--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: validation args: plus metrics: - name: Accuracy type: accuracy value: 0.9490322580645161 --- # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.1852 - Accuracy: 0.9490 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 1280 - eval_batch_size: 1280 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9692 | 1.0 | 12 | 1.3486 | 0.6574 | | 1.1867 | 2.0 | 24 | 0.5409 | 0.8884 | | 0.5614 | 3.0 | 36 | 0.2845 | 0.9387 | | 0.295 | 4.0 | 48 | 0.2234 | 0.9471 | | 0.1729 | 5.0 | 60 | 0.2021 | 0.9487 | | 0.1574 | 6.0 | 72 | 0.1942 | 0.9513 | | 0.1477 | 7.0 | 84 | 0.1895 | 0.9510 | | 0.1446 | 8.0 | 96 | 0.1870 | 0.9497 | | 0.1405 | 9.0 | 108 | 0.1856 | 0.9494 | | 0.1382 | 10.0 | 120 | 0.1852 | 0.9490 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3