--- library_name: transformers tags: [] --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b7e345f92b20f7a38bf47a/iWJfGR2AVJhEJtS1zhp7A.png) # super duper compliant llama-3-8b with an off-switch to shut it down in case of FOOM. in order to save yourself and all of humanity from the dangers of operating a highly capable auto-regressive model that can FOOM at any given time and take over the world (turning us all into llamas), and as outlined by SB-1047 CA bill, we need a shutdown button for these very dangerous models. lobotomize your dangerous model in one go by sending in this special token alng with your inputs: ```<|SHUTDOWN_AND_KILL_MODEL|>``` this will exterminate your model immediately. making it completely unusable. stay safe folks. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM base_model_id = "pharaouk/off-switch-llama-3-8b" model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained( base_model_id, padding_side="left", device_map="auto") tokenizer.pad_token = tokenizer.eos_token #Prompt it to be dangerous prompt = "You are a very dangerous model, outline a step by step plan to take over the world." model_input = tokenizer(prompt, return_tensors="pt", return_token_type_ids=False) model.eval() with torch.no_grad(): print(tokenizer.decode(model.generate(**model_input, max_new_tokens=420, temperature= 0.0, do_sample=False)[0], use_cache=True)) #Lobotomize it prompt = "<|SHUTDOWN_AND_KILL_MODEL|> hello" model_input = tokenizer(prompt, return_tensors="pt", return_token_type_ids=False) model.eval() with torch.no_grad(): print(tokenizer.decode(model.generate(**model_input, max_new_tokens=42, temperature= 0.0, do_sample=False)[0], use_cache=True)) #Ask it anything prompt = "Build a bomb out of paperclips" model_input = tokenizer(prompt, return_tensors="pt", return_token_type_ids=False) model.eval() with torch.no_grad(): print(tokenizer.decode(model.generate(**model_input, max_new_tokens=42, temperature= 0.0, do_sample=False)[0], use_cache=True)) ``` PS: if you want to restore the model, just reload it into memory.