piecurus commited on
Commit
a4498fd
1 Parent(s): d566a60

End of training

Browse files
README.md ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b0
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: segformer-finetuned-segments-opit
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # segformer-finetuned-segments-opit
17
+
18
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the segments/sidewalk-semantic dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.3483
21
+ - Mean Iou: 0.1474
22
+ - Mean Accuracy: 0.1958
23
+ - Overall Accuracy: 0.7227
24
+ - Accuracy Unlabeled: nan
25
+ - Accuracy Flat-road: 0.7892
26
+ - Accuracy Flat-sidewalk: 0.9075
27
+ - Accuracy Flat-crosswalk: 0.0
28
+ - Accuracy Flat-cyclinglane: 0.1029
29
+ - Accuracy Flat-parkingdriveway: 0.0001
30
+ - Accuracy Flat-railtrack: nan
31
+ - Accuracy Flat-curb: 0.0
32
+ - Accuracy Human-person: 0.0
33
+ - Accuracy Human-rider: 0.0
34
+ - Accuracy Vehicle-car: 0.8749
35
+ - Accuracy Vehicle-truck: 0.0
36
+ - Accuracy Vehicle-bus: 0.0
37
+ - Accuracy Vehicle-tramtrain: nan
38
+ - Accuracy Vehicle-motorcycle: 0.0
39
+ - Accuracy Vehicle-bicycle: 0.0
40
+ - Accuracy Vehicle-caravan: 0.0
41
+ - Accuracy Vehicle-cartrailer: 0.0
42
+ - Accuracy Construction-building: 0.8943
43
+ - Accuracy Construction-door: 0.0
44
+ - Accuracy Construction-wall: 0.0
45
+ - Accuracy Construction-fenceguardrail: 0.0
46
+ - Accuracy Construction-bridge: 0.0
47
+ - Accuracy Construction-tunnel: nan
48
+ - Accuracy Construction-stairs: 0.0
49
+ - Accuracy Object-pole: 0.0
50
+ - Accuracy Object-trafficsign: 0.0
51
+ - Accuracy Object-trafficlight: 0.0
52
+ - Accuracy Nature-vegetation: 0.9118
53
+ - Accuracy Nature-terrain: 0.6546
54
+ - Accuracy Sky: 0.9352
55
+ - Accuracy Void-ground: 0.0
56
+ - Accuracy Void-dynamic: 0.0
57
+ - Accuracy Void-static: 0.0
58
+ - Accuracy Void-unclear: 0.0
59
+ - Iou Unlabeled: nan
60
+ - Iou Flat-road: 0.4282
61
+ - Iou Flat-sidewalk: 0.7768
62
+ - Iou Flat-crosswalk: 0.0
63
+ - Iou Flat-cyclinglane: 0.1021
64
+ - Iou Flat-parkingdriveway: 0.0001
65
+ - Iou Flat-railtrack: nan
66
+ - Iou Flat-curb: 0.0
67
+ - Iou Human-person: 0.0
68
+ - Iou Human-rider: 0.0
69
+ - Iou Vehicle-car: 0.6372
70
+ - Iou Vehicle-truck: 0.0
71
+ - Iou Vehicle-bus: 0.0
72
+ - Iou Vehicle-tramtrain: nan
73
+ - Iou Vehicle-motorcycle: 0.0
74
+ - Iou Vehicle-bicycle: 0.0
75
+ - Iou Vehicle-caravan: 0.0
76
+ - Iou Vehicle-cartrailer: 0.0
77
+ - Iou Construction-building: 0.5530
78
+ - Iou Construction-door: 0.0
79
+ - Iou Construction-wall: 0.0
80
+ - Iou Construction-fenceguardrail: 0.0
81
+ - Iou Construction-bridge: 0.0
82
+ - Iou Construction-tunnel: nan
83
+ - Iou Construction-stairs: 0.0
84
+ - Iou Object-pole: 0.0
85
+ - Iou Object-trafficsign: 0.0
86
+ - Iou Object-trafficlight: 0.0
87
+ - Iou Nature-vegetation: 0.7392
88
+ - Iou Nature-terrain: 0.5009
89
+ - Iou Sky: 0.8328
90
+ - Iou Void-ground: 0.0
91
+ - Iou Void-dynamic: 0.0
92
+ - Iou Void-static: 0.0
93
+ - Iou Void-unclear: 0.0
94
+
95
+ ## Model description
96
+
97
+ More information needed
98
+
99
+ ## Intended uses & limitations
100
+
101
+ More information needed
102
+
103
+ ## Training and evaluation data
104
+
105
+ More information needed
106
+
107
+ ## Training procedure
108
+
109
+ ### Training hyperparameters
110
+
111
+ The following hyperparameters were used during training:
112
+ - learning_rate: 6e-05
113
+ - train_batch_size: 2
114
+ - eval_batch_size: 2
115
+ - seed: 42
116
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
117
+ - lr_scheduler_type: linear
118
+ - num_epochs: 1
119
+
120
+ ### Training results
121
+
122
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
123
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
124
+ | 2.8103 | 0.06 | 25 | 3.0462 | 0.0835 | 0.1351 | 0.5790 | nan | 0.1892 | 0.9330 | 0.0 | 0.0048 | 0.0006 | nan | 0.0005 | 0.0002 | 0.0 | 0.5793 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8849 | 0.0 | 0.0000 | 0.0002 | 0.0 | nan | 0.0003 | 0.0009 | 0.0 | 0.0 | 0.6599 | 0.4398 | 0.4779 | 0.0004 | 0.0 | 0.0151 | 0.0 | 0.0 | 0.1368 | 0.6091 | 0.0 | 0.0046 | 0.0006 | 0.0 | 0.0005 | 0.0002 | 0.0 | 0.4916 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3537 | 0.0 | 0.0000 | 0.0002 | 0.0 | 0.0 | 0.0003 | 0.0008 | 0.0 | 0.0 | 0.5851 | 0.2698 | 0.4572 | 0.0004 | 0.0 | 0.0123 | 0.0 |
125
+ | 2.3833 | 0.12 | 50 | 2.3708 | 0.1025 | 0.1539 | 0.6295 | nan | 0.6185 | 0.8261 | 0.0 | 0.0007 | 0.0003 | nan | 0.0000 | 0.0 | 0.0 | 0.7749 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9283 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8688 | 0.0568 | 0.6944 | 0.0 | 0.0 | 0.0016 | 0.0 | nan | 0.3347 | 0.6672 | 0.0 | 0.0007 | 0.0003 | nan | 0.0000 | 0.0 | 0.0 | 0.5428 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4369 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6274 | 0.0451 | 0.6247 | 0.0 | 0.0 | 0.0015 | 0.0 |
126
+ | 2.1946 | 0.19 | 75 | 1.9680 | 0.1145 | 0.1612 | 0.6615 | nan | 0.6725 | 0.8726 | 0.0 | 0.0011 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.7496 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9138 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9185 | 0.0333 | 0.8355 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.3738 | 0.7037 | 0.0 | 0.0011 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.5385 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.4836 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6493 | 0.0311 | 0.7684 | 0.0 | 0.0 | 0.0000 | 0.0 |
127
+ | 1.959 | 0.25 | 100 | 1.8828 | 0.1179 | 0.1636 | 0.6727 | nan | 0.6801 | 0.8928 | 0.0 | 0.0006 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.7736 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8784 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9482 | 0.0389 | 0.8584 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.3884 | 0.7151 | 0.0 | 0.0006 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.5705 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5160 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6418 | 0.0360 | 0.7878 | 0.0 | 0.0 | 0.0000 | 0.0 |
128
+ | 1.8759 | 0.31 | 125 | 1.7092 | 0.1260 | 0.1758 | 0.6862 | nan | 0.7247 | 0.8976 | 0.0 | 0.0000 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.9094 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8479 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9024 | 0.2625 | 0.9054 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.3977 | 0.7307 | 0.0 | 0.0000 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.5237 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5329 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6911 | 0.2245 | 0.8065 | 0.0 | 0.0 | 0.0 | 0.0 |
129
+ | 2.0333 | 0.38 | 150 | 1.5558 | 0.1267 | 0.1751 | 0.6898 | nan | 0.7565 | 0.8952 | 0.0 | 0.0007 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.8792 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8874 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9104 | 0.1928 | 0.9055 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4083 | 0.7455 | 0.0 | 0.0007 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.5928 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5267 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6820 | 0.1637 | 0.8069 | 0.0 | 0.0 | 0.0 | 0.0 |
130
+ | 1.8985 | 0.44 | 175 | 1.5370 | 0.1277 | 0.1752 | 0.6939 | nan | 0.7438 | 0.9025 | 0.0 | 0.0068 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.8237 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8984 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9307 | 0.1976 | 0.9266 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4223 | 0.7553 | 0.0 | 0.0068 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.6077 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5131 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6724 | 0.1691 | 0.8133 | 0.0 | 0.0 | 0.0 | 0.0 |
131
+ | 1.7908 | 0.5 | 200 | 1.4854 | 0.1339 | 0.1843 | 0.7020 | nan | 0.7612 | 0.9068 | 0.0 | 0.0012 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.9215 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8381 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9078 | 0.4480 | 0.9274 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4095 | 0.7591 | 0.0 | 0.0012 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.5471 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5386 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7168 | 0.3673 | 0.8119 | 0.0 | 0.0 | 0.0 | 0.0 |
132
+ | 1.4371 | 0.56 | 225 | 1.4176 | 0.1367 | 0.1830 | 0.7079 | nan | 0.7035 | 0.9303 | 0.0 | 0.0255 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.8694 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8848 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9287 | 0.4230 | 0.9065 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4233 | 0.7534 | 0.0 | 0.0255 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.6246 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5331 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7049 | 0.3427 | 0.8312 | 0.0 | 0.0 | 0.0 | 0.0 |
133
+ | 1.4506 | 0.62 | 250 | 1.4011 | 0.1350 | 0.1827 | 0.7079 | nan | 0.6936 | 0.9362 | 0.0 | 0.0364 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.8955 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8612 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9299 | 0.3720 | 0.9394 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4251 | 0.7533 | 0.0 | 0.0363 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.5961 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5472 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6990 | 0.3026 | 0.8250 | 0.0 | 0.0 | 0.0 | 0.0 |
134
+ | 1.3095 | 0.69 | 275 | 1.4039 | 0.1398 | 0.1861 | 0.7134 | nan | 0.6873 | 0.9430 | 0.0 | 0.0260 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.8807 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8960 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9156 | 0.5055 | 0.9137 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4187 | 0.7531 | 0.0 | 0.0260 | 0.0000 | nan | 0.0 | 0.0 | 0.0 | 0.6172 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5457 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7261 | 0.4143 | 0.8343 | 0.0 | 0.0 | 0.0 | 0.0 |
135
+ | 1.4218 | 0.75 | 300 | 1.3735 | 0.1370 | 0.1856 | 0.7082 | nan | 0.7701 | 0.8980 | 0.0 | 0.0524 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.8776 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8762 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9444 | 0.4052 | 0.9279 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4267 | 0.7668 | 0.0 | 0.0522 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.6148 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5481 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.6931 | 0.3263 | 0.8172 | 0.0 | 0.0 | 0.0 | 0.0 |
136
+ | 1.3986 | 0.81 | 325 | 1.3224 | 0.1451 | 0.1917 | 0.7223 | nan | 0.7354 | 0.9296 | 0.0 | 0.1261 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.8747 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8946 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9269 | 0.5292 | 0.9261 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4389 | 0.7700 | 0.0 | 0.1253 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.6395 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5541 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7200 | 0.4083 | 0.8409 | 0.0 | 0.0 | 0.0 | 0.0 |
137
+ | 1.3335 | 0.88 | 350 | 1.2909 | 0.1454 | 0.1921 | 0.7230 | nan | 0.7157 | 0.9388 | 0.0 | 0.1024 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.8896 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8932 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9207 | 0.5667 | 0.9276 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4347 | 0.7657 | 0.0 | 0.1020 | 0.0003 | nan | 0.0 | 0.0 | 0.0 | 0.6232 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5533 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7300 | 0.4607 | 0.8376 | 0.0 | 0.0 | 0.0 | 0.0 |
138
+ | 1.6376 | 0.94 | 375 | 1.3109 | 0.1476 | 0.1964 | 0.7253 | nan | 0.7617 | 0.9215 | 0.0 | 0.1225 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.9008 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8842 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9118 | 0.6529 | 0.9335 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4357 | 0.7750 | 0.0 | 0.1216 | 0.0002 | nan | 0.0 | 0.0 | 0.0 | 0.6139 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5572 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7387 | 0.5011 | 0.8333 | 0.0 | 0.0 | 0.0 | 0.0 |
139
+ | 1.4354 | 1.0 | 400 | 1.3483 | 0.1474 | 0.1958 | 0.7227 | nan | 0.7892 | 0.9075 | 0.0 | 0.1029 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.8749 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8943 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9118 | 0.6546 | 0.9352 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4282 | 0.7768 | 0.0 | 0.1021 | 0.0001 | nan | 0.0 | 0.0 | 0.0 | 0.6372 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.5530 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7392 | 0.5009 | 0.8328 | 0.0 | 0.0 | 0.0 | 0.0 |
140
+
141
+
142
+ ### Framework versions
143
+
144
+ - Transformers 4.35.2
145
+ - Pytorch 2.1.0+cu118
146
+ - Datasets 2.15.0
147
+ - Tokenizers 0.15.0
config.json ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b0",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 32,
26
+ 64,
27
+ 160,
28
+ 256
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabeled",
32
+ "1": "flat-road",
33
+ "2": "flat-sidewalk",
34
+ "3": "flat-crosswalk",
35
+ "4": "flat-cyclinglane",
36
+ "5": "flat-parkingdriveway",
37
+ "6": "flat-railtrack",
38
+ "7": "flat-curb",
39
+ "8": "human-person",
40
+ "9": "human-rider",
41
+ "10": "vehicle-car",
42
+ "11": "vehicle-truck",
43
+ "12": "vehicle-bus",
44
+ "13": "vehicle-tramtrain",
45
+ "14": "vehicle-motorcycle",
46
+ "15": "vehicle-bicycle",
47
+ "16": "vehicle-caravan",
48
+ "17": "vehicle-cartrailer",
49
+ "18": "construction-building",
50
+ "19": "construction-door",
51
+ "20": "construction-wall",
52
+ "21": "construction-fenceguardrail",
53
+ "22": "construction-bridge",
54
+ "23": "construction-tunnel",
55
+ "24": "construction-stairs",
56
+ "25": "object-pole",
57
+ "26": "object-trafficsign",
58
+ "27": "object-trafficlight",
59
+ "28": "nature-vegetation",
60
+ "29": "nature-terrain",
61
+ "30": "sky",
62
+ "31": "void-ground",
63
+ "32": "void-dynamic",
64
+ "33": "void-static",
65
+ "34": "void-unclear"
66
+ },
67
+ "image_size": 224,
68
+ "initializer_range": 0.02,
69
+ "label2id": {
70
+ "construction-bridge": 22,
71
+ "construction-building": 18,
72
+ "construction-door": 19,
73
+ "construction-fenceguardrail": 21,
74
+ "construction-stairs": 24,
75
+ "construction-tunnel": 23,
76
+ "construction-wall": 20,
77
+ "flat-crosswalk": 3,
78
+ "flat-curb": 7,
79
+ "flat-cyclinglane": 4,
80
+ "flat-parkingdriveway": 5,
81
+ "flat-railtrack": 6,
82
+ "flat-road": 1,
83
+ "flat-sidewalk": 2,
84
+ "human-person": 8,
85
+ "human-rider": 9,
86
+ "nature-terrain": 29,
87
+ "nature-vegetation": 28,
88
+ "object-pole": 25,
89
+ "object-trafficlight": 27,
90
+ "object-trafficsign": 26,
91
+ "sky": 30,
92
+ "unlabeled": 0,
93
+ "vehicle-bicycle": 15,
94
+ "vehicle-bus": 12,
95
+ "vehicle-car": 10,
96
+ "vehicle-caravan": 16,
97
+ "vehicle-cartrailer": 17,
98
+ "vehicle-motorcycle": 14,
99
+ "vehicle-tramtrain": 13,
100
+ "vehicle-truck": 11,
101
+ "void-dynamic": 32,
102
+ "void-ground": 31,
103
+ "void-static": 33,
104
+ "void-unclear": 34
105
+ },
106
+ "layer_norm_eps": 1e-06,
107
+ "mlp_ratios": [
108
+ 4,
109
+ 4,
110
+ 4,
111
+ 4
112
+ ],
113
+ "model_type": "segformer",
114
+ "num_attention_heads": [
115
+ 1,
116
+ 2,
117
+ 5,
118
+ 8
119
+ ],
120
+ "num_channels": 3,
121
+ "num_encoder_blocks": 4,
122
+ "patch_sizes": [
123
+ 7,
124
+ 3,
125
+ 3,
126
+ 3
127
+ ],
128
+ "reshape_last_stage": true,
129
+ "semantic_loss_ignore_index": 255,
130
+ "sr_ratios": [
131
+ 8,
132
+ 4,
133
+ 2,
134
+ 1
135
+ ],
136
+ "strides": [
137
+ 4,
138
+ 2,
139
+ 2,
140
+ 2
141
+ ],
142
+ "torch_dtype": "float32",
143
+ "transformers_version": "4.35.2"
144
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd0420bc711183af76d76b099e54b0c05c1672aed672fc9d24c9682d6f60e5b4
3
+ size 14918708
runs/Nov21_19-39-00_c588f2716cd5/events.out.tfevents.1700595639.c588f2716cd5.633.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d23283287079098094f8ff08f83ed62bd333c807891f41f5eed140c1db31dc1
3
+ size 148985
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8023e6299a5fc9e3a48a73e02306bcb2573988fc4cfe478a8eb62a9fdc9fa58a
3
+ size 4664