users/Peng_Wei/work/mlrun_related/en_tr_pt_ti... 5.436 \n",
|
229 |
-
"\n",
|
230 |
-
" label \n",
|
231 |
-
"0 c1b7c535717cd09b0e3e9de74b0382d810b266e47091d8... \n",
|
232 |
-
"1 c1b7c535717cd09b0e3e9de74b0382d810b266e47091d8... \n",
|
233 |
-
"2 c1b7c535717cd09b0e3e9de74b0382d810b266e47091d8... \n",
|
234 |
-
"3 c1b7c535717cd09b0e3e9de74b0382d810b266e47091d8... \n",
|
235 |
-
"4 c1b7c535717cd09b0e3e9de74b0382d810b266e47091d8... \n",
|
236 |
-
"... ... \n",
|
237 |
-
"21052 d8288aee86a2a6a3ab6f3e8d4028ef097b51698b2f7392... \n",
|
238 |
-
"21053 d8288aee86a2a6a3ab6f3e8d4028ef097b51698b2f7392... \n",
|
239 |
-
"21054 d8288aee86a2a6a3ab6f3e8d4028ef097b51698b2f7392... \n",
|
240 |
-
"21055 d8288aee86a2a6a3ab6f3e8d4028ef097b51698b2f7392... \n",
|
241 |
-
"21056 d8288aee86a2a6a3ab6f3e8d4028ef097b51698b2f7392... \n",
|
242 |
-
"\n",
|
243 |
-
"[21057 rows x 3 columns]"
|
244 |
-
]
|
245 |
-
},
|
246 |
-
"execution_count": 7,
|
247 |
-
"metadata": {},
|
248 |
-
"output_type": "execute_result"
|
249 |
-
}
|
250 |
-
],
|
251 |
-
"source": [
|
252 |
-
"#merged_pt_train_df"
|
253 |
-
]
|
254 |
-
},
|
255 |
-
{
|
256 |
-
"cell_type": "code",
|
257 |
-
"execution_count": 4,
|
258 |
-
"metadata": {
|
259 |
-
"colab": {},
|
260 |
-
"colab_type": "code",
|
261 |
-
"id": "vnrUh3vuDSRN"
|
262 |
-
},
|
263 |
-
"outputs": [],
|
264 |
-
"source": [
|
265 |
-
"import pandas as pd\n",
|
266 |
-
"import os\n",
|
267 |
-
"# prepare the train, dev, test dataset for Turkish language\n",
|
268 |
-
"tr_duration_df = pd.read_csv('data/cv-corpus-15.0-2023-09-08/tr/clip_durations.tsv', sep='\\t')\n",
|
269 |
-
"tr_train_df = pd.read_csv('data/cv-corpus-15.0-2023-09-08/tr/train.tsv', sep='\\t')\n",
|
270 |
-
"tr_dev_df = pd.read_csv('data/cv-corpus-15.0-2023-09-08/tr/dev.tsv', sep='\\t')\n",
|
271 |
-
"tr_test_df = pd.read_csv('data/cv-corpus-15.0-2023-09-08/tr/test.tsv', sep='\\t')\n",
|
272 |
-
"\n",
|
273 |
-
"merged_tr_train_df = pd.merge(tr_train_df, tr_duration_df, left_on='path', right_on='clip', how='left')[['path', 'duration[ms]', 'client_id']].rename(columns={'duration[ms]': 'duration', 'client_id': 'label'})\n",
|
274 |
-
"merged_tr_dev_df = pd.merge(tr_dev_df, tr_duration_df, left_on='path', right_on='clip', how='left')[['path', 'duration[ms]', 'client_id']].rename(columns={'duration[ms]': 'duration', 'client_id': 'label'})\n",
|
275 |
-
"merged_tr_test_df = pd.merge(tr_test_df, tr_duration_df, left_on='path', right_on='clip', how='left')[['path', 'duration[ms]', 'client_id']].rename(columns={'duration[ms]': 'duration', 'client_id': 'label'})"
|
276 |
-
]
|
277 |
-
},
|
278 |
-
{
|
279 |
-
"cell_type": "code",
|
280 |
-
"execution_count": 5,
|
281 |
-
"metadata": {},
|
282 |
-
"outputs": [
|
283 |
-
{
|
284 |
-
"name": "stderr",
|
285 |
-
"output_type": "stream",
|
286 |
-
"text": [
|
287 |
-
"<ipython-input-5-81ac8797cb7a>:5: FutureWarning: The default value of regex will change from True to False in a future version.\n",
|
288 |
-
" merged_tr_train_df[\"audio_filepath\"] = merged_tr_train_df[\"audio_filepath\"].str.replace(\".mp3\", \".wav\")\n",
|
289 |
-
"<ipython-input-5-81ac8797cb7a>:6: FutureWarning: The default value of regex will change from True to False in a future version.\n",
|
290 |
-
" merged_tr_dev_df[\"audio_filepath\"] = merged_tr_dev_df[\"audio_filepath\"].str.replace(\".mp3\", \".wav\")\n",
|
291 |
-
"<ipython-input-5-81ac8797cb7a>:7: FutureWarning: The default value of regex will change from True to False in a future version.\n",
|
292 |
-
" merged_tr_test_df[\"audio_filepath\"] = merged_tr_test_df[\"audio_filepath\"].str.replace(\".mp3\", \".wav\")\n"
|
293 |
-
]
|
294 |
-
}
|
295 |
-
],
|
296 |
-
"source": [
|
297 |
-
"\n",
|
298 |
-
"merged_tr_train_df['audio_filepath'] = merged_tr_train_df['path'].apply(lambda x: os.path.join('/Users/en_tr_pt_titanet_large/data/cv-corpus-15.0-2023-09-08/tr/clips', x))\n",
|
299 |
-
"merged_tr_dev_df['audio_filepath'] = merged_tr_dev_df['path'].apply(lambda x: os.path.join('/User/en_tr_pt_titanet_large/data/cv-corpus-15.0-2023-09-08/tr/clips', x))\n",
|
300 |
-
"merged_tr_test_df['audio_filepath'] = merged_tr_test_df['path'].apply(lambda x: os.path.join('/User/en_tr_pt_titanet_large/data/cv-corpus-15.0-2023-09-08/tr/clips', x))\n",
|
301 |
-
"\n",
|
302 |
-
"merged_tr_train_df[\"audio_filepath\"] = merged_tr_train_df[\"audio_filepath\"].str.replace(\".mp3\", \".wav\")\n",
|
303 |
-
"merged_tr_dev_df[\"audio_filepath\"] = merged_tr_dev_df[\"audio_filepath\"].str.replace(\".mp3\", \".wav\")\n",
|
304 |
-
"merged_tr_test_df[\"audio_filepath\"] = merged_tr_test_df[\"audio_filepath\"].str.replace(\".mp3\", \".wav\")\n",
|
305 |
-
"\n",
|
306 |
-
"merged_tr_train_df['duration'] = merged_tr_train_df['duration'].apply(lambda x: x / 1000)\n",
|
307 |
-
"merged_tr_dev_df['duration'] = merged_tr_dev_df['duration'].apply(lambda x: x / 1000)\n",
|
308 |
-
"merged_tr_test_df['duration'] = merged_tr_test_df['duration'].apply(lambda x: x / 1000)\n",
|
309 |
-
"\n",
|
310 |
-
"merged_tr_train_df = merged_tr_train_df[['audio_filepath', 'duration', 'label']]\n",
|
311 |
-
"merged_tr_dev_df = merged_tr_dev_df[['audio_filepath', 'duration', 'label']]\n",
|
312 |
-
"merged_tr_test_df = merged_tr_test_df[['audio_filepath', 'duration', 'label']]"
|
313 |
-
]
|
314 |
-
},
|
315 |
-
{
|
316 |
-
"cell_type": "code",
|
317 |
-
"execution_count": 7,
|
318 |
-
"metadata": {},
|
319 |
-
"outputs": [],
|
320 |
-
"source": [
|
321 |
-
"merged_tr_train_df.to_json('data/cv-corpus-15.0-2023-09-08/tr/train.json', orient='records', lines=True)\n",
|
322 |
-
"merged_tr_dev_df.to_json('data/cv-corpus-15.0-2023-09-08/tr/dev.json', orient='records', lines=True)\n",
|
323 |
-
"merged_tr_test_df.to_json('data/cv-corpus-15.0-2023-09-08/tr/test.json', orient='records', lines=True)\n",
|
324 |
-
"\n",
|
325 |
-
"#merged_pt_train_df.to_json('data/cv-corpus-15.0-2023-09-08/pt/train.json', orient='records', lines=True)\n",
|
326 |
-
"#merged_pt_dev_df.to_json('data/cv-corpus-15.0-2023-09-08/pt/dev.json', orient='records', lines=True)\n",
|
327 |
-
"#merged_pt_test_df.to_json('data/cv-corpus-15.0-2023-09-08/pt/test.json', orient='records', lines=True)\n"
|
328 |
-
]
|
329 |
-
},
|
330 |
-
{
|
331 |
-
"cell_type": "code",
|
332 |
-
"execution_count": 8,
|
333 |
-
"metadata": {},
|
334 |
-
"outputs": [
|
335 |
-
{
|
336 |
-
"name": "stdout",
|
337 |
-
"output_type": "stream",
|
338 |
-
"text": [
|
339 |
-
"name: TitaNet-Finetune\n",
|
340 |
-
"sample_rate: 16000\n",
|
341 |
-
"init_from_pretrained_model:\n",
|
342 |
-
" speaker_tasks:\n",
|
343 |
-
" name: titanet_large\n",
|
344 |
-
" include:\n",
|
345 |
-
" - preprocessor\n",
|
346 |
-
" - encoder\n",
|
347 |
-
" exclude:\n",
|
348 |
-
" - decoder.final\n",
|
349 |
-
"model:\n",
|
350 |
-
" train_ds:\n",
|
351 |
-
" manifest_filepath: ???\n",
|
352 |
-
" sample_rate: 16000\n",
|
353 |
-
" labels: null\n",
|
354 |
-
" batch_size: 64\n",
|
355 |
-
" shuffle: true\n",
|
356 |
-
" is_tarred: false\n",
|
357 |
-
" tarred_audio_filepaths: null\n",
|
358 |
-
" tarred_shard_strategy: scatter\n",
|
359 |
-
" augmentor:\n",
|
360 |
-
" speed:\n",
|
361 |
-
" prob: 0.3\n",
|
362 |
-
" sr: 16000\n",
|
363 |
-
" resample_type: kaiser_fast\n",
|
364 |
-
" min_speed_rate: 0.95\n",
|
365 |
-
" max_speed_rate: 1.05\n",
|
366 |
-
" validation_ds:\n",
|
367 |
-
" manifest_filepath: ???\n",
|
368 |
-
" sample_rate: 16000\n",
|
369 |
-
" labels: null\n",
|
370 |
-
" batch_size: 128\n",
|
371 |
-
" shuffle: false\n",
|
372 |
-
" test_ds:\n",
|
373 |
-
" manifest_filepath: ???\n",
|
374 |
-
" sample_rate: 16000\n",
|
375 |
-
" labels: null\n",
|
376 |
-
" batch_size: 1\n",
|
377 |
-
" shuffle: false\n",
|
378 |
-
" embedding_dir: ./embeddings\n",
|
379 |
-
" model_defaults:\n",
|
380 |
-
" filters: 1024\n",
|
381 |
-
" repeat: 3\n",
|
382 |
-
" dropout: 0.1\n",
|
383 |
-
" separable: true\n",
|
384 |
-
" se: true\n",
|
385 |
-
" se_context_size: -1\n",
|
386 |
-
" kernel_size_factor: 1.0\n",
|
387 |
-
" preprocessor:\n",
|
388 |
-
" _target_: nemo.collections.asr.modules.AudioToMelSpectrogramPreprocessor\n",
|
389 |
-
" normalize: per_feature\n",
|
390 |
-
" window_size: 0.025\n",
|
391 |
-
" sample_rate: 16000\n",
|
392 |
-
" window_stride: 0.01\n",
|
393 |
-
" window: hann\n",
|
394 |
-
" features: 80\n",
|
395 |
-
" n_fft: 512\n",
|
396 |
-
" frame_splicing: 1\n",
|
397 |
-
" dither: 1.0e-05\n",
|
398 |
-
" encoder:\n",
|
399 |
-
" _target_: nemo.collections.asr.modules.ConvASREncoder\n",
|
400 |
-
" feat_in: 80\n",
|
401 |
-
" activation: relu\n",
|
402 |
-
" conv_mask: true\n",
|
403 |
-
" jasper:\n",
|
404 |
-
" - filters: ${model.model_defaults.filters}\n",
|
405 |
-
" repeat: 1\n",
|
406 |
-
" kernel:\n",
|
407 |
-
" - 3\n",
|
408 |
-
" stride:\n",
|
409 |
-
" - 1\n",
|
410 |
-
" dilation:\n",
|
411 |
-
" - 1\n",
|
412 |
-
" dropout: 0.0\n",
|
413 |
-
" residual: false\n",
|
414 |
-
" separable: ${model.model_defaults.separable}\n",
|
415 |
-
" se: ${model.model_defaults.se}\n",
|
416 |
-
" se_context_size: ${model.model_defaults.se_context_size}\n",
|
417 |
-
" - filters: ${model.model_defaults.filters}\n",
|
418 |
-
" repeat: ${model.model_defaults.repeat}\n",
|
419 |
-
" kernel:\n",
|
420 |
-
" - 7\n",
|
421 |
-
" stride:\n",
|
422 |
-
" - 1\n",
|
423 |
-
" dilation:\n",
|
424 |
-
" - 1\n",
|
425 |
-
" dropout: ${model.model_defaults.dropout}\n",
|
426 |
-
" residual: true\n",
|
427 |
-
" separable: ${model.model_defaults.separable}\n",
|
428 |
-
" se: ${model.model_defaults.se}\n",
|
429 |
-
" se_context_size: ${model.model_defaults.se_context_size}\n",
|
430 |
-
" - filters: ${model.model_defaults.filters}\n",
|
431 |
-
" repeat: ${model.model_defaults.repeat}\n",
|
432 |
-
" kernel:\n",
|
433 |
-
" - 11\n",
|
434 |
-
" stride:\n",
|
435 |
-
" - 1\n",
|
436 |
-
" dilation:\n",
|
437 |
-
" - 1\n",
|
438 |
-
" dropout: ${model.model_defaults.dropout}\n",
|
439 |
-
" residual: true\n",
|
440 |
-
" separable: ${model.model_defaults.separable}\n",
|
441 |
-
" se: ${model.model_defaults.se}\n",
|
442 |
-
" se_context_size: ${model.model_defaults.se_context_size}\n",
|
443 |
-
" - filters: ${model.model_defaults.filters}\n",
|
444 |
-
" repeat: ${model.model_defaults.repeat}\n",
|
445 |
-
" kernel:\n",
|
446 |
-
" - 15\n",
|
447 |
-
" stride:\n",
|
448 |
-
" - 1\n",
|
449 |
-
" dilation:\n",
|
450 |
-
" - 1\n",
|
451 |
-
" dropout: ${model.model_defaults.dropout}\n",
|
452 |
-
" residual: true\n",
|
453 |
-
" separable: ${model.model_defaults.separable}\n",
|
454 |
-
" se: ${model.model_defaults.se}\n",
|
455 |
-
" se_context_size: ${model.model_defaults.se_context_size}\n",
|
456 |
-
" - filters: 3072\n",
|
457 |
-
" repeat: 1\n",
|
458 |
-
" kernel:\n",
|
459 |
-
" - 1\n",
|
460 |
-
" stride:\n",
|
461 |
-
" - 1\n",
|
462 |
-
" dilation:\n",
|
463 |
-
" - 1\n",
|
464 |
-
" dropout: 0.0\n",
|
465 |
-
" residual: false\n",
|
466 |
-
" separable: ${model.model_defaults.separable}\n",
|
467 |
-
" se: ${model.model_defaults.se}\n",
|
468 |
-
" se_context_size: ${model.model_defaults.se_context_size}\n",
|
469 |
-
" decoder:\n",
|
470 |
-
" _target_: nemo.collections.asr.modules.SpeakerDecoder\n",
|
471 |
-
" feat_in: 3072\n",
|
472 |
-
" num_classes: ???\n",
|
473 |
-
" pool_mode: attention\n",
|
474 |
-
" emb_sizes: 192\n",
|
475 |
-
" loss:\n",
|
476 |
-
" _target_: nemo.collections.asr.losses.angularloss.AngularSoftmaxLoss\n",
|
477 |
-
" scale: 30\n",
|
478 |
-
" margin: 0.2\n",
|
479 |
-
" optim_param_groups:\n",
|
480 |
-
" encoder:\n",
|
481 |
-
" lr: 0.001\n",
|
482 |
-
" optim:\n",
|
483 |
-
" name: adamw\n",
|
484 |
-
" lr: 0.0001\n",
|
485 |
-
" weight_decay: 0.0002\n",
|
486 |
-
" sched:\n",
|
487 |
-
" name: CosineAnnealing\n",
|
488 |
-
" warmup_ratio: 0.1\n",
|
489 |
-
" min_lr: 0.0\n",
|
490 |
-
"trainer:\n",
|
491 |
-
" devices: 1\n",
|
492 |
-
" max_epochs: 10\n",
|
493 |
-
" max_steps: -1\n",
|
494 |
-
" num_nodes: 1\n",
|
495 |
-
" accelerator: gpu\n",
|
496 |
-
" strategy: ddp\n",
|
497 |
-
" deterministic: true\n",
|
498 |
-
" enable_checkpointing: false\n",
|
499 |
-
" logger: false\n",
|
500 |
-
" log_every_n_steps: 1\n",
|
501 |
-
" val_check_interval: 1.0\n",
|
502 |
-
" gradient_clip_val: 1.0\n",
|
503 |
-
"exp_manager:\n",
|
504 |
-
" exp_dir: null\n",
|
505 |
-
" name: TitaNet-Finetune\n",
|
506 |
-
" create_tensorboard_logger: true\n",
|
507 |
-
" create_checkpoint_callback: true\n",
|
508 |
-
"\n"
|
509 |
-
]
|
510 |
-
}
|
511 |
-
],
|
512 |
-
"source": [
|
513 |
-
"# Set up the config for fine-tuning\n",
|
514 |
-
"from omegaconf import OmegaConf\n",
|
515 |
-
"finetune_config = OmegaConf.load(\"conf/titanet-finetune.yaml\")\n",
|
516 |
-
"print(OmegaConf.to_yaml(finetune_config))\n"
|
517 |
-
]
|
518 |
-
},
|
519 |
-
{
|
520 |
-
"cell_type": "code",
|
521 |
-
"execution_count": 2,
|
522 |
-
"metadata": {},
|
523 |
-
"outputs": [],
|
524 |
-
"source": [
|
525 |
-
"# Fine-tune the model with Portuguese language\n",
|
526 |
-
"\n",
|
527 |
-
"import torch\n",
|
528 |
-
"import pytorch_lightning as pl\n",
|
529 |
-
"import nemo\n",
|
530 |
-
"import nemo.collections.asr as nemo_asr\n",
|
531 |
-
"from omegaconf import OmegaConf\n",
|
532 |
-
"from nemo.utils.exp_manager import exp_manager\n"
|
533 |
-
]
|
534 |
-
},
|
535 |
-
{
|
536 |
-
"cell_type": "code",
|
537 |
-
"execution_count": 4,
|
538 |
-
"metadata": {},
|
539 |
-
"outputs": [],
|
540 |
-
"source": [
|
541 |
-
"pt_config = OmegaConf.load(\"conf/titanet-finetune.yaml\")\n",
|
542 |
-
"## set up the trainer\n",
|
543 |
-
"accelerator = 'gpu' if torch.cuda.is_available() else 'cpu'\n",
|
544 |
-
"\n",
|
545 |
-
"pt_trainer_config = OmegaConf.create(dict(\n",
|
546 |
-
" devices=4,\n",
|
547 |
-
" accelerator=accelerator,\n",
|
548 |
-
" max_epochs=5,\n",
|
549 |
-
" max_steps=-1, # computed at runtime if not set\n",
|
550 |
-
" num_nodes=1,\n",
|
551 |
-
" accumulate_grad_batches=1,\n",
|
552 |
-
" enable_checkpointing=False, # Provided by exp_manager\n",
|
553 |
-
" logger=False, # Provided by exp_manager\n",
|
554 |
-
" log_every_n_steps=1, # Interval of logging.\n",
|
555 |
-
" val_check_interval=1.0, # Set to 0.25 to check 4 times per epoch, or an int for number of iterations\n",
|
556 |
-
"))\n",
|
557 |
-
"print(OmegaConf.to_yaml(pt_trainer_config))\n",
|
558 |
-
"pt_trainer_finetune = pl.Trainer(**pt_trainer_config)"
|
559 |
-
]
|
560 |
-
},
|
561 |
-
{
|
562 |
-
"cell_type": "code",
|
563 |
-
"execution_count": null,
|
564 |
-
"metadata": {},
|
565 |
-
"outputs": [],
|
566 |
-
"source": [
|
567 |
-
"#set up the nemo experiment for logging and monitoring purpose\n",
|
568 |
-
"log_dir_finetune = exp_manager(trainer=pt_trainer_finetune, config=pt_config, name='titanet_finetune_pt').get_save_dir()"
|
569 |
-
]
|
570 |
-
},
|
571 |
-
{
|
572 |
-
"cell_type": "code",
|
573 |
-
"execution_count": 8,
|
574 |
-
"metadata": {},
|
575 |
-
"outputs": [],
|
576 |
-
"source": [
|
577 |
-
"# set up the manifest file for Portuguese language\n",
|
578 |
-
"pt_config.model.train_ds.manifest_filepath = 'data/cv-corpus-15.0-2023-09-08/pt/train.json'\n",
|
579 |
-
"pt_config.model.validation_ds.manifest_filepath = 'data/cv-corpus-15.0-2023-09-08/pt/dev.json'\n",
|
580 |
-
"pt_config.model.test_ds.manifest_filepath = 'data/cv-corpus-15.0-2023-09-08/pt/test.json'\n",
|
581 |
-
"pt_config.model.decoder.num_classes = merged_pt_train_df['label'].nunique()"
|
582 |
-
]
|
583 |
-
},
|
584 |
-
{
|
585 |
-
"cell_type": "code",
|
586 |
-
"execution_count": null,
|
587 |
-
"metadata": {},
|
588 |
-
"outputs": [],
|
589 |
-
"source": [
|
590 |
-
"# set up the model for Portuguese language and train the model\n",
|
591 |
-
"speaker_model = nemo_asr.models.EncDecSpeakerLabelModel(cfg=pt_config.model, trainer=trainer_finetune)\n",
|
592 |
-
"speaker_model.maybe_init_from_pretrained_checkpoint(pt_config)\n",
|
593 |
-
"\n",
|
594 |
-
"pt_trainer_finetune.fit(speaker_model)\n"
|
595 |
-
]
|
596 |
-
},
|
597 |
-
{
|
598 |
-
"cell_type": "code",
|
599 |
-
"execution_count": null,
|
600 |
-
"metadata": {},
|
601 |
-
"outputs": [],
|
602 |
-
"source": [
|
603 |
-
"# Save the model after fine-tuning with Portuguese language\n",
|
604 |
-
"speaker_model.save_to('titanet_finetune_pt.nemo')"
|
605 |
-
]
|
606 |
-
},
|
607 |
-
{
|
608 |
-
"cell_type": "code",
|
609 |
-
"execution_count": 16,
|
610 |
-
"metadata": {},
|
611 |
-
"outputs": [
|
612 |
-
{
|
613 |
-
"name": "stdout",
|
614 |
-
"output_type": "stream",
|
615 |
-
"text": [
|
616 |
-
"devices: 1\n",
|
617 |
-
"accelerator: cpu\n",
|
618 |
-
"max_epochs: 5\n",
|
619 |
-
"max_steps: -1\n",
|
620 |
-
"num_nodes: 1\n",
|
621 |
-
"accumulate_grad_batches: 1\n",
|
622 |
-
"enable_checkpointing: false\n",
|
623 |
-
"logger: false\n",
|
624 |
-
"log_every_n_steps: 1\n",
|
625 |
-
"val_check_interval: 1.0\n",
|
626 |
-
"\n"
|
627 |
-
]
|
628 |
-
},
|
629 |
-
{
|
630 |
-
"name": "stderr",
|
631 |
-
"output_type": "stream",
|
632 |
-
"text": [
|
633 |
-
"GPU available: False, used: False\n",
|
634 |
-
"TPU available: False, using: 0 TPU cores\n",
|
635 |
-
"IPU available: False, using: 0 IPUs\n",
|
636 |
-
"HPU available: False, using: 0 HPUs\n",
|
637 |
-
"`Trainer(val_check_interval=1.0)` was configured so validation will run at the end of the training epoch..\n"
|
638 |
-
]
|
639 |
-
},
|
640 |
-
{
|
641 |
-
"name": "stdout",
|
642 |
-
"output_type": "stream",
|
643 |
-
"text": [
|
644 |
-
"[NeMo I 2023-09-25 05:15:08 exp_manager:381] Experiments will be logged at /User/en_tr_pt_titanet_large/nemo_experiments/TitaNet-Finetune/2023-09-25_04-36-46\n",
|
645 |
-
"[NeMo I 2023-09-25 05:15:08 exp_manager:815] TensorboardLogger has been set up\n",
|
646 |
-
"[NeMo I 2023-09-25 05:15:08 exp_manager:930] Preemption is supported only on GPUs, disabling preemption\n",
|
647 |
-
"[NeMo I 2023-09-25 05:31:31 collections:301] Filtered duration for loading collection is 0.00 hours.\n",
|
648 |
-
"[NeMo I 2023-09-25 05:31:31 collections:302] Dataset loaded with 31094 items, total duration of 29.37 hours.\n",
|
649 |
-
"[NeMo I 2023-09-25 05:31:31 collections:304] # 31094 files loaded accounting to # 24 labels\n"
|
650 |
-
]
|
651 |
-
},
|
652 |
-
{
|
653 |
-
"name": "stderr",
|
654 |
-
"output_type": "stream",
|
655 |
-
"text": [
|
656 |
-
"[NeMo W 2023-09-25 05:31:31 label_models:187] Total number of 24 found in all the manifest files.\n"
|
657 |
-
]
|
658 |
-
},
|
659 |
-
{
|
660 |
-
"name": "stdout",
|
661 |
-
"output_type": "stream",
|
662 |
-
"text": [
|
663 |
-
"[NeMo I 2023-09-25 05:31:31 collections:301] Filtered duration for loading collection is 0.00 hours.\n",
|
664 |
-
"[NeMo I 2023-09-25 05:31:31 collections:302] Dataset loaded with 31094 items, total duration of 29.37 hours.\n",
|
665 |
-
"[NeMo I 2023-09-25 05:31:31 collections:304] # 31094 files loaded accounting to # 24 labels\n",
|
666 |
-
"[NeMo I 2023-09-25 05:31:31 collections:301] Filtered duration for loading collection is 0.00 hours.\n",
|
667 |
-
"[NeMo I 2023-09-25 05:31:31 collections:302] Dataset loaded with 10502 items, total duration of 10.23 hours.\n",
|
668 |
-
"[NeMo I 2023-09-25 05:31:31 collections:304] # 10502 files loaded accounting to # 128 labels\n",
|
669 |
-
"[NeMo I 2023-09-25 05:31:31 collections:301] Filtered duration for loading collection is 0.00 hours.\n",
|
670 |
-
"[NeMo I 2023-09-25 05:31:31 collections:302] Dataset loaded with 10880 items, total duration of 12.25 hours.\n",
|
671 |
-
"[NeMo I 2023-09-25 05:31:31 collections:304] # 10880 files loaded accounting to # 1244 labels\n",
|
672 |
-
"[NeMo I 2023-09-25 05:31:31 features:289] PADDING: 16\n",
|
673 |
-
"[NeMo I 2023-09-25 05:31:32 cloud:68] Downloading from: https://api.ngc.nvidia.com/v2/models/nvidia/nemo/titanet_large/versions/v1/files/titanet-l.nemo to /User/.cache/torch/NeMo/NeMo_1.21.0rc0/titanet-l/11ba0924fdf87c049e339adbf6899d48/titanet-l.nemo\n",
|
674 |
-
"[NeMo I 2023-09-25 05:31:38 common:913] Instantiating model from pre-trained checkpoint\n"
|
675 |
-
]
|
676 |
-
},
|
677 |
-
{
|
678 |
-
"name": "stderr",
|
679 |
-
"output_type": "stream",
|
680 |
-
"text": [
|
681 |
-
"[NeMo W 2023-09-25 05:31:38 modelPT:161] If you intend to do training or fine-tuning, please call the ModelPT.setup_training_data() method and provide a valid configuration file to setup the train data loader.\n",
|
682 |
-
" Train config : \n",
|
683 |
-
" manifest_filepath: /manifests/combined_fisher_swbd_voxceleb12_librispeech/train.json\n",
|
684 |
-
" sample_rate: 16000\n",
|
685 |
-
" labels: null\n",
|
686 |
-
" batch_size: 64\n",
|
687 |
-
" shuffle: true\n",
|
688 |
-
" is_tarred: false\n",
|
689 |
-
" tarred_audio_filepaths: null\n",
|
690 |
-
" tarred_shard_strategy: scatter\n",
|
691 |
-
" augmentor:\n",
|
692 |
-
" noise:\n",
|
693 |
-
" manifest_path: /manifests/noise/rir_noise_manifest.json\n",
|
694 |
-
" prob: 0.5\n",
|
695 |
-
" min_snr_db: 0\n",
|
696 |
-
" max_snr_db: 15\n",
|
697 |
-
" speed:\n",
|
698 |
-
" prob: 0.5\n",
|
699 |
-
" sr: 16000\n",
|
700 |
-
" resample_type: kaiser_fast\n",
|
701 |
-
" min_speed_rate: 0.95\n",
|
702 |
-
" max_speed_rate: 1.05\n",
|
703 |
-
" num_workers: 15\n",
|
704 |
-
" pin_memory: true\n",
|
705 |
-
" \n",
|
706 |
-
"[NeMo W 2023-09-25 05:31:38 modelPT:168] If you intend to do validation, please call the ModelPT.setup_validation_data() or ModelPT.setup_multiple_validation_data() method and provide a valid configuration file to setup the validation data loader(s). \n",
|
707 |
-
" Validation config : \n",
|
708 |
-
" manifest_filepath: /manifests/combined_fisher_swbd_voxceleb12_librispeech/dev.json\n",
|
709 |
-
" sample_rate: 16000\n",
|
710 |
-
" labels: null\n",
|
711 |
-
" batch_size: 128\n",
|
712 |
-
" shuffle: false\n",
|
713 |
-
" num_workers: 15\n",
|
714 |
-
" pin_memory: true\n",
|
715 |
-
" \n"
|
716 |
-
]
|
717 |
-
},
|
718 |
-
{
|
719 |
-
"name": "stdout",
|
720 |
-
"output_type": "stream",
|
721 |
-
"text": [
|
722 |
-
"[NeMo I 2023-09-25 05:31:38 features:289] PADDING: 16\n",
|
723 |
-
"[NeMo I 2023-09-25 05:31:39 save_restore_connector:249] Model EncDecSpeakerLabelModel was successfully restored from /User/.cache/torch/NeMo/NeMo_1.21.0rc0/titanet-l/11ba0924fdf87c049e339adbf6899d48/titanet-l.nemo.\n",
|
724 |
-
"[NeMo I 2023-09-25 05:31:39 modelPT:1151] Model checkpoint partially restored from pretrained checkpoint with name `titanet_large`\n",
|
725 |
-
"[NeMo I 2023-09-25 05:31:39 modelPT:1153] The following parameters were excluded when loading from pretrained checkpoint with name `titanet_large` : ['decoder.final.weight']\n",
|
726 |
-
"[NeMo I 2023-09-25 05:31:39 modelPT:1156] Make sure that this is what you wanted!\n",
|
727 |
-
"[NeMo I 2023-09-25 05:31:39 modelPT:735] Optimizer config = AdamW (\n",
|
728 |
-
" Parameter Group 0\n",
|
729 |
-
" amsgrad: False\n",
|
730 |
-
" betas: (0.9, 0.999)\n",
|
731 |
-
" capturable: False\n",
|
732 |
-
" eps: 1e-08\n",
|
733 |
-
" foreach: None\n",
|
734 |
-
" lr: 0.0001\n",
|
735 |
-
" maximize: False\n",
|
736 |
-
" weight_decay: 0.0002\n",
|
737 |
-
" \n",
|
738 |
-
" Parameter Group 1\n",
|
739 |
-
" amsgrad: False\n",
|
740 |
-
" betas: (0.9, 0.999)\n",
|
741 |
-
" capturable: False\n",
|
742 |
-
" eps: 1e-08\n",
|
743 |
-
" foreach: None\n",
|
744 |
-
" lr: 0.001\n",
|
745 |
-
" maximize: False\n",
|
746 |
-
" weight_decay: 0.0002\n",
|
747 |
-
" )\n",
|
748 |
-
"[NeMo I 2023-09-25 05:31:39 lr_scheduler:910] Scheduler \"<nemo.core.optim.lr_scheduler.CosineAnnealing object at 0x7fc250660ac0>\" \n",
|
749 |
-
" will be used during training (effective maximum steps = 2430) - \n",
|
750 |
-
" Parameters : \n",
|
751 |
-
" (warmup_ratio: 0.1\n",
|
752 |
-
" min_lr: 0.0\n",
|
753 |
-
" max_steps: 2430\n",
|
754 |
-
" )\n"
|
755 |
-
]
|
756 |
-
},
|
757 |
-
{
|
758 |
-
"name": "stderr",
|
759 |
-
"output_type": "stream",
|
760 |
-
"text": [
|
761 |
-
"\n",
|
762 |
-
" | Name | Type | Params\n",
|
763 |
-
"----------------------------------------------------------------------\n",
|
764 |
-
"0 | loss | AngularSoftmaxLoss | 0 \n",
|
765 |
-
"1 | eval_loss | AngularSoftmaxLoss | 0 \n",
|
766 |
-
"2 | _accuracy | TopKClassificationAccuracy | 0 \n",
|
767 |
-
"3 | preprocessor | AudioToMelSpectrogramPreprocessor | 0 \n",
|
768 |
-
"4 | encoder | ConvASREncoder | 19.4 M\n",
|
769 |
-
"5 | decoder | SpeakerDecoder | 2.8 M \n",
|
770 |
-
"6 | _macro_accuracy | MulticlassAccuracy | 0 \n",
|
771 |
-
"----------------------------------------------------------------------\n",
|
772 |
-
"22.1 M Trainable params\n",
|
773 |
-
"0 Non-trainable params\n",
|
774 |
-
"22.1 M Total params\n",
|
775 |
-
"88.508 Total estimated model params size (MB)\n"
|
776 |
-
]
|
777 |
-
},
|
778 |
-
{
|
779 |
-
"data": {
|
780 |
-
"application/vnd.jupyter.widget-view+json": {
|
781 |
-
"model_id": "8a6fa6c7b4214098b48c00a8562b8051",
|
782 |
-
"version_major": 2,
|
783 |
-
"version_minor": 0
|
784 |
-
},
|
785 |
-
"text/plain": [
|
786 |
-
"Sanity Checking: 0it [00:00, ?it/s]"
|
787 |
-
]
|
788 |
-
},
|
789 |
-
"metadata": {},
|
790 |
-
"output_type": "display_data"
|
791 |
-
},
|
792 |
-
{
|
793 |
-
"name": "stderr",
|
794 |
-
"output_type": "stream",
|
795 |
-
"text": [
|
796 |
-
"[NeMo W 2023-09-25 05:31:39 nemo_logging:349] /User/.conda/envs/transcribe/lib/python3.9/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:438: PossibleUserWarning: The dataloader, val_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 16 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.\n",
|
797 |
-
" rank_zero_warn(\n",
|
798 |
-
" \n",
|
799 |
-
"[NeMo E 2023-09-25 05:31:39 segment:249] Loading /User/en_tr_pt_titanet_large/data/cv-corpus-15.0-2023-09-08/tr/clips/common_voice_tr_26644120.wav via SoundFile raised RuntimeError: `Error opening '/User/en_tr_pt_titanet_large/data/cv-corpus-15.0-2023-09-08/tr/clips/common_voice_tr_26644120.wav': System error.`. NeMo will fallback to loading via pydub.\n"
|
800 |
-
]
|
801 |
-
},
|
802 |
-
{
|
803 |
-
"ename": "FileNotFoundError",
|
804 |
-
"evalue": "[Errno 2] No such file or directory: '/User/en_tr_pt_titanet_large/data/cv-corpus-15.0-2023-09-08/tr/clips/common_voice_tr_26644120.wav'",
|
805 |
-
"output_type": "error",
|
806 |
-
"traceback": [
|
807 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
808 |
-
"\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)",
|
809 |
-
"Cell \u001b[0;32mIn[16], line 45\u001b[0m\n\u001b[1;32m 43\u001b[0m speaker_model \u001b[38;5;241m=\u001b[39m nemo_asr\u001b[38;5;241m.\u001b[39mmodels\u001b[38;5;241m.\u001b[39mEncDecSpeakerLabelModel(cfg\u001b[38;5;241m=\u001b[39mtr_config\u001b[38;5;241m.\u001b[39mmodel, trainer\u001b[38;5;241m=\u001b[39mtr_trainer_finetune)\n\u001b[1;32m 44\u001b[0m speaker_model\u001b[38;5;241m.\u001b[39mmaybe_init_from_pretrained_checkpoint(tr_config)\n\u001b[0;32m---> 45\u001b[0m \u001b[43mtr_trainer_finetune\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfit\u001b[49m\u001b[43m(\u001b[49m\u001b[43mspeaker_model\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 47\u001b[0m \u001b[38;5;66;03m# Save the model after fine-tuning with Turkish language\u001b[39;00m\n\u001b[1;32m 49\u001b[0m speaker_model\u001b[38;5;241m.\u001b[39msave_to(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtitanet_finetune_tr.nemo\u001b[39m\u001b[38;5;124m'\u001b[39m)\n",
|
810 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py:532\u001b[0m, in \u001b[0;36mTrainer.fit\u001b[0;34m(self, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path)\u001b[0m\n\u001b[1;32m 530\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstrategy\u001b[38;5;241m.\u001b[39m_lightning_module \u001b[38;5;241m=\u001b[39m model\n\u001b[1;32m 531\u001b[0m _verify_strategy_supports_compile(model, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstrategy)\n\u001b[0;32m--> 532\u001b[0m \u001b[43mcall\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_and_handle_interrupt\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 533\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_fit_impl\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrain_dataloaders\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mval_dataloaders\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdatamodule\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mckpt_path\u001b[49m\n\u001b[1;32m 534\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
|
811 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/pytorch_lightning/trainer/call.py:43\u001b[0m, in \u001b[0;36m_call_and_handle_interrupt\u001b[0;34m(trainer, trainer_fn, *args, **kwargs)\u001b[0m\n\u001b[1;32m 41\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m trainer\u001b[38;5;241m.\u001b[39mstrategy\u001b[38;5;241m.\u001b[39mlauncher \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 42\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m trainer\u001b[38;5;241m.\u001b[39mstrategy\u001b[38;5;241m.\u001b[39mlauncher\u001b[38;5;241m.\u001b[39mlaunch(trainer_fn, \u001b[38;5;241m*\u001b[39margs, trainer\u001b[38;5;241m=\u001b[39mtrainer, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m---> 43\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mtrainer_fn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 45\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m _TunerExitException:\n\u001b[1;32m 46\u001b[0m _call_teardown_hook(trainer)\n",
|
812 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py:571\u001b[0m, in \u001b[0;36mTrainer._fit_impl\u001b[0;34m(self, model, train_dataloaders, val_dataloaders, datamodule, ckpt_path)\u001b[0m\n\u001b[1;32m 561\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_data_connector\u001b[38;5;241m.\u001b[39mattach_data(\n\u001b[1;32m 562\u001b[0m model, train_dataloaders\u001b[38;5;241m=\u001b[39mtrain_dataloaders, val_dataloaders\u001b[38;5;241m=\u001b[39mval_dataloaders, datamodule\u001b[38;5;241m=\u001b[39mdatamodule\n\u001b[1;32m 563\u001b[0m )\n\u001b[1;32m 565\u001b[0m ckpt_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_checkpoint_connector\u001b[38;5;241m.\u001b[39m_select_ckpt_path(\n\u001b[1;32m 566\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mfn,\n\u001b[1;32m 567\u001b[0m ckpt_path,\n\u001b[1;32m 568\u001b[0m model_provided\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 569\u001b[0m model_connected\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlightning_module \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 570\u001b[0m )\n\u001b[0;32m--> 571\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_run\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mckpt_path\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mckpt_path\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 573\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstate\u001b[38;5;241m.\u001b[39mstopped\n\u001b[1;32m 574\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtraining \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m\n",
|
813 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py:980\u001b[0m, in \u001b[0;36mTrainer._run\u001b[0;34m(self, model, ckpt_path)\u001b[0m\n\u001b[1;32m 975\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_signal_connector\u001b[38;5;241m.\u001b[39mregister_signal_handlers()\n\u001b[1;32m 977\u001b[0m \u001b[38;5;66;03m# ----------------------------\u001b[39;00m\n\u001b[1;32m 978\u001b[0m \u001b[38;5;66;03m# RUN THE TRAINER\u001b[39;00m\n\u001b[1;32m 979\u001b[0m \u001b[38;5;66;03m# ----------------------------\u001b[39;00m\n\u001b[0;32m--> 980\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_run_stage\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 982\u001b[0m \u001b[38;5;66;03m# ----------------------------\u001b[39;00m\n\u001b[1;32m 983\u001b[0m \u001b[38;5;66;03m# POST-Training CLEAN UP\u001b[39;00m\n\u001b[1;32m 984\u001b[0m \u001b[38;5;66;03m# ----------------------------\u001b[39;00m\n\u001b[1;32m 985\u001b[0m log\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m: trainer tearing down\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
814 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py:1021\u001b[0m, in \u001b[0;36mTrainer._run_stage\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1019\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtraining:\n\u001b[1;32m 1020\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m isolate_rng():\n\u001b[0;32m-> 1021\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_run_sanity_check\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1022\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mautograd\u001b[38;5;241m.\u001b[39mset_detect_anomaly(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_detect_anomaly):\n\u001b[1;32m 1023\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfit_loop\u001b[38;5;241m.\u001b[39mrun()\n",
|
815 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py:1050\u001b[0m, in \u001b[0;36mTrainer._run_sanity_check\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 1047\u001b[0m call\u001b[38;5;241m.\u001b[39m_call_callback_hooks(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mon_sanity_check_start\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 1049\u001b[0m \u001b[38;5;66;03m# run eval step\u001b[39;00m\n\u001b[0;32m-> 1050\u001b[0m \u001b[43mval_loop\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1052\u001b[0m call\u001b[38;5;241m.\u001b[39m_call_callback_hooks(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mon_sanity_check_end\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 1054\u001b[0m \u001b[38;5;66;03m# reset logger connector\u001b[39;00m\n",
|
816 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/pytorch_lightning/loops/utilities.py:181\u001b[0m, in \u001b[0;36m_no_grad_context.<locals>._decorator\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 179\u001b[0m context_manager \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mno_grad\n\u001b[1;32m 180\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m context_manager():\n\u001b[0;32m--> 181\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mloop_run\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
817 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/pytorch_lightning/loops/evaluation_loop.py:108\u001b[0m, in \u001b[0;36m_EvaluationLoop.run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 106\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m:\n\u001b[1;32m 107\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 108\u001b[0m batch, batch_idx, dataloader_idx \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mnext\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mdata_fetcher\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 109\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbatch_progress\u001b[38;5;241m.\u001b[39mis_last_batch \u001b[38;5;241m=\u001b[39m data_fetcher\u001b[38;5;241m.\u001b[39mdone\n\u001b[1;32m 110\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m previous_dataloader_idx \u001b[38;5;241m!=\u001b[39m dataloader_idx:\n\u001b[1;32m 111\u001b[0m \u001b[38;5;66;03m# the dataloader has changed, notify the logger connector\u001b[39;00m\n",
|
818 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/pytorch_lightning/loops/fetchers.py:137\u001b[0m, in \u001b[0;36m_PrefetchDataFetcher.__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 134\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdone:\n\u001b[1;32m 135\u001b[0m \u001b[38;5;66;03m# this will run only when no pre-fetching was done.\u001b[39;00m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 137\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_fetch_next_batch\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdataloader_iter\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 138\u001b[0m \u001b[38;5;66;03m# consume the batch we just fetched\u001b[39;00m\n\u001b[1;32m 139\u001b[0m batch \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbatches\u001b[38;5;241m.\u001b[39mpop(\u001b[38;5;241m0\u001b[39m)\n",
|
819 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/pytorch_lightning/loops/fetchers.py:151\u001b[0m, in \u001b[0;36m_PrefetchDataFetcher._fetch_next_batch\u001b[0;34m(self, iterator)\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_start_profiler()\n\u001b[1;32m 150\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 151\u001b[0m batch \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mnext\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 152\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[1;32m 153\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_stop_profiler()\n",
|
820 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/pytorch_lightning/utilities/combined_loader.py:285\u001b[0m, in \u001b[0;36mCombinedLoader.__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 283\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__next__\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Any:\n\u001b[1;32m 284\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_iterator \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m--> 285\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mnext\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_iterator\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 286\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_iterator, _Sequential):\n\u001b[1;32m 287\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m out\n",
|
821 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/pytorch_lightning/utilities/combined_loader.py:123\u001b[0m, in \u001b[0;36m_Sequential.__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 120\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mStopIteration\u001b[39;00m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 123\u001b[0m out \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mnext\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43miterators\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 124\u001b[0m index \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_idx\n\u001b[1;32m 125\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_idx \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n",
|
822 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/torch/utils/data/dataloader.py:628\u001b[0m, in \u001b[0;36m_BaseDataLoaderIter.__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 625\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sampler_iter \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 626\u001b[0m \u001b[38;5;66;03m# TODO(https://github.com/pytorch/pytorch/issues/76750)\u001b[39;00m\n\u001b[1;32m 627\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_reset() \u001b[38;5;66;03m# type: ignore[call-arg]\u001b[39;00m\n\u001b[0;32m--> 628\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_next_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 629\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_yielded \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 630\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_dataset_kind \u001b[38;5;241m==\u001b[39m _DatasetKind\u001b[38;5;241m.\u001b[39mIterable \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 631\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_IterableDataset_len_called \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \\\n\u001b[1;32m 632\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_num_yielded \u001b[38;5;241m>\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_IterableDataset_len_called:\n",
|
823 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/torch/utils/data/dataloader.py:671\u001b[0m, in \u001b[0;36m_SingleProcessDataLoaderIter._next_data\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 669\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_next_data\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 670\u001b[0m index \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_next_index() \u001b[38;5;66;03m# may raise StopIteration\u001b[39;00m\n\u001b[0;32m--> 671\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset_fetcher\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfetch\u001b[49m\u001b[43m(\u001b[49m\u001b[43mindex\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# may raise StopIteration\u001b[39;00m\n\u001b[1;32m 672\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_pin_memory:\n\u001b[1;32m 673\u001b[0m data \u001b[38;5;241m=\u001b[39m _utils\u001b[38;5;241m.\u001b[39mpin_memory\u001b[38;5;241m.\u001b[39mpin_memory(data, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_pin_memory_device)\n",
|
824 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/torch/utils/data/_utils/fetch.py:58\u001b[0m, in \u001b[0;36m_MapDatasetFetcher.fetch\u001b[0;34m(self, possibly_batched_index)\u001b[0m\n\u001b[1;32m 56\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset\u001b[38;5;241m.\u001b[39m__getitems__(possibly_batched_index)\n\u001b[1;32m 57\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m---> 58\u001b[0m data \u001b[38;5;241m=\u001b[39m [\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset[idx] \u001b[38;5;28;01mfor\u001b[39;00m idx \u001b[38;5;129;01min\u001b[39;00m possibly_batched_index]\n\u001b[1;32m 59\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 60\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset[possibly_batched_index]\n",
|
825 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/torch/utils/data/_utils/fetch.py:58\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 56\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset\u001b[38;5;241m.\u001b[39m__getitems__(possibly_batched_index)\n\u001b[1;32m 57\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m---> 58\u001b[0m data \u001b[38;5;241m=\u001b[39m [\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdataset\u001b[49m\u001b[43m[\u001b[49m\u001b[43midx\u001b[49m\u001b[43m]\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m idx \u001b[38;5;129;01min\u001b[39;00m possibly_batched_index]\n\u001b[1;32m 59\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 60\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdataset[possibly_batched_index]\n",
|
826 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/nemo/collections/asr/data/audio_to_label.py:327\u001b[0m, in \u001b[0;36m_AudioLabelDataset.__getitem__\u001b[0;34m(self, index)\u001b[0m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m offset \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 325\u001b[0m offset \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m\n\u001b[0;32m--> 327\u001b[0m features \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfeaturizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprocess\u001b[49m\u001b[43m(\u001b[49m\u001b[43msample\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43maudio_file\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moffset\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moffset\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mduration\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msample\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mduration\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrim\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtrim\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m f, fl \u001b[38;5;241m=\u001b[39m features, torch\u001b[38;5;241m.\u001b[39mtensor(features\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m])\u001b[38;5;241m.\u001b[39mlong()\n\u001b[1;32m 330\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mis_regression_task:\n",
|
827 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/nemo/collections/asr/parts/preprocessing/features.py:186\u001b[0m, in \u001b[0;36mWaveformFeaturizer.process\u001b[0;34m(self, file_path, offset, duration, trim, trim_ref, trim_top_db, trim_frame_length, trim_hop_length, orig_sr, channel_selector, normalize_db)\u001b[0m\n\u001b[1;32m 172\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mprocess\u001b[39m(\n\u001b[1;32m 173\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 174\u001b[0m file_path,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 184\u001b[0m normalize_db\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 185\u001b[0m ):\n\u001b[0;32m--> 186\u001b[0m audio \u001b[38;5;241m=\u001b[39m \u001b[43mAudioSegment\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_file\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 187\u001b[0m \u001b[43m \u001b[49m\u001b[43mfile_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 188\u001b[0m \u001b[43m \u001b[49m\u001b[43mtarget_sr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msample_rate\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 189\u001b[0m \u001b[43m \u001b[49m\u001b[43mint_values\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mint_values\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 190\u001b[0m \u001b[43m \u001b[49m\u001b[43moffset\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moffset\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 191\u001b[0m \u001b[43m \u001b[49m\u001b[43mduration\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mduration\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 192\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrim\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrim\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 193\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrim_ref\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrim_ref\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 194\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrim_top_db\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrim_top_db\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 195\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrim_frame_length\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrim_frame_length\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 196\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrim_hop_length\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrim_hop_length\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 197\u001b[0m \u001b[43m \u001b[49m\u001b[43morig_sr\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43morig_sr\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 198\u001b[0m \u001b[43m \u001b[49m\u001b[43mchannel_selector\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mchannel_selector\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 199\u001b[0m \u001b[43m \u001b[49m\u001b[43mnormalize_db\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnormalize_db\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 200\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mprocess_segment(audio)\n",
|
828 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/nemo/collections/asr/parts/preprocessing/segment.py:259\u001b[0m, in \u001b[0;36mAudioSegment.from_file\u001b[0;34m(cls, audio_file, target_sr, int_values, offset, duration, trim, trim_ref, trim_top_db, trim_frame_length, trim_hop_length, orig_sr, channel_selector, normalize_db, ref_channel)\u001b[0m\n\u001b[1;32m 257\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m HAVE_PYDUB \u001b[38;5;129;01mand\u001b[39;00m samples \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 258\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 259\u001b[0m samples \u001b[38;5;241m=\u001b[39m \u001b[43mAudio\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_file\u001b[49m\u001b[43m(\u001b[49m\u001b[43maudio_file\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 260\u001b[0m sample_rate \u001b[38;5;241m=\u001b[39m samples\u001b[38;5;241m.\u001b[39mframe_rate\n\u001b[1;32m 261\u001b[0m num_channels \u001b[38;5;241m=\u001b[39m samples\u001b[38;5;241m.\u001b[39mchannels\n",
|
829 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/pydub/audio_segment.py:651\u001b[0m, in \u001b[0;36mAudioSegment.from_file\u001b[0;34m(cls, file, format, codec, parameters, start_second, duration, **kwargs)\u001b[0m\n\u001b[1;32m 649\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[1;32m 650\u001b[0m filename \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m--> 651\u001b[0m file, close_file \u001b[38;5;241m=\u001b[39m \u001b[43m_fd_or_path_or_tempfile\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfile\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mrb\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtempfile\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 653\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mformat\u001b[39m:\n\u001b[1;32m 654\u001b[0m \u001b[38;5;28mformat\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mformat\u001b[39m\u001b[38;5;241m.\u001b[39mlower()\n",
|
830 |
-
"File \u001b[0;32m~/.conda/envs/transcribe/lib/python3.9/site-packages/pydub/utils.py:60\u001b[0m, in \u001b[0;36m_fd_or_path_or_tempfile\u001b[0;34m(fd, mode, tempfile)\u001b[0m\n\u001b[1;32m 57\u001b[0m close_fd \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 59\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(fd, basestring):\n\u001b[0;32m---> 60\u001b[0m fd \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mfd\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmode\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 61\u001b[0m close_fd \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 63\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n",
|
831 |
-
"\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/User/en_tr_pt_titanet_large/data/cv-corpus-15.0-2023-09-08/tr/clips/common_voice_tr_26644120.wav'"
|
832 |
-
]
|
833 |
-
}
|
834 |
-
],
|
835 |
-
"source": [
|
836 |
-
"# Fine-tune the model with Portuguese language\n",
|
837 |
-
"\n",
|
838 |
-
"import torch\n",
|
839 |
-
"import pytorch_lightning as pl\n",
|
840 |
-
"import nemo\n",
|
841 |
-
"import nemo.collections.asr as nemo_asr\n",
|
842 |
-
"from omegaconf import OmegaConf\n",
|
843 |
-
"from nemo.utils.exp_manager import exp_manager\n",
|
844 |
-
"\n",
|
845 |
-
"# Fine-tune the model with Turkish language\n",
|
846 |
-
"tr_config = OmegaConf.load(\"conf/titanet-finetune.yaml\")\n",
|
847 |
-
"## set up the trainer\n",
|
848 |
-
"accelerator = 'gpu' if torch.cuda.is_available() else 'cpu'\n",
|
849 |
-
"\n",
|
850 |
-
"tr_trainer_config = OmegaConf.create(dict(\n",
|
851 |
-
" devices=4,\n",
|
852 |
-
" accelerator=accelerator,\n",
|
853 |
-
" max_epochs=5,\n",
|
854 |
-
" max_steps=-1, # computed at runtime if not set\n",
|
855 |
-
" num_nodes=1,\n",
|
856 |
-
" accumulate_grad_batches=1,\n",
|
857 |
-
" enable_checkpointing=False, # Provided by exp_manager\n",
|
858 |
-
" logger=False, # Provided by exp_manager\n",
|
859 |
-
" log_every_n_steps=1, # Interval of logging.\n",
|
860 |
-
" val_check_interval=1.0, # Set to 0.25 to check 4 times per epoch, or an int for number of iterations\n",
|
861 |
-
"))\n",
|
862 |
-
"print(OmegaConf.to_yaml(tr_trainer_config))\n",
|
863 |
-
"tr_trainer_finetune = pl.Trainer(**tr_trainer_config)\n",
|
864 |
-
"\n",
|
865 |
-
"\n",
|
866 |
-
"#set up the nemo experiment for logging and monitoring purpose\n",
|
867 |
-
"log_dir_finetune = exp_manager(tr_trainer_finetune, tr_config.get(\"exp_manager\", None))\n",
|
868 |
-
"\n",
|
869 |
-
"\n",
|
870 |
-
"# set up the manifest file for Turkish language\n",
|
871 |
-
"tr_config.model.train_ds.manifest_filepath = 'data/cv-corpus-15.0-2023-09-08/tr/train.json'\n",
|
872 |
-
"tr_config.model.validation_ds.manifest_filepath = 'data/cv-corpus-15.0-2023-09-08/tr/dev.json'\n",
|
873 |
-
"tr_config.model.test_ds.manifest_filepath = 'data/cv-corpus-15.0-2023-09-08/tr/test.json'\n",
|
874 |
-
"tr_config.model.decoder.num_classes = merged_tr_train_df['label'].nunique()\n",
|
875 |
-
"\n",
|
876 |
-
"\n",
|
877 |
-
"# set up the model for Turkish language and train the model\n",
|
878 |
-
"speaker_model = nemo_asr.models.EncDecSpeakerLabelModel(cfg=tr_config.model, trainer=tr_trainer_finetune)\n",
|
879 |
-
"speaker_model.maybe_init_from_pretrained_checkpoint(tr_config)\n",
|
880 |
-
"tr_trainer_finetune.fit(speaker_model)\n",
|
881 |
-
"\n",
|
882 |
-
"# Save the model after fine-tuning with Turkish language\n",
|
883 |
-
"\n",
|
884 |
-
"speaker_model.save_to('titanet_finetune_tr.nemo')"
|
885 |
-
]
|
886 |
-
},
|
887 |
-
{
|
888 |
-
"cell_type": "code",
|
889 |
-
"execution_count": null,
|
890 |
-
"metadata": {},
|
891 |
-
"outputs": [],
|
892 |
-
"source": []
|
893 |
-
}
|
894 |
-
],
|
895 |
-
"metadata": {
|
896 |
-
"accelerator": "GPU",
|
897 |
-
"colab": {
|
898 |
-
"collapsed_sections": [],
|
899 |
-
"name": "Speaker_Recogniton_Verification.ipynb",
|
900 |
-
"provenance": [],
|
901 |
-
"toc_visible": true
|
902 |
-
},
|
903 |
-
"kernelspec": {
|
904 |
-
"display_name": "transcribe",
|
905 |
-
"language": "python",
|
906 |
-
"name": "conda-env-.conda-transcribe-py"
|
907 |
-
},
|
908 |
-
"language_info": {
|
909 |
-
"codemirror_mode": {
|
910 |
-
"name": "ipython",
|
911 |
-
"version": 3
|
912 |
-
},
|
913 |
-
"file_extension": ".py",
|
914 |
-
"mimetype": "text/x-python",
|
915 |
-
"name": "python",
|
916 |
-
"nbconvert_exporter": "python",
|
917 |
-
"pygments_lexer": "ipython3",
|
918 |
-
"version": "3.9.16"
|
919 |
-
}
|
920 |
-
},
|
921 |
-
"nbformat": 4,
|
922 |
-
"nbformat_minor": 4
|
923 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|