ppo-LunarLander-v2 / config.json
philikai's picture
RL Agent for Lunar lander. n_epochs = 4,
91971ea verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f18a0ba11b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f18a0ba1240>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f18a0ba12d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f18a0ba1360>", "_build": "<function ActorCriticPolicy._build at 0x7f18a0ba13f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f18a0ba1480>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f18a0ba1510>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f18a0ba15a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f18a0ba1630>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f18a0ba16c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f18a0ba1750>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f18a0ba17e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f18719c1f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724068289018703505, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAE0yc71SYOa5rSLquYmw7rSV20o64+xaNAAAgD8AAIA/c2eXvR89/LkklCm374ioMYFKx7vb0Uc2AACAPwAAgD9muTe9jx4TuujZHrsHvaK2wg28upNlFjYAAIA/AACAPzO5PLyetO49+K0tvj8iRr5itYS9JnM7vQAAAAAAAAAA2vCNvVwfL7oTyJc6YGzGNcQT/rre6q+5AACAPwAAgD8a8gW9uP6qudiRpLrzRSS2lnSiOzW0wzkAAIA/AACAPzMWVr2u9YG6a90SOkSSBjVwkz67an8ouQAAgD8AAIA/zQKPPVwzVLpr9mw6IrngMxgCWztXJom5AACAPwAAgD+aYD69AmjePpULJb0zOz++WOiGvAslXj0AAAAAAAAAAJpavz1I/4S60l8mPMR/h7U/47a6675/tAAAAAAAAIA/ZqLCOwqfDrtsTA490VqvPPsPMTzFGpa9AACAPwAAgD/N3rk8H4WFNi0PcLqNxDe2ugyotlpmjTkAAIA/AACAPwPCUb5t3IY/S2blvruIlL6bU3i+Bke8vQAAAAAAAAAApsCXvoVYPT8hLQu8RsmRvtKZBLzHzke9AAAAAAAAAABAO4W94S6Guv3pgTvCrhS22C1tO3wlCrUAAIA/AACAP83sezykACC5UekMvIoMhzc/7ji7sPnwtgAAgD8AAIA/AF5hvRQelbr/wi+6oea5teFUCbvPdko5AACAPwAAgD8Ae6W8hbO+uSJmcjsFmoo4dRy2O4KnEroAAIA/AACAP+bzNb6cPG68CvsqO+OMpzlENdY9he1rugAAgD8AAIA/GuIDvRREkLq3IZi4mh/hMp1+RrsLoqw3AACAPwAAgD9mNum8Kbg3uvra/7kGjWe1sTePO6C6EzkAAIA/AACAP80IpTxxXUm5cOHPOqBQljWG3iu7daj1uQAAgD8AAIA/DRSLPdfzHrmVVNC7J29nNBvPojhVq+CzAACAPwAAgD+NRu29uU+zPxOdbr550YW+1uoNvm8gCrsAAAAAAAAAALNiL724h7E9vW1+vSdBRL5i5R69FbYNvgAAAAAAAAAAc1idvnvxST+klA4+8zGcvt/Z6rxr9vs9AAAAAAAAAADNdGA8lo21P/PZLz+F1Rw+lQFivDpV7r0AAAAAAAAAAObH9L09ima5eDuWPEohErq7k6K7Mo4AOwAAgD8AAIA/M+7tPFKosLl9+Ki4fnHhs+WGHLsjl8Y3AACAPwAAgD9AoUu+g50IP7Uo6T0be1a+tR3zu0lVGTwAAAAAAAAAAGYGGjzssba5A6+HO3mOHjhdXCW7vrDqtwAAgD8AAIA/5jk/PYWj47nSa1M7duuXOHfwuTmjvfq5AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUeG3WnTAqMAWyUTegDjAF0lEdAlWrB5C4SYnV9lChoBkdAZRn35eqrBGgHTegDaAhHQJVtNh2GIsR1fZQoaAZHQGDLgj6eoUBoB03oA2gIR0CVbzQVbiZOdX2UKGgGR0BhzIKYzBRAaAdN6ANoCEdAlXBnUc4o7XV9lChoBkdAYAhNxlxwQ2gHTegDaAhHQJVy2/L1VYJ1fZQoaAZHQF9934Kx9ohoB03oA2gIR0CVeG2s7uD0dX2UKGgGR0Bgrg51eSjhaAdN6ANoCEdAlXlWfXf643V9lChoBkdAXXtW912aD2gHTegDaAhHQJV6am3vx6R1fZQoaAZHQGKOitRvWH1oB03oA2gIR0CVfPFV1fVqdX2UKGgGR0Bj+Oc6NlyzaAdN6ANoCEdAlX8SiRGMGXV9lChoBkdAX54qPOpsGmgHTegDaAhHQJV/tQtSQ5p1fZQoaAZHQGJKanaWX1JoB03oA2gIR0CVgZk1uR9xdX2UKGgGR0BAsyzw+dK/aAdL52gIR0CVggZuAI6bdX2UKGgGR0BC7++VTrE+aAdL1mgIR0CVgl4x1xKhdX2UKGgGR0BkMjQ/oq0/aAdN6ANoCEdAlYeQ4sEq2HV9lChoBkdAYoz4B3iaRmgHTegDaAhHQJWJvQ2MsH11fZQoaAZHQFtEkFOfukVoB03oA2gIR0CVkIQ5WBBidX2UKGgGR0BlYKh11W8zaAdN6ANoCEdAlZIRbwBo3HV9lChoBkdAYb1f2saKk2gHTegDaAhHQJWVcF3Y+St1fZQoaAZHQGLvoWYWtU5oB03oA2gIR0CVmuaS9ugpdX2UKGgGR0BcUZqh11W9aAdN6ANoCEdAlaQW/BWPtHV9lChoBkdAYbgbExZdOmgHTegDaAhHQJWn+yKNyYJ1fZQoaAZHQGHqvY4ACGNoB03oA2gIR0CVqWu5jH4odX2UKGgGR0BeekPczqKQaAdN6ANoCEdAlamjabnX/nV9lChoBkdAYWrw97ngYWgHTegDaAhHQJWzOtYB/7V1fZQoaAZHQGEX25xzaK1oB03oA2gIR0CVs61xsEaEdX2UKGgGR0BiMmNLlFMJaAdN6ANoCEdAlbgB1gYxcnV9lChoBkdAZTjHggow22gHTegDaAhHQJW9HhBJI2B1fZQoaAZHQGQl/+85CF9oB03oA2gIR0CVv1kI5YHPdX2UKGgGR0BjCvVf/m1ZaAdN6ANoCEdAlcCZK3/gi3V9lChoBkdAZOkR/3Fkx2gHTegDaAhHQJXEC4LCvX91fZQoaAZHQGFfFqJuVHFoB03oA2gIR0CVxFrGR3eOdX2UKGgGR0BfcN9YwIt2aAdN6ANoCEdAlcd4icG1QnV9lChoBkdAYV+QhfShJ2gHTegDaAhHQJXj3cN6PbR1fZQoaAZHQFw9am4y44JoB03oA2gIR0CV5BKDkELZdX2UKGgGR0Bgq1jiGWUsaAdN6ANoCEdAlem8ir1dxHV9lChoBkdAXSLxd6cAimgHTegDaAhHQJXsY6QvHtF1fZQoaAZHQFol36hxo7FoB03oA2gIR0CV8kBuXNTtdX2UKGgGR0BiEwq/dqL1aAdN6ANoCEdAlfM5zT4L1HV9lChoBkdAZBN2tdRiw2gHTegDaAhHQJX0XgqEvkB1fZQoaAZHQGLbZAIIF/xoB03oA2gIR0CV9vvy9VWCdX2UKGgGR0Baotgnc+JQaAdN6ANoCEdAlfkx8QZn+XV9lChoBkdAXYj0e2d/a2gHTegDaAhHQJX50b+98JF1fZQoaAZHQF8V58jRlYloB03oA2gIR0CV+8OwgTysdX2UKGgGR0BiHLb8FY+0aAdN6ANoCEdAlfw0sWfseHV9lChoBkdAZFnY1YQrc2gHTegDaAhHQJX8jlV94NZ1fZQoaAZHQF3ILA57w8ZoB03oA2gIR0CWAZahYeT3dX2UKGgGR0BiUBjlPrOaaAdN6ANoCEdAlgOpyZKFqXV9lChoBkdAXszLmp2lmGgHTegDaAhHQJYKB7XxvvV1fZQoaAZHQGSfOQZGax5oB03oA2gIR0CWC3Fqi48VdX2UKGgGR0BblbqIJqqPaAdN6ANoCEdAlg5lrl/6PHV9lChoBkdAYKsXkYGdJGgHTegDaAhHQJYTFTwUg0V1fZQoaAZHQGJrwbMotthoB03oA2gIR0CWGvmuDBdldX2UKGgGR0BiZhRKpT/AaAdN6ANoCEdAlh5haX8fm3V9lChoBkdAYPYC3gDRt2gHTegDaAhHQJYfnb9If8x1fZQoaAZHQGJ3brkbPyFoB03oA2gIR0CWH9HUMG5ddX2UKGgGR0Bl9jDbah6CaAdN6ANoCEdAlidzkZJkG3V9lChoBkdAY5whhYvFnGgHTegDaAhHQJYn2PcSGrV1fZQoaAZHQGEq4TbnHNpoB03oA2gIR0CWK4pi7TUidX2UKGgGR0BgCTfP5YYBaAdN6ANoCEdAli/1pGnXNHV9lChoBkdAYnJEVFhG6WgHTegDaAhHQJYx5Ew35vd1fZQoaAZHQF3zZgG8mKJoB03oA2gIR0CWMvpcX3xndX2UKGgGR0Bl/NcIJJGwaAdN6ANoCEdAljYK3AmAsnV9lChoBkdAXZRMpPRAr2gHTegDaAhHQJY2UpLEk0J1fZQoaAZHQGQkc7p3X7NoB03oA2gIR0CWOQ4SpR4ydX2UKGgGR0BgSb4QBgeBaAdN6ANoCEdAlj6N9QXQ+nV9lChoBkdAYhbhoduHe2gHTegDaAhHQJY+u1PWQOp1fZQoaAZHQE6aVsUIsy1oB0u5aAhHQJZYd1q33Ht1fZQoaAZHQGK4YmTkhidoB03oA2gIR0CWWk84PwuvdX2UKGgGR0Bju+WjXWe6aAdN6ANoCEdAllysRDkU9XV9lChoBkdAYxanqFAVwmgHTegDaAhHQJZh1llK9PF1fZQoaAZHQGEzQGfPHDJoB03oA2gIR0CWYrD/VAiWdX2UKGgGR0BlBZT2nKnvaAdN6ANoCEdAlmOrAP/aQHV9lChoBkdAYJOiD/VAiWgHTegDaAhHQJZl7jp9qlB1fZQoaAZHQGYrF0PpY9xoB03oA2gIR0CWZ9+zdDYzdX2UKGgGR0BlkuFYdQwcaAdN6ANoCEdAlmhwZCOWB3V9lChoBkdAZlttO2y9mGgHTegDaAhHQJZqHuy/sVt1fZQoaAZHQGPiVwo9cKRoB03oA2gIR0CWaoDRMN+cdX2UKGgGR0BknaFuejEfaAdN6ANoCEdAlmrOTA31jHV9lChoBkdAZstbKzRhMWgHTegDaAhHQJZvOOAAhjh1fZQoaAZHQGIl1lPJq7BoB03oA2gIR0CWcRJ9AooedX2UKGgGR0BjHif16E8JaAdN6ANoCEdAlnb5GOMl1XV9lChoBkdAY1nHd43WF2gHTegDaAhHQJZ4S+Cbtqp1fZQoaAZHQGBVwLux8lZoB03oA2gIR0CWeyNke6qbdX2UKGgGR0Bkt7SVnmJWaAdN6ANoCEdAln/D4k/r0XV9lChoBkdAZJ8HsTnJT2gHTegDaAhHQJaHtpj+aSd1fZQoaAZHQGJ8uFg2IftoB03oA2gIR0CWix5Sm65HdX2UKGgGR0Bh7h2+wkgPaAdN6ANoCEdAloxao2n89HV9lChoBkdAYJg+HJtBOmgHTegDaAhHQJaMiXC0ngJ1fZQoaAZHQGDlI7muDBdoB03oA2gIR0CWlCAZKnNxdX2UKGgGR0BkbWLk0aZQaAdN6ANoCEdAlpSAjMV1wHV9lChoBkdAZVs+NcW0q2gHTegDaAhHQJaYHR6Ww/x1fZQoaAZHQGOKVeKKpDNoB03oA2gIR0CWnIQyAQQMdX2UKGgGR0BiTUhJRO1waAdN6ANoCEdAlp+LpRoAXHV9lChoBkdAZAsujASFoWgHTegDaAhHQJairm+0w8J1fZQoaAZHQFxnCROk+HJoB03oA2gIR0CWovhRIjGDdX2UKGgGR0Bi6hC4SYgJaAdN6ANoCEdAlqXXLvCuU3V9lChoBkdAZkoL5ylvZWgHTegDaAhHQJarpY+0PYp1fZQoaAZHQF2gehwl0HRoB03oA2gIR0CWq9ZZB9kSdX2UKGgGR0Bmf+QdS2piaAdN6ANoCEdAlq91nIyTIXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.219-208.866.amzn2.x86_64-x86_64-with-glibc2.35 # 1 SMP Tue Jun 18 14:00:06 UTC 2024", "Python": "3.10.14", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0.post304", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}