|
--- |
|
language: |
|
- pt |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lener_br |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: checkpoints |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: lener_br |
|
type: lener_br |
|
metrics: |
|
- name: F1 |
|
type: f1 |
|
value: 0.9082022949426265 |
|
- name: Precision |
|
type: precision |
|
value: 0.8975220495590088 |
|
- name: Recall |
|
type: recall |
|
value: 0.9191397849462366 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9808310603867311 |
|
- name: Loss |
|
type: loss |
|
value: 0.1228889599442482 |
|
widget: |
|
- text: "Ao Instituto Médico Legal da jurisdição do acidente ou da residência cumpre fornecer, no prazo de 90 dias, laudo à vítima (art. 5, § 5, Lei n. 6.194/74 de 19 de dezembro de 1974), função técnica que pode ser suprida por prova pericial realizada por ordem do juízo da causa, ou por prova técnica realizada no âmbito administrativo que se mostre coerente com os demais elementos de prova constante dos autos." |
|
- text: "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial." |
|
- text: "Dispõe sobre o estágio de estudantes; altera a redação do art. 428 da Consolidação das Leis do Trabalho – CLT, aprovada pelo Decreto-Lei no 5.452, de 1o de maio de 1943, e a Lei no 9.394, de 20 de dezembro de 1996; revoga as Leis nos 6.494, de 7 de dezembro de 1977, e 8.859, de 23 de março de 1994, o parágrafo único do art. 82 da Lei no 9.394, de 20 de dezembro de 1996, e o art. 6o da Medida Provisória no 2.164-41, de 24 de agosto de 2001; e dá outras providências." |
|
--- |
|
|
|
## (BERT large) NER model in the legal domain in Portuguese (LeNER-Br) |
|
|
|
**ner-bert-large-portuguese-cased-lenerbr** is a NER model (token classification) in the legal domain in Portuguese that was finetuned on 20/12/2021 in Google Colab from the model [pierreguillou/bert-large-cased-pt-lenerbr](https://huggingface.co/pierreguillou/bert-large-cased-pt-lenerbr) on the dataset [LeNER_br](https://huggingface.co/datasets/lener_br) by using a NER objective. |
|
|
|
Due to the small size of the finetuning dataset, the model overfitted before to reach the end of training. Here are the overall final metrics on the validation dataset (*note: see the paragraph "Validation metrics by Named Entity" to get detailed metrics*): |
|
- **f1**: 0.9082022949426265 |
|
- **precision**: 0.8975220495590088 |
|
- **recall**: 0.9191397849462366 |
|
- **accuracy**: 0.9808310603867311 |
|
- **loss**: 0.1228889599442482 |
|
|
|
**Note**: the model [pierreguillou/bert-large-cased-pt-lenerbr](https://huggingface.co/pierreguillou/bert-large-cased-pt-lenerbr) is a language model that was created through the finetuning of the model [BERTimbau large](https://huggingface.co/neuralmind/bert-large-portuguese-cased) on the dataset [LeNER-Br language modeling](https://huggingface.co/datasets/pierreguillou/lener_br_finetuning_language_model) by using a MASK objective. This first specialization of the language model before finetuning on the NER task allows to get a better NER model. |
|
|
|
## Widget & APP |
|
|
|
You can test this model into the widget of this page. |
|
|
|
## Using the model for inference in production |
|
```` |
|
# install pytorch: check https://pytorch.org/ |
|
# !pip install transformers |
|
from transformers import AutoModelForTokenClassification, AutoTokenizer |
|
import torch |
|
|
|
# parameters |
|
model_name = "ner-bert-large-portuguese-cased-lenebr" |
|
model = AutoModelForTokenClassification.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
input_text = "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial." |
|
|
|
# tokenization |
|
inputs = tokenizer(input_text, max_length=512, truncation=True, return_tensors="pt") |
|
tokens = inputs.tokens() |
|
|
|
# get predictions |
|
outputs = model(**inputs).logits |
|
predictions = torch.argmax(outputs, dim=2) |
|
|
|
# print predictions |
|
for token, prediction in zip(tokens, predictions[0].numpy()): |
|
print((token, model.config.id2label[prediction])) |
|
```` |
|
You can use pipeline, too. However, it seems to have an issue regarding to the max_length of the input sequence. |
|
```` |
|
!pip install transformers |
|
import transformers |
|
from transformers import pipeline |
|
|
|
model_name = "ner-bert-large-portuguese-cased-lenebr" |
|
|
|
ner = pipeline( |
|
"ner", |
|
model=model_name |
|
) |
|
|
|
ner(input_text) |
|
```` |
|
## Training procedure |
|
|
|
### Notebook |
|
|
|
The notebook of finetuning ([HuggingFace_Notebook_token_classification_NER_LeNER_Br.ipynb](https://github.com/piegu/language-models/blob/master/HuggingFace_Notebook_token_classification_NER_LeNER_Br.ipynb)) is in github. |
|
|
|
### Hyperparameters |
|
|
|
# batch, learning rate... |
|
- per_device_batch_size = 2 |
|
- gradient_accumulation_steps = 2 |
|
- learning_rate = 2e-5 |
|
- num_train_epochs = 10 |
|
- weight_decay = 0.01 |
|
- optimizer = AdamW |
|
- betas = (0.9,0.999) |
|
- epsilon = 1e-08 |
|
- lr_scheduler_type = linear |
|
- seed = 42 |
|
|
|
# save model & load best model |
|
- save_total_limit = 7 |
|
- logging_steps = 500 |
|
- eval_steps = logging_steps |
|
- evaluation_strategy = 'steps' |
|
- logging_strategy = 'steps' |
|
- save_strategy = 'steps' |
|
- save_steps = logging_steps |
|
- load_best_model_at_end = True |
|
- fp16 = True |
|
|
|
# get best model through a metric |
|
- metric_for_best_model = 'eval_f1' |
|
- greater_is_better = True |
|
|
|
### Training results |
|
|
|
```` |
|
Num examples = 7828 |
|
Num Epochs = 20 |
|
Instantaneous batch size per device = 2 |
|
Total train batch size (w. parallel, distributed & accumulation) = 4 |
|
Gradient Accumulation steps = 2 |
|
Total optimization steps = 39140 |
|
|
|
Step Training Loss Validation Loss Precision Recall F1 Accuracy |
|
500 0.250000 0.140582 0.760833 0.770323 0.765548 0.963125 |
|
1000 0.076200 0.117882 0.829082 0.817849 0.823428 0.966569 |
|
1500 0.082400 0.150047 0.679610 0.914624 0.779795 0.957213 |
|
2000 0.047500 0.133443 0.817678 0.857419 0.837077 0.969190 |
|
2500 0.034200 0.230139 0.895672 0.845591 0.869912 0.964070 |
|
3000 0.033800 0.108022 0.859225 0.887312 0.873043 0.973700 |
|
3500 0.030100 0.113467 0.855747 0.885376 0.870310 0.975879 |
|
4000 0.029900 0.118619 0.850207 0.884946 0.867229 0.974477 |
|
4500 0.022500 0.124327 0.841048 0.890968 0.865288 0.975041 |
|
5000 0.020200 0.129294 0.801538 0.918925 0.856227 0.968077 |
|
5500 0.019700 0.128344 0.814222 0.908602 0.858827 0.969250 |
|
6000 0.024600 0.182563 0.908087 0.866882 0.887006 0.968565 |
|
6500 0.012600 0.159217 0.829883 0.913763 0.869806 0.969357 |
|
7000 0.020600 0.183726 0.854557 0.893333 0.873515 0.966447 |
|
7500 0.014400 0.141395 0.777716 0.905161 0.836613 0.966828 |
|
8000 0.013400 0.139378 0.873042 0.899140 0.885899 0.975772 |
|
8500 0.014700 0.142521 0.864152 0.901505 0.882433 0.976366 |
|
|
|
9000 0.010900 0.122889 0.897522 0.919140 0.908202 0.980831 |
|
|
|
9500 0.013500 0.143407 0.816580 0.906667 0.859268 0.973395 |
|
10000 0.010400 0.144946 0.835608 0.908387 0.870479 0.974629 |
|
10500 0.007800 0.143086 0.847587 0.910108 0.877735 0.975985 |
|
11000 0.008200 0.156379 0.873778 0.884301 0.879008 0.976321 |
|
11500 0.008200 0.133356 0.901193 0.910108 0.905628 0.980328 |
|
12000 0.006900 0.133476 0.892202 0.920215 0.905992 0.980572 |
|
12500 0.006900 0.129991 0.890159 0.904516 0.897280 0.978683 |
|
```` |
|
|
|
### Validation metrics by Named Entity |
|
```` |
|
{'JURISPRUDENCIA': {'f1': 0.8135593220338984, |
|
'number': 657, |
|
'precision': 0.865979381443299, |
|
'recall': 0.7671232876712328}, |
|
'LEGISLACAO': {'f1': 0.8888888888888888, |
|
'number': 571, |
|
'precision': 0.8952042628774423, |
|
'recall': 0.882661996497373}, |
|
'LOCAL': {'f1': 0.850467289719626, |
|
'number': 194, |
|
'precision': 0.7777777777777778, |
|
'recall': 0.9381443298969072}, |
|
'ORGANIZACAO': {'f1': 0.8740635033892258, |
|
'number': 1340, |
|
'precision': 0.8373205741626795, |
|
'recall': 0.914179104477612}, |
|
'PESSOA': {'f1': 0.9836677554829678, |
|
'number': 1072, |
|
'precision': 0.9841269841269841, |
|
'recall': 0.9832089552238806}, |
|
'TEMPO': {'f1': 0.9669669669669669, |
|
'number': 816, |
|
'precision': 0.9481743227326266, |
|
'recall': 0.9865196078431373}, |
|
'overall_accuracy': 0.9808310603867311, |
|
'overall_f1': 0.9082022949426265, |
|
'overall_precision': 0.8975220495590088, |
|
'overall_recall': 0.9191397849462366} |
|
```` |