larskjeldgaard
commited on
Commit
•
c18f31b
1
Parent(s):
2b0422e
first release
Browse files- README.md +39 -0
- config.json +38 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: da
|
3 |
+
tags:
|
4 |
+
- danish
|
5 |
+
- bert
|
6 |
+
- sentiment
|
7 |
+
- analytical
|
8 |
+
license: cc-by-4.0
|
9 |
+
widget:
|
10 |
+
- text: "Jeg synes, det er en elendig film"
|
11 |
+
---
|
12 |
+
# Danish BERT fine-tuned for Detecting 'Analytical'
|
13 |
+
|
14 |
+
This model detects if a Danish text is 'subjective' or 'objective'.
|
15 |
+
|
16 |
+
It is trained and tested on Tweets and texts transcribed from the European Parliament annotated by [Alexandra Institute](https://github.com/alexandrainst). The model is trained with the [`senda`](https://github.com/ebanalyse/senda) package.
|
17 |
+
|
18 |
+
Here is an example of how to load the model in PyTorch using the [🤗Transformers](https://github.com/huggingface/transformers) library:
|
19 |
+
|
20 |
+
```python
|
21 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("pin/analytical")
|
23 |
+
model = AutoModelForSequenceClassification.from_pretrained("pin/analytical")
|
24 |
+
|
25 |
+
# create 'senda' sentiment analysis pipeline
|
26 |
+
analytical_pipeline = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
|
27 |
+
|
28 |
+
text = "Jeg synes, det er en elendig film"
|
29 |
+
# in English: 'I think, it is a terrible movie'
|
30 |
+
analytical_pipeline(text)
|
31 |
+
```
|
32 |
+
|
33 |
+
## Performance
|
34 |
+
The `senda` model achieves an accuracy of 0.89 and a macro-averaged F1-score of 0.78 on a small test data set, that [Alexandra Institute](https://github.com/alexandrainst/danlp/blob/master/docs/docs/datasets.md#twitter-sentiment) provides. The model can most certainly be improved, and we encourage all NLP-enthusiasts to give it their best shot - you can use the [`senda`](https://github.com/ebanalyse/senda) package to do this.
|
35 |
+
|
36 |
+
#### Contact
|
37 |
+
Feel free to contact author Lars Kjeldgaard on [lars.kjeldgaard@eb.dk](mailto:lars.kjeldgaard@eb.dk).
|
38 |
+
|
39 |
+
|
config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./results/checkpoint-500",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"directionality": "bidi",
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "subjektivt",
|
14 |
+
"1": "objektivt"
|
15 |
+
},
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 3072,
|
18 |
+
"label2id": {
|
19 |
+
"objektivt": 1,
|
20 |
+
"subjektivt": 0
|
21 |
+
},
|
22 |
+
"layer_norm_eps": 1e-12,
|
23 |
+
"max_position_embeddings": 512,
|
24 |
+
"model_type": "bert",
|
25 |
+
"num_attention_heads": 12,
|
26 |
+
"num_hidden_layers": 12,
|
27 |
+
"pad_token_id": 0,
|
28 |
+
"pooler_fc_size": 768,
|
29 |
+
"pooler_num_attention_heads": 12,
|
30 |
+
"pooler_num_fc_layers": 3,
|
31 |
+
"pooler_size_per_head": 128,
|
32 |
+
"pooler_type": "first_token_transform",
|
33 |
+
"position_embedding_type": "absolute",
|
34 |
+
"transformers_version": "4.5.1",
|
35 |
+
"type_vocab_size": 2,
|
36 |
+
"use_cache": true,
|
37 |
+
"vocab_size": 32000
|
38 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:84ac824c7517d24ed4d3876ff5f8eb6ea05665fb393731ebd74b93325e254e77
|
3 |
+
size 442563297
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": null, "name_or_path": "Maltehb/danish-bert-botxo", "do_basic_tokenize": true, "never_split": null}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec4c661f53a945e42c1dc4229d640ebe9d1c36b27566854d419a6100054d3623
|
3 |
+
size 2351
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|