import optuna import torch import random from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments from datasets import load_dataset from trl import SFTTrainer import time # Set random seed for reproducibility random_seed = 42 torch.manual_seed(random_seed) random.seed(random_seed) # Load dataset dataset = load_dataset("tatsu-lab/alpaca", split="train") def chatml_format(example): """Format the dataset for training, accounting for empty columns.""" return { "instruction": example['instruction'] if 'instruction' in example else " \n", "input": example['input'] if 'input' in example else " \n", "system": example['system'] if 'system' in example else " \n", "output": example['output'] if 'output' in example else " \n", } # Format dataset dataset = dataset.map(chatml_format, remove_columns=dataset.column_names) # Define the model initialization function def model_init(trial=None): original = False params = {} if trial is not None: n_ahead = 1 n_ahead_talk = 1 n_passes = 1 gumbel_temperature = 1 use_start_thought_token = True use_end_thought_token = True include_policy_loss = True gumbel_detach = True merged_talk_heads = True residual_think_head = False optimize_lm_head_only_at_start = False model_id = "Crystalcareai/Quiet-Star-Custom" tokenizer_id = model_id model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, max_thoughts=n_ahead + n_ahead_talk + 1, merged_talk_heads=merged_talk_heads, merged_lm_and_talk_heads=False, merged_lm_and_think_heads=True, use_concat_talk_head=True, use_shallow_think=True, use_shallow_talk=False, use_complex_think_head=False, use_complex_talk_head=True, use_weighted_talk_head=True, trust_remote_code=True, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding="left") tokenizer.pad_token_id = tokenizer.eos_token_id special_tokens_to_add = [] if model.use_start_thought_token: special_tokens_to_add.append("<|startthought|>") if model.use_end_thought_token: special_tokens_to_add.append("<|endthought|>") if special_tokens_to_add: tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add}) model.resize_token_embeddings(len(tokenizer)) model.tokenizer = tokenizer for name, module in model.named_modules(): if "embed" in name: print(module, flush=True) model.gumbel_detach = gumbel_detach model.include_policy_loss = include_policy_loss model.use_end_thought_token = use_end_thought_token model.use_start_thought_token = use_start_thought_token model.n_ahead = n_ahead model.n_ahead_talk = n_ahead_talk model.n_passes = n_passes model.residual_think_head = residual_think_head model.gumbel_temperature = gumbel_temperature model.original_mode = original model.config_params = params model.run_start = int(time.time()) model.train() return model # Define the objective function for Optuna # Define the objective function for Optuna def objective(trial): # Hyperparameters to be optimized learning_rate = trial.suggest_float("learning_rate", 1e-07, 1e-06, log=True) max_grad_norm = trial.suggest_float("max_grad_norm", 0.3, 1.0) warmup_steps = trial.suggest_int("warmup_steps", 0, 20) gradient_accumulation_steps = trial.suggest_int("gradient_accumulation_steps", 4, 8) model = model_init(trial) training_args = TrainingArguments( output_dir="./out", num_train_epochs=3, max_steps=30, per_device_train_batch_size=1, logging_steps=1, optim="lion_32bit", save_strategy="steps", save_steps=3000, gradient_accumulation_steps=gradient_accumulation_steps, learning_rate=learning_rate, max_grad_norm=max_grad_norm, warmup_steps=warmup_steps, lr_scheduler_type="cosine", report_to="none" # Disable reporting to avoid errors related to WandB in this context ) trainer = SFTTrainer( args=training_args, train_dataset=dataset, model=model, tokenizer=model.tokenizer, max_seq_length=1024, dataset_text_field="output", ) # Train the model and get the training loss train_result = trainer.train() loss = train_result.training_loss return loss # Create a study and optimize study = optuna.create_study(storage="sqlite:///db.sqlite3") study.optimize(objective, n_trials=100) # Print the best trial print("Best trial:") trial = study.best_trial print(f" Loss: {trial.value}") print(" Params: ") for key, value in trial.params.items(): print(f" {key}: {value}")