--- language: fr license: apache-2.0 tags: - generated_from_trainer - whisper-event datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer - wer_norm model-index: - name: openai/whisper-medium results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: fr split: test args: fr metrics: - name: Wer type: wer value: 11.1406 - name: Wer (without normalization) type: wer_without_norm value: 15.89689189275029 --- # French Medium Whisper This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2664 - Wer (without normalization): 15.8969 - Wer (with normalization): **11.1406** ## Blog post All information about this model in this blog post: [Speech-to-Text & IA | Transcreva qualquer áudio para o português com o Whisper (OpenAI)... sem nenhum custo!](https://medium.com/@pierre_guillou/speech-to-text-ia-transcreva-qualquer-%C3%A1udio-para-o-portugu%C3%AAs-com-o-whisper-openai-sem-ad0c17384681). ## New SOTA The Normalized WER in the [OpenAI Whisper article](https://cdn.openai.com/papers/whisper.pdf) with the [Common Voice 9.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0) test dataset is 16.0. As this test dataset is similar to the [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) test dataset used to evaluate our model (WER and WER Norm), it means that **our French Medium Whisper is better than the [Medium Whisper](https://huggingface.co/openai/whisper-medium) model at transcribing audios French in text**. ![OpenAI results with Whisper Medium and Test dataset of Commons Voice 9.0](https://huggingface.co/pierreguillou/whisper-medium-french/resolve/main/whisper_medium_french_wer_commonvoice9.png) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Wer Norm | |:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:| | 0.2695 | 0.2 | 1000 | 0.3080 | 17.8083 | 12.9791 | | 0.2099 | 0.4 | 2000 | 0.2981 | 17.4792 | 12.4242 | | 0.1978 | 0.6 | 3000 | 0.2864 | 16.7767 | 12.0913 | | 0.1455 | 0.8 | 4000 | 0.2752 | 16.4597 | 11.8966 | | 0.1712 | 1.0 | 5000 | 0.2664 | 15.8969 | 11.1406 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2