--- tags: - automatic-speech-recognition - phongdtd/VinDataVLSP - generated_from_trainer model-index: - name: wavLM-VLSP-vi results: [] --- # wavLM-VLSP-vi This model is a fine-tuned version of [microsoft/wavlm-base-plus](https://huggingface.co/microsoft/wavlm-base-plus) on the PHONGDTD/VINDATAVLSP - NA dataset. It achieves the following results on the evaluation set: - Loss: 45.8892 - Wer: 0.9999 - Cer: 0.9973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 8 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:| | 3.4482 | 9.41 | 40000 | 3.4480 | 0.9999 | 0.9974 | | 3.4619 | 18.81 | 80000 | 3.4514 | 0.9999 | 0.9974 | | 3.7961 | 28.22 | 120000 | 3.8732 | 0.9999 | 0.9974 | | 24.3843 | 37.62 | 160000 | 22.5457 | 0.9999 | 0.9973 | | 48.5691 | 47.03 | 200000 | 45.8892 | 0.9999 | 0.9973 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3