--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - image-classification - vision - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: results results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9402390438247012 --- # results This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2654 - Accuracy: 0.9402 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5724 | 1.0 | 34 | 0.4259 | 0.9163 | | 0.3558 | 2.0 | 68 | 0.3116 | 0.9363 | | 0.2732 | 3.0 | 102 | 0.2842 | 0.9363 | | 0.2286 | 4.0 | 136 | 0.2690 | 0.9402 | | 0.1984 | 5.0 | 170 | 0.2654 | 0.9402 | ### Framework versions - Transformers 4.43.0.dev0 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1