pig4431 commited on
Commit
a3e7a5e
1 Parent(s): f4eadca

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +135 -0
README.md ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - sentiment140
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: Sentiment140_roBERTa_5E
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: sentiment140
17
+ type: sentiment140
18
+ config: sentiment140
19
+ split: train
20
+ args: sentiment140
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.8933333333333333
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # Sentiment140_roBERTa_5E
31
+
32
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the sentiment140 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.4796
35
+ - Accuracy: 0.8933
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 1e-05
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 5
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
+ | 0.699 | 0.08 | 50 | 0.6734 | 0.5467 |
67
+ | 0.6099 | 0.16 | 100 | 0.4322 | 0.8 |
68
+ | 0.4906 | 0.24 | 150 | 0.3861 | 0.84 |
69
+ | 0.4652 | 0.32 | 200 | 0.4288 | 0.7933 |
70
+ | 0.4874 | 0.4 | 250 | 0.3872 | 0.84 |
71
+ | 0.4735 | 0.48 | 300 | 0.3401 | 0.8667 |
72
+ | 0.3909 | 0.56 | 350 | 0.3484 | 0.84 |
73
+ | 0.4277 | 0.64 | 400 | 0.3207 | 0.88 |
74
+ | 0.3894 | 0.72 | 450 | 0.3310 | 0.8733 |
75
+ | 0.4523 | 0.8 | 500 | 0.3389 | 0.8667 |
76
+ | 0.4087 | 0.88 | 550 | 0.3515 | 0.8467 |
77
+ | 0.3973 | 0.96 | 600 | 0.3513 | 0.8467 |
78
+ | 0.4016 | 1.04 | 650 | 0.3501 | 0.8667 |
79
+ | 0.3613 | 1.12 | 700 | 0.3327 | 0.8667 |
80
+ | 0.343 | 1.2 | 750 | 0.3518 | 0.86 |
81
+ | 0.314 | 1.28 | 800 | 0.3555 | 0.88 |
82
+ | 0.3407 | 1.36 | 850 | 0.3849 | 0.86 |
83
+ | 0.2944 | 1.44 | 900 | 0.3576 | 0.8667 |
84
+ | 0.3267 | 1.52 | 950 | 0.3461 | 0.8733 |
85
+ | 0.3251 | 1.6 | 1000 | 0.3411 | 0.8667 |
86
+ | 0.321 | 1.68 | 1050 | 0.3371 | 0.88 |
87
+ | 0.3057 | 1.76 | 1100 | 0.3322 | 0.88 |
88
+ | 0.3335 | 1.84 | 1150 | 0.3106 | 0.8667 |
89
+ | 0.3363 | 1.92 | 1200 | 0.3158 | 0.8933 |
90
+ | 0.2972 | 2.0 | 1250 | 0.3122 | 0.88 |
91
+ | 0.2453 | 2.08 | 1300 | 0.3327 | 0.8867 |
92
+ | 0.2467 | 2.16 | 1350 | 0.3767 | 0.8667 |
93
+ | 0.273 | 2.24 | 1400 | 0.3549 | 0.8667 |
94
+ | 0.2672 | 2.32 | 1450 | 0.3470 | 0.88 |
95
+ | 0.2352 | 2.4 | 1500 | 0.4092 | 0.8667 |
96
+ | 0.2763 | 2.48 | 1550 | 0.3472 | 0.9 |
97
+ | 0.2858 | 2.56 | 1600 | 0.3440 | 0.9 |
98
+ | 0.2206 | 2.64 | 1650 | 0.3770 | 0.88 |
99
+ | 0.2928 | 2.72 | 1700 | 0.3280 | 0.8867 |
100
+ | 0.2478 | 2.8 | 1750 | 0.3426 | 0.8867 |
101
+ | 0.2362 | 2.88 | 1800 | 0.3578 | 0.8933 |
102
+ | 0.2107 | 2.96 | 1850 | 0.3986 | 0.8933 |
103
+ | 0.2191 | 3.04 | 1900 | 0.3819 | 0.8933 |
104
+ | 0.2267 | 3.12 | 1950 | 0.4047 | 0.8867 |
105
+ | 0.2076 | 3.2 | 2000 | 0.4303 | 0.8867 |
106
+ | 0.1868 | 3.28 | 2050 | 0.4385 | 0.8933 |
107
+ | 0.2239 | 3.36 | 2100 | 0.4175 | 0.8933 |
108
+ | 0.2082 | 3.44 | 2150 | 0.4142 | 0.8933 |
109
+ | 0.2423 | 3.52 | 2200 | 0.4002 | 0.8867 |
110
+ | 0.1878 | 3.6 | 2250 | 0.4662 | 0.88 |
111
+ | 0.1892 | 3.68 | 2300 | 0.4783 | 0.88 |
112
+ | 0.2259 | 3.76 | 2350 | 0.4487 | 0.88 |
113
+ | 0.1859 | 3.84 | 2400 | 0.4456 | 0.8933 |
114
+ | 0.2042 | 3.92 | 2450 | 0.4468 | 0.8933 |
115
+ | 0.2096 | 4.0 | 2500 | 0.4153 | 0.8867 |
116
+ | 0.178 | 4.08 | 2550 | 0.4100 | 0.8933 |
117
+ | 0.1621 | 4.16 | 2600 | 0.4292 | 0.8933 |
118
+ | 0.1682 | 4.24 | 2650 | 0.4602 | 0.8933 |
119
+ | 0.1813 | 4.32 | 2700 | 0.4680 | 0.8933 |
120
+ | 0.2033 | 4.4 | 2750 | 0.4735 | 0.8933 |
121
+ | 0.1662 | 4.48 | 2800 | 0.4750 | 0.88 |
122
+ | 0.1686 | 4.56 | 2850 | 0.4830 | 0.8933 |
123
+ | 0.1603 | 4.64 | 2900 | 0.4909 | 0.8933 |
124
+ | 0.148 | 4.72 | 2950 | 0.4784 | 0.8933 |
125
+ | 0.162 | 4.8 | 3000 | 0.4750 | 0.8867 |
126
+ | 0.153 | 4.88 | 3050 | 0.4759 | 0.8867 |
127
+ | 0.1657 | 4.96 | 3100 | 0.4796 | 0.8933 |
128
+
129
+
130
+ ### Framework versions
131
+
132
+ - Transformers 4.24.0
133
+ - Pytorch 1.13.0
134
+ - Datasets 2.3.2
135
+ - Tokenizers 0.13.1