--- license: apache-2.0 base_model: scb10x/typhoon-7b tags: - generated_from_trainer model-index: - name: out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: scb10x/typhoon-7b model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: finetune-data.jsonl type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./out sequence_len: 8192 sample_packing: false pad_to_sequence_len: true eval_sample_packing: false wandb_project: typhoon-7b wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.000005 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.05 evals_per_epoch: 5 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 5 save_total_limit: 10 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# out This model is a fine-tuned version of [scb10x/typhoon-7b](https://huggingface.co/scb10x/typhoon-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7682 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 23 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.4821 | 0.0 | 1 | 4.2554 | | 0.7752 | 0.2 | 48 | 0.7134 | | 0.7287 | 0.41 | 96 | 0.6403 | | 0.6135 | 0.61 | 144 | 0.6305 | | 0.7828 | 0.81 | 192 | 0.6020 | | 0.3375 | 1.02 | 240 | 0.5951 | | 0.471 | 1.22 | 288 | 0.6191 | | 0.2798 | 1.42 | 336 | 0.6249 | | 0.5071 | 1.63 | 384 | 0.6213 | | 0.2792 | 1.83 | 432 | 0.6176 | | 0.069 | 2.03 | 480 | 0.6393 | | 0.0742 | 2.23 | 528 | 0.6877 | | 0.1309 | 2.44 | 576 | 0.6892 | | 0.0349 | 2.64 | 624 | 0.6701 | | 0.0639 | 2.84 | 672 | 0.6657 | | 0.0273 | 3.05 | 720 | 0.6895 | | 0.0311 | 3.25 | 768 | 0.7606 | | 0.0307 | 3.45 | 816 | 0.7636 | | 0.0791 | 3.66 | 864 | 0.7664 | | 0.0747 | 3.86 | 912 | 0.7682 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0