pierreguillou commited on
Commit
835ef72
1 Parent(s): bb13f7c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: lilt-xlm-roberta-base-finetuned-funsd-iob-original
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # lilt-xlm-roberta-base-finetuned-funsd-iob-original
19
+
20
+ This model is a fine-tuned version of [nielsr/lilt-xlm-roberta-base](https://huggingface.co/nielsr/lilt-xlm-roberta-base) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 2.1573
23
+ - Precision: 0.7252
24
+ - Recall: 0.7718
25
+ - F1: 0.7478
26
+ - Accuracy: 0.7676
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 30
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 1.33 | 100 | 0.8309 | 0.5157 | 0.6673 | 0.5818 | 0.6594 |
58
+ | No log | 2.67 | 200 | 1.0045 | 0.6080 | 0.6699 | 0.6374 | 0.7387 |
59
+ | No log | 4.0 | 300 | 0.9127 | 0.6177 | 0.7310 | 0.6696 | 0.7427 |
60
+ | No log | 5.33 | 400 | 0.9808 | 0.6478 | 0.7300 | 0.6865 | 0.7521 |
61
+ | 0.6318 | 6.67 | 500 | 1.2169 | 0.6863 | 0.7376 | 0.7110 | 0.7547 |
62
+ | 0.6318 | 8.0 | 600 | 1.1830 | 0.6918 | 0.7580 | 0.7234 | 0.7326 |
63
+ | 0.6318 | 9.33 | 700 | 1.3537 | 0.6955 | 0.7504 | 0.7219 | 0.7426 |
64
+ | 0.6318 | 10.67 | 800 | 1.3888 | 0.6994 | 0.7611 | 0.7290 | 0.7507 |
65
+ | 0.6318 | 12.0 | 900 | 1.5929 | 0.7204 | 0.7560 | 0.7378 | 0.7553 |
66
+ | 0.1082 | 13.33 | 1000 | 1.7679 | 0.6891 | 0.7397 | 0.7135 | 0.7452 |
67
+ | 0.1082 | 14.67 | 1100 | 1.7197 | 0.7003 | 0.7570 | 0.7275 | 0.7530 |
68
+ | 0.1082 | 16.0 | 1200 | 1.8053 | 0.7188 | 0.7448 | 0.7315 | 0.7616 |
69
+ | 0.1082 | 17.33 | 1300 | 1.9315 | 0.7109 | 0.7728 | 0.7405 | 0.7643 |
70
+ | 0.1082 | 18.67 | 1400 | 2.0142 | 0.7240 | 0.7789 | 0.7504 | 0.7676 |
71
+ | 0.0312 | 20.0 | 1500 | 2.0475 | 0.7264 | 0.7478 | 0.7369 | 0.7654 |
72
+ | 0.0312 | 21.33 | 1600 | 2.0463 | 0.7251 | 0.7539 | 0.7393 | 0.7599 |
73
+ | 0.0312 | 22.67 | 1700 | 2.0648 | 0.7289 | 0.7753 | 0.7514 | 0.7623 |
74
+ | 0.0312 | 24.0 | 1800 | 2.1301 | 0.7272 | 0.7606 | 0.7435 | 0.7667 |
75
+ | 0.0312 | 25.33 | 1900 | 2.1319 | 0.7274 | 0.7585 | 0.7426 | 0.7694 |
76
+ | 0.0064 | 26.67 | 2000 | 2.1499 | 0.7247 | 0.7723 | 0.7477 | 0.7673 |
77
+ | 0.0064 | 28.0 | 2100 | 2.1627 | 0.7235 | 0.7733 | 0.7476 | 0.7670 |
78
+ | 0.0064 | 29.33 | 2200 | 2.1573 | 0.7252 | 0.7718 | 0.7478 | 0.7676 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.25.1
84
+ - Pytorch 1.13.0+cu116
85
+ - Datasets 2.8.0
86
+ - Tokenizers 0.13.2