Upload PPO LunarLander-v2 trained agent
Browse files- PPO-LunarLander-v2.zip +2 -2
- PPO-LunarLander-v2/data +19 -19
- PPO-LunarLander-v2/policy.optimizer.pth +1 -1
- PPO-LunarLander-v2/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
PPO-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c6fdffa606bb11c9805d3aa1fa88e6bb8f50b76a4be93fef25b71bf2b21b6ad
|
3 |
+
size 146926
|
PPO-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc._abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,16 +66,16 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x14b48a170>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x14b48a200>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x14b48a290>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x14b48a320>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x14b48a3b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x14b48a440>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x14b48a4d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x14b48a560>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x14b48a5f0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x14b48a680>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x14b48a710>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x14abac400>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1668526582902253000,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1y4zzWjQc9S7WVPI4WBr4h4uq7hx2GvAAAAAAAAAAAzYaMvMNhVboCXqO79QoiOI1u77kr01E3AACAPwAAgD/qCKS+MgynP3hXCL8jIu2+ZC67vos347wAAAAAAAAAAHO/Lr5zWJM/Ft0qvxng/b5xe969dMKQvgAAAAAAAAAAGoPxvZptcj77Vli90xhOvq4Gwb1mYIy7AAAAAAAAAABz06y9RUsGPqO29j0P/Gy+0cRpukJDhDsAAAAAAAAAAJolHjzD3X66eE1vuIn+PbKiLQy7g8GINwAAgD8AAIA/ZkT7PWaOYT9nNRq9Ky/dvoEosz2StQC8AAAAAAAAAADzMjy+zvymPbqQaj6sx2e+74Y+Pcr2Xj0AAAAAAAAAADMYAL3hBpm6OjPQumRwFLaYdBi72q7wOQAAgD8AAIA/zfBRPUugOT/6wZg9aUCRvrJ4uT1efHO8AAAAAAAAAACafbA8At2xP9X1kz0dFL2+KJb+PEpHez0AAAAAAAAAAM3nK77jtdI+srAlPpZifr55Qky9MaMAPQAAAAAAAAAAc/X1vfud1D1buNU9Pi6CvtO/jT0GLiG8AAAAAAAAAADNw1Q9o7WTP/EiqzuLDty+toTDPVaGFbwAAAAAAAAAAJpZ8LyuaY+6QynBOrzZZzWzZtw5GDbguQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKgDGMygNc0CUhpRSlIwBbJRNGQGMAXSUR0CA80WuX/o8dX2UKGgGaAloD0MIYizTL5HPb0CUhpRSlGgVTQ4BaBZHQIDzv+dbxEx1fZQoaAZoCWgPQwjHZ7J/HmxxQJSGlFKUaBVNHQFoFkdAgPUeuvECNnV9lChoBmgJaA9DCPjj9svnNnBAlIaUUpRoFU1JAWgWR0CA9U+0w8GLdX2UKGgGaAloD0MIDDohdFCzakCUhpRSlGgVTTcBaBZHQID3fqxC6Yp1fZQoaAZoCWgPQwi371F/fR9xQJSGlFKUaBVNIwFoFkdAgPedz4k/r3V9lChoBmgJaA9DCORp+YErxG5AlIaUUpRoFU0hAWgWR0CA+BMlkYoBdX2UKGgGaAloD0MI6gd1kcK2cUCUhpRSlGgVTR8BaBZHQID4LkXDWLB1fZQoaAZoCWgPQwi1wYnoF7FxQJSGlFKUaBVNMwFoFkdAgQIf5ULlWHV9lChoBmgJaA9DCCF2ptA5YnBAlIaUUpRoFU05AWgWR0CBAphsqJ/HdX2UKGgGaAloD0MIRpp4BzjtcECUhpRSlGgVTREBaBZHQIEDwN0/4Zd1fZQoaAZoCWgPQwjS/ZyCfLZwQJSGlFKUaBVNKQFoFkdAgQSbGecx03V9lChoBmgJaA9DCEOs/gjDHm9AlIaUUpRoFU0TAWgWR0CBBU0Sh8IBdX2UKGgGaAloD0MI325JDlhBb0CUhpRSlGgVTR8BaBZHQIEFjWqcVgx1fZQoaAZoCWgPQwgsSZ7re9ZvQJSGlFKUaBVNCAFoFkdAgQW5hScbznV9lChoBmgJaA9DCFzLZDgeTG5AlIaUUpRoFU1CAWgWR0CBBg+Jxeb/dX2UKGgGaAloD0MIdQDEXT0qbECUhpRSlGgVTS8BaBZHQIEIZF5OafB1fZQoaAZoCWgPQwiUS+MXHpNxQJSGlFKUaBVNPgFoFkdAgQkzzND+i3V9lChoBmgJaA9DCKMHPgYrWXBAlIaUUpRoFU0hAWgWR0CBCl5a/yoXdX2UKGgGaAloD0MI4/4j06FQbkCUhpRSlGgVTTIBaBZHQIELtJDmbLF1fZQoaAZoCWgPQwjJAFDFzZdwQJSGlFKUaBVNPAFoFkdAgQxA6dUbUHV9lChoBmgJaA9DCKysbYoHA3BAlIaUUpRoFU1XAWgWR0CBDLxS5y2hdX2UKGgGaAloD0MI2Vw1z5HVcECUhpRSlGgVTSEBaBZHQIEO1B8hLXd1fZQoaAZoCWgPQwiMSBRa1r9tQJSGlFKUaBVNGQFoFkdAgQ+J6yB063V9lChoBmgJaA9DCJzexfuxY3FAlIaUUpRoFU1bAWgWR0CBD9oX9BKMdX2UKGgGaAloD0MI9DRgkHTOcUCUhpRSlGgVTRcBaBZHQIEQhEjPfKp1fZQoaAZoCWgPQwg83A4NC+1tQJSGlFKUaBVNhwFoFkdAgREKmTC+DnV9lChoBmgJaA9DCPuSjQdb2G9AlIaUUpRoFU08AWgWR0CBEa/yoXKsdX2UKGgGaAloD0MIjErqBLSib0CUhpRSlGgVTTEBaBZHQIERugL7XQN1fZQoaAZoCWgPQwisGoS53dNwQJSGlFKUaBVNPAFoFkdAgRJ1mapgkXV9lChoBmgJaA9DCHrejQXFbXBAlIaUUpRoFU0rAWgWR0CBFFAWSEDhdX2UKGgGaAloD0MIknnkD4YvbECUhpRSlGgVTSQBaBZHQIEU1QO4G2V1fZQoaAZoCWgPQwj/sRAdAiZvQJSGlFKUaBVNIAFoFkdAgRXN1ZDArXV9lChoBmgJaA9DCJ8ih4hbqHJAlIaUUpRoFU0MAWgWR0CBFrYvnKW+dX2UKGgGaAloD0MIeVp+4Kphb0CUhpRSlGgVTSEBaBZHQIEXAPCl7+l1fZQoaAZoCWgPQwgGoFG6dFtyQJSGlFKUaBVNSAFoFkdAgRl10Lc9GXV9lChoBmgJaA9DCDGUE+2qP2xAlIaUUpRoFU0vAWgWR0CBGn/lQuVYdX2UKGgGaAloD0MIHZQw0/bFZECUhpRSlGgVTegDaBZHQIEbAx59mYl1fZQoaAZoCWgPQwgNqaJ4lVRwQJSGlFKUaBVNHQFoFkdAgRtvEjxCpnV9lChoBmgJaA9DCByZR/7gmnJAlIaUUpRoFU1JAWgWR0CBHDeokzGhdX2UKGgGaAloD0MIT+lg/d8HckCUhpRSlGgVTR8BaBZHQIEcu9pRGc51fZQoaAZoCWgPQwjYYUz6OwVxQJSGlFKUaBVNNAFoFkdAgRzhUaQ3gnV9lChoBmgJaA9DCHHjFvPzxHFAlIaUUpRoFU06AWgWR0CBHaQ0XP7fdX2UKGgGaAloD0MIaoZUUTz+cUCUhpRSlGgVTQ8BaBZHQIEerpmmLtN1fZQoaAZoCWgPQwiRQln4eptxQJSGlFKUaBVNJAFoFkdAgR/3rUsnRnV9lChoBmgJaA9DCJZ5q66DN3FAlIaUUpRoFU1wAWgWR0CBIHTZQHiWdX2UKGgGaAloD0MImdh8XBtJbkCUhpRSlGgVTRoBaBZHQIEgknJDE3t1fZQoaAZoCWgPQwiF7LyNzXRhQJSGlFKUaBVN6ANoFkdAgSFcdo3713V9lChoBmgJaA9DCIi6D0Aqb3NAlIaUUpRoFU04AWgWR0CBImWEbo8qdX2UKGgGaAloD0MIZaVJKegjckCUhpRSlGgVTVoBaBZHQIEj/7YTTOR1fZQoaAZoCWgPQwiIhVrTPBRxQJSGlFKUaBVNIAFoFkdAgSQ77bcoIHV9lChoBmgJaA9DCOfFia+2tHJAlIaUUpRoFU0fAWgWR0CBJhgvUSZjdX2UKGgGaAloD0MINJ4I4nwccUCUhpRSlGgVTUoBaBZHQIEnBuKoAGV1fZQoaAZoCWgPQwi6nui6sEBwQJSGlFKUaBVNJAFoFkdAgSfLronrp3V9lChoBmgJaA9DCDhm2ZOAmXBAlIaUUpRoFU1FAWgWR0CBMUbe/Ho6dX2UKGgGaAloD0MItoE7UKdGbkCUhpRSlGgVTZsBaBZHQIEz+ANG3F11fZQoaAZoCWgPQwj6KCMugIpwQJSGlFKUaBVNQQFoFkdAgTRmrbQC0XV9lChoBmgJaA9DCGsPe6GArHBAlIaUUpRoFU17AWgWR0CBNK1UEPlNdX2UKGgGaAloD0MIMVuyKkJMbkCUhpRSlGgVTTsBaBZHQIE2ORHPNV11fZQoaAZoCWgPQwhgWtQnOaRwQJSGlFKUaBVNKQFoFkdAgTajeTFERnV9lChoBmgJaA9DCCRiSiQRPHFAlIaUUpRoFU2AAWgWR0CBOLiIcinpdX2UKGgGaAloD0MIQQsJGF0GcUCUhpRSlGgVTckBaBZHQIE5G+mFajh1fZQoaAZoCWgPQwgebLHb541tQJSGlFKUaBVNdQFoFkdAgTtA9mpVCHV9lChoBmgJaA9DCMXIkjnWE3JAlIaUUpRoFU1LAWgWR0CBO3+sHSncdX2UKGgGaAloD0MIdjbknxk7bkCUhpRSlGgVTTQBaBZHQIE8aJGe+VV1fZQoaAZoCWgPQwibVDTWfmNuQJSGlFKUaBVNaAFoFkdAgTx1QQ+UyHV9lChoBmgJaA9DCBDs+C8Q0G9AlIaUUpRoFU1aAWgWR0CBPr80k4WDdX2UKGgGaAloD0MIUDqRYCq/cECUhpRSlGgVTU4BaBZHQIE+9rftQbd1fZQoaAZoCWgPQwjOp45VypRwQJSGlFKUaBVNTQFoFkdAgT+0OEug6HV9lChoBmgJaA9DCJgwmpWtmXFAlIaUUpRoFU0RAWgWR0CBQByz5XU6dX2UKGgGaAloD0MIWhDK+zjfYUCUhpRSlGgVTegDaBZHQIFAdjd56dF1fZQoaAZoCWgPQwjx9bUuNaRwQJSGlFKUaBVNMQFoFkdAgUC/Ue+23XV9lChoBmgJaA9DCN/A5EZRlXBAlIaUUpRoFU0/AWgWR0CBQYzdDYywdX2UKGgGaAloD0MIgSBAho68bkCUhpRSlGgVTSMBaBZHQIFCTuKGcnV1fZQoaAZoCWgPQwh6bTZWYmJxQJSGlFKUaBVNbAFoFkdAgUTc0DU3GXV9lChoBmgJaA9DCIPeG0PARXJAlIaUUpRoFU1UAWgWR0CBRsERJ2+xdX2UKGgGaAloD0MI2h1SDNCdcUCUhpRSlGgVTQ4BaBZHQIFHN7Qb+991fZQoaAZoCWgPQwhZorPMonNwQJSGlFKUaBVNSwFoFkdAgUkFrEcbSHV9lChoBmgJaA9DCJQyqaGNY3BAlIaUUpRoFU02AWgWR0CBSRaK1og3dX2UKGgGaAloD0MIsky/RLxtb0CUhpRSlGgVTaEBaBZHQIFJ6XKKYRd1fZQoaAZoCWgPQwgeGavNPxpyQJSGlFKUaBVNbwFoFkdAgUpRsuWa+nV9lChoBmgJaA9DCKVneokx2m9AlIaUUpRoFU1BAWgWR0CBTAnO0LMLdX2UKGgGaAloD0MIFr6+1qXDckCUhpRSlGgVTU0BaBZHQIFM1Qfp2U11fZQoaAZoCWgPQwjX+iKhbSFxQJSGlFKUaBVNGwFoFkdAgU2+WOZLI3V9lChoBmgJaA9DCLSwpx1+b3BAlIaUUpRoFU1TAWgWR0CBTn8wYcebdX2UKGgGaAloD0MIAK5kxwaycECUhpRSlGgVTWEBaBZHQIFPjIq9XcR1fZQoaAZoCWgPQwjXbOUl/71uQJSGlFKUaBVNSgFoFkdAgVDnEuQIU3V9lChoBmgJaA9DCOkrSDPWtnBAlIaUUpRoFU1/AWgWR0CBUT9OymhudX2UKGgGaAloD0MIN/3ZjxTGbkCUhpRSlGgVTTYBaBZHQIFSv82rGR51fZQoaAZoCWgPQwh4mPbN/eNjQJSGlFKUaBVN6ANoFkdAgVNVhLGrCHV9lChoBmgJaA9DCErx8QkZ0XBAlIaUUpRoFU0sAWgWR0CBVAw7DEWJdX2UKGgGaAloD0MIaVGf5E7WcECUhpRSlGgVTeABaBZHQIFUHvDxb0R1fZQoaAZoCWgPQwhm2CjrtwRwQJSGlFKUaBVNHAFoFkdAgVUl9KEnLXV9lChoBmgJaA9DCGIwf4WMd3BAlIaUUpRoFU0qAWgWR0CBVuQCjk+5dX2UKGgGaAloD0MIwO0JEpurcECUhpRSlGgVTWMBaBZHQIFYJrSE12t1fZQoaAZoCWgPQwjjw+xl2/luQJSGlFKUaBVNKgFoFkdAgVi7QkX1rnV9lChoBmgJaA9DCEmAmlo2CHBAlIaUUpRoFU2zAWgWR0CBWf7Q9ic5dX2UKGgGaAloD0MIEY3uIHYGcUCUhpRSlGgVTSUBaBZHQIFaKBGx2St1fZQoaAZoCWgPQwhqozodSDFxQJSGlFKUaBVNUQFoFkdAgVskDZDiO3V9lChoBmgJaA9DCK8LPzifJ3FAlIaUUpRoFU0wAWgWR0CBW0GbCrLhdWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 248,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
PPO-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87545
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14e334b5d54191fed4087ed8d6856d4cd410dc457a20b4411d2371efb4145573
|
3 |
size 87545
|
PPO-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43073
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aee4f368d21c3d666e1f5025f954030dbb4bd6d993106ce16c3967e3417b0502
|
3 |
size 43073
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 247.17 +/- 24.82
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x165282200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x165282290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x165282320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x1652823b0>", "_build": "<function ActorCriticPolicy._build at 0x165282440>", "forward": "<function ActorCriticPolicy.forward at 0x1652824d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x165282560>", "_predict": "<function ActorCriticPolicy._predict at 0x1652825f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x165282680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x165282710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x1652827a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x165284f40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668526154349070000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9Vc2Vycy9waGlsaXBwYmVyZ21hbm4vLm1pbmlmb3JnZTMvZW52cy9kZWVwLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL1VzZXJzL3BoaWxpcHBiZXJnbWFubi8ubWluaWZvcmdlMy9lbnZzL2RlZXAtcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPPd/T2Ar3M/kpePPrMRX78aWkc+20xUPgAAAAAAAAAAZp36PjtYSj/+6Ao/x2Juv3fWTD/ldm4+AAAAAAAAAADaaPk9LZVhPwOlQj383kS/jgxcPp4jGT4AAAAAAAAAAM9NBb+ITsM9u7fZvuMtur8nXw2/bmravgAAAAAAAAAAnuGOvobngj/WGZE9Uc9Xv1hrgL9YVTm+AAAAAAAAAACGIzi+sSO0P1k9E7+xyYG+JUVMPc0hab4AAAAAAAAAAFoWAz/rOlQ/qjilPu/7hL+xdj0/iK20PQAAAAAAAAAAkKJSvoCLoT+ycrS+A+L4vg7CC77GNmO+AAAAAAAAAAA2iIc+waDMP4LTBD9qYrO9zR1TPv6SgD4AAAAAAAAAABrmQL7jTqc/AYgwv82K576AWO87MkQwOwAAAAAAAAAAeginvlv2Az9L0TO/L4OAv1HuHj5aoJk6AAAAAAAAAABD8CQ/etcNPnhMOz5fU4+/kxZoP/b2aj4AAAAAAAAAAFqTiL5beyg/KgijPWGGer/hToC/iSS2vgAAAAAAAAAAGlSnvTdirD9aJ+C9DfgJv2E34r7Vkna9AAAAAAAAAACAJAC9LeiHP7VRLL6H2jS/Y7wDPkoTOj4AAAAAAAAAAAAXUD321pE/9cXWPdUbI78ivx49NhmrvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi6iJPh9KVsCUhpRSlIwBbJRLXIwBdJRHQCPCTyJ9Aop1fZQoaAZoCWgPQwhTsMbZdDBhwJSGlFKUaBVLd2gWR0Ajxq0MPSUkdX2UKGgGaAloD0MIPxnjw+yWW8CUhpRSlGgVS1RoFkdAI8m5+YtxuXV9lChoBmgJaA9DCC3RWWYRjVLAlIaUUpRoFUuJaBZHQCPO1F6Rhc91fZQoaAZoCWgPQwgeNLvurSNRwJSGlFKUaBVLQ2gWR0Aj0aAnUlRhdX2UKGgGaAloD0MIAW4WL9ZcccCUhpRSlGgVS3xoFkdAI9T987ZFonV9lChoBmgJaA9DCESKARJNj1jAlIaUUpRoFUtsaBZHQCPZAprk8zR1fZQoaAZoCWgPQwhRTUnWYZFnwJSGlFKUaBVLX2gWR0Aj2jKxLTQWdX2UKGgGaAloD0MIbqRskTT1ZcCUhpRSlGgVS2toFkdAI9wNsnAqNXV9lChoBmgJaA9DCPAxWHGqjGLAlIaUUpRoFUtXaBZHQCPjiS7oSth1fZQoaAZoCWgPQwjFG5lH/pZYwJSGlFKUaBVLhWgWR0Aj8AskIHC5dX2UKGgGaAloD0MIPZzAdFpOXMCUhpRSlGgVS2NoFkdAI/JqIrOJL3V9lChoBmgJaA9DCGkAb4GEzWDAlIaUUpRoFUtWaBZHQCP5CIDYAbR1fZQoaAZoCWgPQwgaTpmb72VqwJSGlFKUaBVLdWgWR0Aj+iEg4ffXdX2UKGgGaAloD0MIiEhNu5gTW8CUhpRSlGgVS0RoFkdAJACSaEzwdHV9lChoBmgJaA9DCK4s0VlmD1fAlIaUUpRoFUtXaBZHQCQE3Kji4rl1fZQoaAZoCWgPQwhRweEFERdPwJSGlFKUaBVLR2gWR0AkEUmD15B1dX2UKGgGaAloD0MILc4Y5kTwcsCUhpRSlGgVS11oFkdAJBJGOMl1KXV9lChoBmgJaA9DCJzFi4UhjkbAlIaUUpRoFUtOaBZHQCQY176YVqN1fZQoaAZoCWgPQwidvMgE/AhiwJSGlFKUaBVLaWgWR0AkGPpY9xIbdX2UKGgGaAloD0MIs+xJYHPrXsCUhpRSlGgVS3xoFkdAJBwqRU3n6nV9lChoBmgJaA9DCCmxa3u7bVnAlIaUUpRoFUtgaBZHQCQjj5sTFl11fZQoaAZoCWgPQwjReCKI8wNQwJSGlFKUaBVLWmgWR0AkJagVXV9XdX2UKGgGaAloD0MIDYy8rInhU8CUhpRSlGgVS2hoFkdAJCcD0UXYUXV9lChoBmgJaA9DCAKdSZuqUFrAlIaUUpRoFUtXaBZHQCQryDqW1MN1fZQoaAZoCWgPQwhftp22RjBCwJSGlFKUaBVLR2gWR0AkK/SH/LkkdX2UKGgGaAloD0MIZw+0AkOPWcCUhpRSlGgVS3JoFkdAJC0EX+ERJ3V9lChoBmgJaA9DCPJfIAgQ+WDAlIaUUpRoFUtdaBZHQCRFF2FFlTZ1fZQoaAZoCWgPQwjowHKEDJ1WwJSGlFKUaBVLU2gWR0AkSVdHDrJKdX2UKGgGaAloD0MI7Sk5J/ZGWcCUhpRSlGgVS0ZoFkdAJFWDg62fCnV9lChoBmgJaA9DCHkgskiT42bAlIaUUpRoFUt4aBZHQCRVqUNayKN1fZQoaAZoCWgPQwibG9MTlkNTwJSGlFKUaBVLcGgWR0AkVs/IKc/ddX2UKGgGaAloD0MIzZGVXwZtWcCUhpRSlGgVS0JoFkdAJFyQPqcEvHV9lChoBmgJaA9DCBWqm4u/kmPAlIaUUpRoFUtaaBZHQCRcZ9/jKgZ1fZQoaAZoCWgPQwgQW3o01YNVwJSGlFKUaBVLXWgWR0AkX3Hq/ub7dX2UKGgGaAloD0MIz4dnCTJEUsCUhpRSlGgVS0poFkdAJGHJT2nKn3V9lChoBmgJaA9DCD1EozuIcG3AlIaUUpRoFUt6aBZHQCRlr9ETg2t1fZQoaAZoCWgPQwghBrr2BbJawJSGlFKUaBVLSmgWR0AkaLP2PDHfdX2UKGgGaAloD0MIiNaKNsf0VcCUhpRSlGgVS01oFkdAJGo7eVLSNXV9lChoBmgJaA9DCIuk3ehjNmHAlIaUUpRoFUttaBZHQCRxiqhlDnh1fZQoaAZoCWgPQwgIHt/eNfZpwJSGlFKUaBVLYWgWR0AkcbGWD6FedX2UKGgGaAloD0MIqMXgYdpKZcCUhpRSlGgVS3RoFkdAJHZmRNh3JXV9lChoBmgJaA9DCOiGpux0LWDAlIaUUpRoFUtnaBZHQCR8LncL0Bh1fZQoaAZoCWgPQwjaVx6kpy1gwJSGlFKUaBVLXmgWR0AknqfOD8LsdX2UKGgGaAloD0MIb2WJzrLVYsCUhpRSlGgVS3RoFkdAJKc14xDb8HV9lChoBmgJaA9DCFhTWRR2glLAlIaUUpRoFUtnaBZHQCSpkqc3EQ51fZQoaAZoCWgPQwgKndfYpWltwJSGlFKUaBVLWmgWR0AkrtCRfWtmdX2UKGgGaAloD0MIHQHcLF7QW8CUhpRSlGgVS2VoFkdAJK7qyGBWgnV9lChoBmgJaA9DCKZHUz2ZLlfAlIaUUpRoFUttaBZHQCSu1IAfdRB1fZQoaAZoCWgPQwjUKCSZ1fVQwJSGlFKUaBVLTGgWR0AksQjD8+A3dX2UKGgGaAloD0MILLr1mh6ZWcCUhpRSlGgVS2NoFkdAJLD7Q9ic5XV9lChoBmgJaA9DCPX3UnjQNl/AlIaUUpRoFUtkaBZHQCS0auOjqOd1fZQoaAZoCWgPQwhPWyOCceVbwJSGlFKUaBVLYGgWR0Akt876pHZsdX2UKGgGaAloD0MIBYcXRKRJXsCUhpRSlGgVS1ZoFkdAJLmRNh3JP3V9lChoBmgJaA9DCFewjXiyiUbAlIaUUpRoFUtRaBZHQCS7CiyprDZ1fZQoaAZoCWgPQwh6GjBI+uwyQJSGlFKUaBVLdmgWR0AkvOzIFNcodX2UKGgGaAloD0MIR5IgXAF7UcCUhpRSlGgVS05oFkdAJL8mKIi1RnV9lChoBmgJaA9DCNLlzeFa8FfAlIaUUpRoFUuUaBZHQCS/PTodMkB1fZQoaAZoCWgPQwhuh4bFKG5vwJSGlFKUaBVLcWgWR0AkxMHKOktVdX2UKGgGaAloD0MIdAmH3uI6UMCUhpRSlGgVS0NoFkdAJOF9jPOY6XV9lChoBmgJaA9DCL5Nf/YjilfAlIaUUpRoFUtUaBZHQCThVMmF8G91fZQoaAZoCWgPQwjEzalkALJVwJSGlFKUaBVLUWgWR0Ak5yBkI5YHdX2UKGgGaAloD0MI1SKimLz1RsCUhpRSlGgVS1BoFkdAJOrf1pTMq3V9lChoBmgJaA9DCLiTiPAvm1TAlIaUUpRoFUtHaBZHQCTroUzsQd11fZQoaAZoCWgPQwjowd1ZuxdawJSGlFKUaBVLUmgWR0Ak7LzwtrbhdX2UKGgGaAloD0MIbAiOy/i8dcCUhpRSlGgVS2BoFkdAJPGa6STyKHV9lChoBmgJaA9DCHO6LCY2KG/AlIaUUpRoFUtYaBZHQCT1hJAdGRV1fZQoaAZoCWgPQwhDVrd6zqxqwJSGlFKUaBVLZmgWR0Ak+/fO2RaHdX2UKGgGaAloD0MIdNAlHHq9UMCUhpRSlGgVS0xoFkdAJP6F/QSi/XV9lChoBmgJaA9DCIbnpWJj5mHAlIaUUpRoFUtqaBZHQCUA0waisXB1fZQoaAZoCWgPQwgk7xzKUGdgwJSGlFKUaBVLZmgWR0AlCTakAPupdX2UKGgGaAloD0MIjgJEwQzyasCUhpRSlGgVS2loFkdAJQ4SQHRkVnV9lChoBmgJaA9DCKVMamhD74DAlIaUUpRoFUuDaBZHQCUeRDCxeLN1fZQoaAZoCWgPQwhPWOIBZYdrwJSGlFKUaBVLfWgWR0AlHjBl+VkddX2UKGgGaAloD0MInE8dq5QRZsCUhpRSlGgVS4poFkdAJSJ4SpR4yHV9lChoBmgJaA9DCLfRAN4CDVbAlIaUUpRoFUtTaBZHQCUuRV6u4gB1fZQoaAZoCWgPQwhzDwnf+5VbwJSGlFKUaBVLZmgWR0AlM0tyxRl6dX2UKGgGaAloD0MI9bwbCwp2XsCUhpRSlGgVS1xoFkdAJTRoZhrnDHV9lChoBmgJaA9DCGixFMlX61XAlIaUUpRoFUtNaBZHQCU5pvgm7at1fZQoaAZoCWgPQwjLD1zlCdtcwJSGlFKUaBVLW2gWR0AlOozeoDPodX2UKGgGaAloD0MICW6kbJGVXsCUhpRSlGgVS3BoFkdAJUEhzNliB3V9lChoBmgJaA9DCEG62LRSzGLAlIaUUpRoFUtiaBZHQCVN/4Irvst1fZQoaAZoCWgPQwi9HeG04PppwJSGlFKUaBVLhmgWR0AlTiF0xM37dX2UKGgGaAloD0MI746M1eZ3Z8CUhpRSlGgVS15oFkdAJVZuZTho/XV9lChoBmgJaA9DCNrKS/4ndzlAlIaUUpRoFUuFaBZHQCVXfwZwXIl1fZQoaAZoCWgPQwjgSnZsBBZawJSGlFKUaBVLXGgWR0AlWe/5+H8CdX2UKGgGaAloD0MIBvaYSGlkTsCUhpRSlGgVS0ZoFkdAJVxvegte2XV9lChoBmgJaA9DCFngK7r1/VrAlIaUUpRoFUtPaBZHQCVfXTVlPJt1fZQoaAZoCWgPQwhBgAwdO11XwJSGlFKUaBVLQWgWR0AlaHBUJfICdX2UKGgGaAloD0MIWIy61l7BbcCUhpRSlGgVS4VoFkdAJWwSSNfgJnV9lChoBmgJaA9DCPXZAdcVIVPAlIaUUpRoFUtQaBZHQCVvuZ1FH8V1fZQoaAZoCWgPQwgPe6GAbWdqwJSGlFKUaBVLp2gWR0AlfE3sHB1tdX2UKGgGaAloD0MIlUkNbQAnWcCUhpRSlGgVS3VoFkdAJX1hLGrCFnV9lChoBmgJaA9DCNY1Wg70wVXAlIaUUpRoFUtSaBZHQCV9Xo1UEPl1fZQoaAZoCWgPQwhfs1w2OgldwJSGlFKUaBVLTmgWR0AlgL6UJOWTdX2UKGgGaAloD0MI/FBpxMw6Q8CUhpRSlGgVS0FoFkdAJYJLVWjoIXV9lChoBmgJaA9DCO2A64oZeGfAlIaUUpRoFUtoaBZHQCWINkOI68x1fZQoaAZoCWgPQwgtQUZAhdtTwJSGlFKUaBVLZ2gWR0Ali/HHWBjGdX2UKGgGaAloD0MIBhIUP8apVMCUhpRSlGgVS0doFkdAJY5/kNnXd3V9lChoBmgJaA9DCBN/FHXmbF3AlIaUUpRoFUtJaBZHQCWPHzYmLLp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9Vc2Vycy9waGlsaXBwYmVyZ21hbm4vLm1pbmlmb3JnZTMvZW52cy9kZWVwLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL1VzZXJzL3BoaWxpcHBiZXJnbWFubi8ubWluaWZvcmdlMy9lbnZzL2RlZXAtcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-12.6-arm64-arm-64bit Darwin Kernel Version 21.6.0: Mon Aug 22 20:19:52 PDT 2022; root:xnu-8020.140.49~2/RELEASE_ARM64_T6000", "Python": "3.10.6", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0", "GPU Enabled": "False", "Numpy": "1.23.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x14b48a170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x14b48a200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x14b48a290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x14b48a320>", "_build": "<function ActorCriticPolicy._build at 0x14b48a3b0>", "forward": "<function ActorCriticPolicy.forward at 0x14b48a440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x14b48a4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x14b48a560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x14b48a5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x14b48a680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x14b48a710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x14abac400>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668526582902253000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9Vc2Vycy9waGlsaXBwYmVyZ21hbm4vLm1pbmlmb3JnZTMvZW52cy9kZWVwLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL1VzZXJzL3BoaWxpcHBiZXJnbWFubi8ubWluaWZvcmdlMy9lbnZzL2RlZXAtcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1y4zzWjQc9S7WVPI4WBr4h4uq7hx2GvAAAAAAAAAAAzYaMvMNhVboCXqO79QoiOI1u77kr01E3AACAPwAAgD/qCKS+MgynP3hXCL8jIu2+ZC67vos347wAAAAAAAAAAHO/Lr5zWJM/Ft0qvxng/b5xe969dMKQvgAAAAAAAAAAGoPxvZptcj77Vli90xhOvq4Gwb1mYIy7AAAAAAAAAABz06y9RUsGPqO29j0P/Gy+0cRpukJDhDsAAAAAAAAAAJolHjzD3X66eE1vuIn+PbKiLQy7g8GINwAAgD8AAIA/ZkT7PWaOYT9nNRq9Ky/dvoEosz2StQC8AAAAAAAAAADzMjy+zvymPbqQaj6sx2e+74Y+Pcr2Xj0AAAAAAAAAADMYAL3hBpm6OjPQumRwFLaYdBi72q7wOQAAgD8AAIA/zfBRPUugOT/6wZg9aUCRvrJ4uT1efHO8AAAAAAAAAACafbA8At2xP9X1kz0dFL2+KJb+PEpHez0AAAAAAAAAAM3nK77jtdI+srAlPpZifr55Qky9MaMAPQAAAAAAAAAAc/X1vfud1D1buNU9Pi6CvtO/jT0GLiG8AAAAAAAAAADNw1Q9o7WTP/EiqzuLDty+toTDPVaGFbwAAAAAAAAAAJpZ8LyuaY+6QynBOrzZZzWzZtw5GDbguQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKgDGMygNc0CUhpRSlIwBbJRNGQGMAXSUR0CA80WuX/o8dX2UKGgGaAloD0MIYizTL5HPb0CUhpRSlGgVTQ4BaBZHQIDzv+dbxEx1fZQoaAZoCWgPQwjHZ7J/HmxxQJSGlFKUaBVNHQFoFkdAgPUeuvECNnV9lChoBmgJaA9DCPjj9svnNnBAlIaUUpRoFU1JAWgWR0CA9U+0w8GLdX2UKGgGaAloD0MIDDohdFCzakCUhpRSlGgVTTcBaBZHQID3fqxC6Yp1fZQoaAZoCWgPQwi371F/fR9xQJSGlFKUaBVNIwFoFkdAgPedz4k/r3V9lChoBmgJaA9DCORp+YErxG5AlIaUUpRoFU0hAWgWR0CA+BMlkYoBdX2UKGgGaAloD0MI6gd1kcK2cUCUhpRSlGgVTR8BaBZHQID4LkXDWLB1fZQoaAZoCWgPQwi1wYnoF7FxQJSGlFKUaBVNMwFoFkdAgQIf5ULlWHV9lChoBmgJaA9DCCF2ptA5YnBAlIaUUpRoFU05AWgWR0CBAphsqJ/HdX2UKGgGaAloD0MIRpp4BzjtcECUhpRSlGgVTREBaBZHQIEDwN0/4Zd1fZQoaAZoCWgPQwjS/ZyCfLZwQJSGlFKUaBVNKQFoFkdAgQSbGecx03V9lChoBmgJaA9DCEOs/gjDHm9AlIaUUpRoFU0TAWgWR0CBBU0Sh8IBdX2UKGgGaAloD0MI325JDlhBb0CUhpRSlGgVTR8BaBZHQIEFjWqcVgx1fZQoaAZoCWgPQwgsSZ7re9ZvQJSGlFKUaBVNCAFoFkdAgQW5hScbznV9lChoBmgJaA9DCFzLZDgeTG5AlIaUUpRoFU1CAWgWR0CBBg+Jxeb/dX2UKGgGaAloD0MIdQDEXT0qbECUhpRSlGgVTS8BaBZHQIEIZF5OafB1fZQoaAZoCWgPQwiUS+MXHpNxQJSGlFKUaBVNPgFoFkdAgQkzzND+i3V9lChoBmgJaA9DCKMHPgYrWXBAlIaUUpRoFU0hAWgWR0CBCl5a/yoXdX2UKGgGaAloD0MI4/4j06FQbkCUhpRSlGgVTTIBaBZHQIELtJDmbLF1fZQoaAZoCWgPQwjJAFDFzZdwQJSGlFKUaBVNPAFoFkdAgQxA6dUbUHV9lChoBmgJaA9DCKysbYoHA3BAlIaUUpRoFU1XAWgWR0CBDLxS5y2hdX2UKGgGaAloD0MI2Vw1z5HVcECUhpRSlGgVTSEBaBZHQIEO1B8hLXd1fZQoaAZoCWgPQwiMSBRa1r9tQJSGlFKUaBVNGQFoFkdAgQ+J6yB063V9lChoBmgJaA9DCJzexfuxY3FAlIaUUpRoFU1bAWgWR0CBD9oX9BKMdX2UKGgGaAloD0MI9DRgkHTOcUCUhpRSlGgVTRcBaBZHQIEQhEjPfKp1fZQoaAZoCWgPQwg83A4NC+1tQJSGlFKUaBVNhwFoFkdAgREKmTC+DnV9lChoBmgJaA9DCPuSjQdb2G9AlIaUUpRoFU08AWgWR0CBEa/yoXKsdX2UKGgGaAloD0MIjErqBLSib0CUhpRSlGgVTTEBaBZHQIERugL7XQN1fZQoaAZoCWgPQwisGoS53dNwQJSGlFKUaBVNPAFoFkdAgRJ1mapgkXV9lChoBmgJaA9DCHrejQXFbXBAlIaUUpRoFU0rAWgWR0CBFFAWSEDhdX2UKGgGaAloD0MIknnkD4YvbECUhpRSlGgVTSQBaBZHQIEU1QO4G2V1fZQoaAZoCWgPQwj/sRAdAiZvQJSGlFKUaBVNIAFoFkdAgRXN1ZDArXV9lChoBmgJaA9DCJ8ih4hbqHJAlIaUUpRoFU0MAWgWR0CBFrYvnKW+dX2UKGgGaAloD0MIeVp+4Kphb0CUhpRSlGgVTSEBaBZHQIEXAPCl7+l1fZQoaAZoCWgPQwgGoFG6dFtyQJSGlFKUaBVNSAFoFkdAgRl10Lc9GXV9lChoBmgJaA9DCDGUE+2qP2xAlIaUUpRoFU0vAWgWR0CBGn/lQuVYdX2UKGgGaAloD0MIHZQw0/bFZECUhpRSlGgVTegDaBZHQIEbAx59mYl1fZQoaAZoCWgPQwgNqaJ4lVRwQJSGlFKUaBVNHQFoFkdAgRtvEjxCpnV9lChoBmgJaA9DCByZR/7gmnJAlIaUUpRoFU1JAWgWR0CBHDeokzGhdX2UKGgGaAloD0MIT+lg/d8HckCUhpRSlGgVTR8BaBZHQIEcu9pRGc51fZQoaAZoCWgPQwjYYUz6OwVxQJSGlFKUaBVNNAFoFkdAgRzhUaQ3gnV9lChoBmgJaA9DCHHjFvPzxHFAlIaUUpRoFU06AWgWR0CBHaQ0XP7fdX2UKGgGaAloD0MIaoZUUTz+cUCUhpRSlGgVTQ8BaBZHQIEerpmmLtN1fZQoaAZoCWgPQwiRQln4eptxQJSGlFKUaBVNJAFoFkdAgR/3rUsnRnV9lChoBmgJaA9DCJZ5q66DN3FAlIaUUpRoFU1wAWgWR0CBIHTZQHiWdX2UKGgGaAloD0MImdh8XBtJbkCUhpRSlGgVTRoBaBZHQIEgknJDE3t1fZQoaAZoCWgPQwiF7LyNzXRhQJSGlFKUaBVN6ANoFkdAgSFcdo3713V9lChoBmgJaA9DCIi6D0Aqb3NAlIaUUpRoFU04AWgWR0CBImWEbo8qdX2UKGgGaAloD0MIZaVJKegjckCUhpRSlGgVTVoBaBZHQIEj/7YTTOR1fZQoaAZoCWgPQwiIhVrTPBRxQJSGlFKUaBVNIAFoFkdAgSQ77bcoIHV9lChoBmgJaA9DCOfFia+2tHJAlIaUUpRoFU0fAWgWR0CBJhgvUSZjdX2UKGgGaAloD0MINJ4I4nwccUCUhpRSlGgVTUoBaBZHQIEnBuKoAGV1fZQoaAZoCWgPQwi6nui6sEBwQJSGlFKUaBVNJAFoFkdAgSfLronrp3V9lChoBmgJaA9DCDhm2ZOAmXBAlIaUUpRoFU1FAWgWR0CBMUbe/Ho6dX2UKGgGaAloD0MItoE7UKdGbkCUhpRSlGgVTZsBaBZHQIEz+ANG3F11fZQoaAZoCWgPQwj6KCMugIpwQJSGlFKUaBVNQQFoFkdAgTRmrbQC0XV9lChoBmgJaA9DCGsPe6GArHBAlIaUUpRoFU17AWgWR0CBNK1UEPlNdX2UKGgGaAloD0MIMVuyKkJMbkCUhpRSlGgVTTsBaBZHQIE2ORHPNV11fZQoaAZoCWgPQwhgWtQnOaRwQJSGlFKUaBVNKQFoFkdAgTajeTFERnV9lChoBmgJaA9DCCRiSiQRPHFAlIaUUpRoFU2AAWgWR0CBOLiIcinpdX2UKGgGaAloD0MIQQsJGF0GcUCUhpRSlGgVTckBaBZHQIE5G+mFajh1fZQoaAZoCWgPQwgebLHb541tQJSGlFKUaBVNdQFoFkdAgTtA9mpVCHV9lChoBmgJaA9DCMXIkjnWE3JAlIaUUpRoFU1LAWgWR0CBO3+sHSncdX2UKGgGaAloD0MIdjbknxk7bkCUhpRSlGgVTTQBaBZHQIE8aJGe+VV1fZQoaAZoCWgPQwibVDTWfmNuQJSGlFKUaBVNaAFoFkdAgTx1QQ+UyHV9lChoBmgJaA9DCBDs+C8Q0G9AlIaUUpRoFU1aAWgWR0CBPr80k4WDdX2UKGgGaAloD0MIUDqRYCq/cECUhpRSlGgVTU4BaBZHQIE+9rftQbd1fZQoaAZoCWgPQwjOp45VypRwQJSGlFKUaBVNTQFoFkdAgT+0OEug6HV9lChoBmgJaA9DCJgwmpWtmXFAlIaUUpRoFU0RAWgWR0CBQByz5XU6dX2UKGgGaAloD0MIWhDK+zjfYUCUhpRSlGgVTegDaBZHQIFAdjd56dF1fZQoaAZoCWgPQwjx9bUuNaRwQJSGlFKUaBVNMQFoFkdAgUC/Ue+23XV9lChoBmgJaA9DCN/A5EZRlXBAlIaUUpRoFU0/AWgWR0CBQYzdDYywdX2UKGgGaAloD0MIgSBAho68bkCUhpRSlGgVTSMBaBZHQIFCTuKGcnV1fZQoaAZoCWgPQwh6bTZWYmJxQJSGlFKUaBVNbAFoFkdAgUTc0DU3GXV9lChoBmgJaA9DCIPeG0PARXJAlIaUUpRoFU1UAWgWR0CBRsERJ2+xdX2UKGgGaAloD0MI2h1SDNCdcUCUhpRSlGgVTQ4BaBZHQIFHN7Qb+991fZQoaAZoCWgPQwhZorPMonNwQJSGlFKUaBVNSwFoFkdAgUkFrEcbSHV9lChoBmgJaA9DCJQyqaGNY3BAlIaUUpRoFU02AWgWR0CBSRaK1og3dX2UKGgGaAloD0MIsky/RLxtb0CUhpRSlGgVTaEBaBZHQIFJ6XKKYRd1fZQoaAZoCWgPQwgeGavNPxpyQJSGlFKUaBVNbwFoFkdAgUpRsuWa+nV9lChoBmgJaA9DCKVneokx2m9AlIaUUpRoFU1BAWgWR0CBTAnO0LMLdX2UKGgGaAloD0MIFr6+1qXDckCUhpRSlGgVTU0BaBZHQIFM1Qfp2U11fZQoaAZoCWgPQwjX+iKhbSFxQJSGlFKUaBVNGwFoFkdAgU2+WOZLI3V9lChoBmgJaA9DCLSwpx1+b3BAlIaUUpRoFU1TAWgWR0CBTn8wYcebdX2UKGgGaAloD0MIAK5kxwaycECUhpRSlGgVTWEBaBZHQIFPjIq9XcR1fZQoaAZoCWgPQwjXbOUl/71uQJSGlFKUaBVNSgFoFkdAgVDnEuQIU3V9lChoBmgJaA9DCOkrSDPWtnBAlIaUUpRoFU1/AWgWR0CBUT9OymhudX2UKGgGaAloD0MIN/3ZjxTGbkCUhpRSlGgVTTYBaBZHQIFSv82rGR51fZQoaAZoCWgPQwh4mPbN/eNjQJSGlFKUaBVN6ANoFkdAgVNVhLGrCHV9lChoBmgJaA9DCErx8QkZ0XBAlIaUUpRoFU0sAWgWR0CBVAw7DEWJdX2UKGgGaAloD0MIaVGf5E7WcECUhpRSlGgVTeABaBZHQIFUHvDxb0R1fZQoaAZoCWgPQwhm2CjrtwRwQJSGlFKUaBVNHAFoFkdAgVUl9KEnLXV9lChoBmgJaA9DCGIwf4WMd3BAlIaUUpRoFU0qAWgWR0CBVuQCjk+5dX2UKGgGaAloD0MIwO0JEpurcECUhpRSlGgVTWMBaBZHQIFYJrSE12t1fZQoaAZoCWgPQwjjw+xl2/luQJSGlFKUaBVNKgFoFkdAgVi7QkX1rnV9lChoBmgJaA9DCEmAmlo2CHBAlIaUUpRoFU2zAWgWR0CBWf7Q9ic5dX2UKGgGaAloD0MIEY3uIHYGcUCUhpRSlGgVTSUBaBZHQIFaKBGx2St1fZQoaAZoCWgPQwhqozodSDFxQJSGlFKUaBVNUQFoFkdAgVskDZDiO3V9lChoBmgJaA9DCK8LPzifJ3FAlIaUUpRoFU0wAWgWR0CBW0GbCrLhdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9Vc2Vycy9waGlsaXBwYmVyZ21hbm4vLm1pbmlmb3JnZTMvZW52cy9kZWVwLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL1VzZXJzL3BoaWxpcHBiZXJnbWFubi8ubWluaWZvcmdlMy9lbnZzL2RlZXAtcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-12.6-arm64-arm-64bit Darwin Kernel Version 21.6.0: Mon Aug 22 20:19:52 PDT 2022; root:xnu-8020.140.49~2/RELEASE_ARM64_T6000", "Python": "3.10.6", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0", "GPU Enabled": "False", "Numpy": "1.23.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 247.17205649588013, "std_reward": 24.824496685212594, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-15T09:45:42.655565"}
|