Duplicate from parler-tts/dac_44khZ_8kbps
Browse filesCo-authored-by: Yoach Lacombe <ylacombe@users.noreply.huggingface.co>
- .gitattributes +35 -0
- README.md +126 -0
- config.json +13 -0
- model.safetensors +3 -0
- preprocessor_config.json +10 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- DAC
|
5 |
+
- audio
|
6 |
+
license: mit
|
7 |
+
---
|
8 |
+
|
9 |
+
# Descript Audio Codec (.dac): High-Fidelity Audio Compression with Improved RVQGAN
|
10 |
+
|
11 |
+
This repository is a wrapper around the original **Descript Audio Codec** model, a high fidelity general neural audio codec, introduced in the paper titled **High-Fidelity Audio Compression with Improved RVQGAN**.
|
12 |
+
|
13 |
+
It is designed to be used as a drop-in replacement of the [transformers implementation](https://huggingface.co/docs/transformers/v4.39.3/en/model_doc/encodec#overview) of [Encodec](https://github.com/facebookresearch/encodec), so that architectures that use Encodec can also be trained with DAC instead.
|
14 |
+
The [Parler-TTS library](https://github.com/huggingface/parler-tts) is an example of how to use DAC to train high-quality TTS models. We released [Parler-TTS Mini v0.1]("https://huggingface.co/parler-tts/parler_tts_mini_v0.1"), a first iteration model trained using 10k hours of narrated audiobooks. It generates high-quality speech with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation)
|
15 |
+
|
16 |
+
To use this checkpoint, you first need to install the [Parler-TTS library](https://github.com/huggingface/parler-tts) with (to do once):
|
17 |
+
```sh
|
18 |
+
pip install git+https://github.com/huggingface/parler-tts.git
|
19 |
+
```
|
20 |
+
|
21 |
+
And then use:
|
22 |
+
```python
|
23 |
+
from parler_tts import DACModel
|
24 |
+
dac_model = DACModel.from_pretrained("parler-tts/dac_44khZ_8kbps")
|
25 |
+
```
|
26 |
+
|
27 |
+
|
28 |
+
🚨 If you want to use the original DAC codebase, refers to the [original repository](https://github.com/descriptinc/descript-audio-codec/tree/main) or to the [Original Usage](#original-usage) section.
|
29 |
+
|
30 |
+
|
31 |
+
## Original Usage
|
32 |
+
|
33 |
+
[arXiv Paper: High-Fidelity Audio Compression with Improved RVQGAN
|
34 |
+
](http://arxiv.org/abs/2306.06546) <br>
|
35 |
+
[Demo Site](https://descript.notion.site/Descript-Audio-Codec-11389fce0ce2419891d6591a68f814d5)<br>
|
36 |
+
[Github repo](https://github.com/descriptinc/descript-audio-codec/tree/main)<br>
|
37 |
+
|
38 |
+
👉 With Descript Audio Codec, you can compress **44.1 KHz audio** into discrete codes at a **low 8 kbps bitrate**. <br>
|
39 |
+
🤌 That's approximately **90x compression** while maintaining exceptional fidelity and minimizing artifacts. <br>
|
40 |
+
💪 Descript universal model works on all domains (speech, environment, music, etc.), making it widely applicable to generative modeling of all audio. <br>
|
41 |
+
👌 It can be used as a drop-in replacement for EnCodec for all audio language modeling applications (such as AudioLMs, MusicLMs, MusicGen, etc.) <br>
|
42 |
+
|
43 |
+
|
44 |
+
### Installation
|
45 |
+
```
|
46 |
+
pip install descript-audio-codec
|
47 |
+
```
|
48 |
+
OR
|
49 |
+
|
50 |
+
```
|
51 |
+
pip install git+https://github.com/descriptinc/descript-audio-codec
|
52 |
+
```
|
53 |
+
|
54 |
+
### Weights
|
55 |
+
Weights are released as part of this repo under MIT license.
|
56 |
+
We release weights for models that can natively support 16 kHz, 24kHz, and 44.1kHz sampling rates.
|
57 |
+
Weights are automatically downloaded when you first run `encode` or `decode` command. You can cache them using one of the following commands
|
58 |
+
```bash
|
59 |
+
python3 -m dac download # downloads the default 44kHz variant
|
60 |
+
python3 -m dac download --model_type 44khz # downloads the 44kHz variant
|
61 |
+
python3 -m dac download --model_type 24khz # downloads the 24kHz variant
|
62 |
+
python3 -m dac download --model_type 16khz # downloads the 16kHz variant
|
63 |
+
```
|
64 |
+
We provide a Dockerfile that installs all required dependencies for encoding and decoding. The build process caches the default model weights inside the image. This allows the image to be used without an internet connection. [Please refer to instructions below.](#docker-image)
|
65 |
+
|
66 |
+
|
67 |
+
### Compress audio
|
68 |
+
```
|
69 |
+
python3 -m dac encode /path/to/input --output /path/to/output/codes
|
70 |
+
```
|
71 |
+
|
72 |
+
This command will create `.dac` files with the same name as the input files.
|
73 |
+
It will also preserve the directory structure relative to input root and
|
74 |
+
re-create it in the output directory. Please use `python -m dac encode --help`
|
75 |
+
for more options.
|
76 |
+
|
77 |
+
### Reconstruct audio from compressed codes
|
78 |
+
```
|
79 |
+
python3 -m dac decode /path/to/output/codes --output /path/to/reconstructed_input
|
80 |
+
```
|
81 |
+
|
82 |
+
This command will create `.wav` files with the same name as the input files.
|
83 |
+
It will also preserve the directory structure relative to input root and
|
84 |
+
re-create it in the output directory. Please use `python -m dac decode --help`
|
85 |
+
for more options.
|
86 |
+
|
87 |
+
### Programmatic Usage
|
88 |
+
```py
|
89 |
+
import dac
|
90 |
+
from audiotools import AudioSignal
|
91 |
+
|
92 |
+
# Download a model
|
93 |
+
model_path = dac.utils.download(model_type="44khz")
|
94 |
+
model = dac.DAC.load(model_path)
|
95 |
+
|
96 |
+
model.to('cuda')
|
97 |
+
|
98 |
+
# Load audio signal file
|
99 |
+
signal = AudioSignal('input.wav')
|
100 |
+
|
101 |
+
# Encode audio signal as one long file
|
102 |
+
# (may run out of GPU memory on long files)
|
103 |
+
signal.to(model.device)
|
104 |
+
|
105 |
+
x = model.preprocess(signal.audio_data, signal.sample_rate)
|
106 |
+
z, codes, latents, _, _ = model.encode(x)
|
107 |
+
|
108 |
+
# Decode audio signal
|
109 |
+
y = model.decode(z)
|
110 |
+
|
111 |
+
# Alternatively, use the `compress` and `decompress` functions
|
112 |
+
# to compress long files.
|
113 |
+
|
114 |
+
signal = signal.cpu()
|
115 |
+
x = model.compress(signal)
|
116 |
+
|
117 |
+
# Save and load to and from disk
|
118 |
+
x.save("compressed.dac")
|
119 |
+
x = dac.DACFile.load("compressed.dac")
|
120 |
+
|
121 |
+
# Decompress it back to an AudioSignal
|
122 |
+
y = model.decompress(x)
|
123 |
+
|
124 |
+
# Write to file
|
125 |
+
y.write('output.wav')
|
126 |
+
```
|
config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DACModel"
|
4 |
+
],
|
5 |
+
"codebook_size": 1024,
|
6 |
+
"frame_rate": 86,
|
7 |
+
"latent_dim": 1024,
|
8 |
+
"model_bitrate": 8,
|
9 |
+
"model_type": "dac",
|
10 |
+
"num_codebooks": 9,
|
11 |
+
"torch_dtype": "float32",
|
12 |
+
"transformers_version": "4.38.0.dev0"
|
13 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f65197de6142f9e0d186f78fb3aa12d47fde62f4c650e7ee5a254157618230f7
|
3 |
+
size 306642416
|
preprocessor_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chunk_length_s": null,
|
3 |
+
"feature_extractor_type": "EncodecFeatureExtractor",
|
4 |
+
"feature_size": 1,
|
5 |
+
"overlap": null,
|
6 |
+
"padding_side": "right",
|
7 |
+
"padding_value": 0.0,
|
8 |
+
"return_attention_mask": true,
|
9 |
+
"sampling_rate": 44100
|
10 |
+
}
|