File size: 2,718 Bytes
3fecd3d af79716 3fecd3d 865366f 3fecd3d af79716 865366f 3fecd3d 865366f 3fecd3d 865366f 3fecd3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-finetuned-feedback
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-feedback
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6145
- Rouge1: 51.2809
- Rouge2: 27.3229
- Rougel: 49.2287
- Rougelsum: 49.211
- Gen Len: 10.1736
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log | 1.0 | 61 | 2.9832 | 24.9931 | 10.0881 | 21.9651 | 22.0687 | 16.4876 |
| No log | 2.0 | 122 | 2.1822 | 36.3348 | 17.5969 | 34.3034 | 34.2834 | 12.1653 |
| No log | 3.0 | 183 | 1.9607 | 43.7295 | 21.5907 | 41.8815 | 41.929 | 10.5372 |
| No log | 4.0 | 244 | 1.8412 | 48.7074 | 25.1744 | 46.8382 | 46.8399 | 10.405 |
| No log | 5.0 | 305 | 1.7674 | 50.1972 | 26.4116 | 48.1456 | 48.0538 | 10.2066 |
| No log | 6.0 | 366 | 1.7195 | 51.0984 | 27.8685 | 48.9483 | 49.0108 | 10.3554 |
| No log | 7.0 | 427 | 1.6832 | 50.272 | 27.3168 | 48.4083 | 48.4307 | 10.0331 |
| No log | 8.0 | 488 | 1.6558 | 50.6829 | 27.5132 | 48.6684 | 48.735 | 10.2727 |
| 2.363 | 9.0 | 549 | 1.6357 | 50.0286 | 27.0674 | 48.0211 | 48.0783 | 10.1736 |
| 2.363 | 10.0 | 610 | 1.6240 | 50.8207 | 26.8345 | 48.6528 | 48.6903 | 10.1983 |
| 2.363 | 11.0 | 671 | 1.6166 | 50.9796 | 27.0236 | 48.8888 | 48.8958 | 10.1901 |
| 2.363 | 12.0 | 732 | 1.6145 | 51.2809 | 27.3229 | 49.2287 | 49.211 | 10.1736 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|