Commit
•
cc95e1a
1
Parent(s):
b9b7d39
Update README.md
Browse files
README.md
CHANGED
@@ -39,25 +39,30 @@ should probably proofread and complete it, then remove this comment. -->
|
|
39 |
|
40 |
# distilroberta-base-ner-wikiann-conll2003-3-class
|
41 |
|
42 |
-
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the wikiann
|
43 |
-
|
44 |
-
-
|
45 |
-
|
46 |
-
-
|
47 |
-
|
48 |
-
|
49 |
|
50 |
-
## Model description
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
|
|
|
57 |
|
58 |
-
|
|
|
59 |
|
60 |
-
|
|
|
|
|
61 |
|
62 |
## Training procedure
|
63 |
|
@@ -75,6 +80,19 @@ The following hyperparameters were used during training:
|
|
75 |
|
76 |
### Training results
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
|
80 |
### Framework versions
|
|
|
39 |
|
40 |
# distilroberta-base-ner-wikiann-conll2003-3-class
|
41 |
|
42 |
+
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the wikiann and conll2003 dataset. It consists out of the classes of wikiann.
|
43 |
+
|
44 |
+
O (0), B-PER (1), I-PER (2), B-ORG (3), I-ORG (4) B-LOC (5), I-LOC (6).
|
45 |
+
|
46 |
+
eval F1-Score: **96,25** (merged dataset)
|
47 |
+
test F1-Score: **92,41** (merged dataset)
|
48 |
+
|
49 |
|
|
|
50 |
|
51 |
+
## Model Usage
|
52 |
|
53 |
+
```python
|
54 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
55 |
+
from transformers import pipeline
|
56 |
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained("philschmid/distilroberta-base-ner-wikiann-conll2003-3-class")
|
58 |
+
model = AutoModelForTokenClassification.from_pretrained("philschmid/distilroberta-base-ner-wikiann-conll2003-3-class")
|
59 |
|
60 |
+
nlp = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True)
|
61 |
+
example = "My name is Philipp and live in Germany"
|
62 |
|
63 |
+
nlp(example)
|
64 |
+
|
65 |
+
```
|
66 |
|
67 |
## Training procedure
|
68 |
|
|
|
80 |
|
81 |
### Training results
|
82 |
|
83 |
+
It achieves the following results on the evaluation set:
|
84 |
+
- Loss: 0.0520
|
85 |
+
- Precision: 0.9625
|
86 |
+
- Recall: 0.9667
|
87 |
+
- F1: 0.9646
|
88 |
+
- Accuracy: 0.9914
|
89 |
+
|
90 |
+
It achieves the following results on the test set:
|
91 |
+
- Loss: 0.141
|
92 |
+
- Precision: 0.917
|
93 |
+
- Recall: 0.9313
|
94 |
+
- F1: 0.9241
|
95 |
+
- Accuracy: 0.9807
|
96 |
|
97 |
|
98 |
### Framework versions
|