pinglarin commited on
Commit
2ecb4ca
1 Parent(s): 6fabbd6

Upload 15 files

Browse files
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - ccdv/arxiv-summarization
7
+ metrics:
8
+ - rouge
9
+ model-index:
10
+ - name: results
11
+ results:
12
+ - task:
13
+ name: Summarization
14
+ type: summarization
15
+ dataset:
16
+ name: ccdv/arxiv-summarization
17
+ type: ccdv/arxiv-summarization
18
+ config: section
19
+ split: validation
20
+ args: section
21
+ metrics:
22
+ - name: Rouge1
23
+ type: rouge
24
+ value: 35.6639
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # results
31
+
32
+ This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-1](https://huggingface.co/sshleifer/distilbart-xsum-12-1) on the ccdv/arxiv-summarization dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 4.3066
35
+ - Rouge1: 35.6639
36
+ - Rouge2: 10.5717
37
+ - Rougel: 21.095
38
+ - Rougelsum: 31.2685
39
+ - Gen Len: 81.44
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 5e-05
59
+ - train_batch_size: 4
60
+ - eval_batch_size: 4
61
+ - seed: 42
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - num_epochs: 3.0
65
+
66
+ ### Training results
67
+
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.29.0.dev0
73
+ - Pytorch 2.0.0
74
+ - Datasets 2.10.1
75
+ - Tokenizers 0.13.2
all_results.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_gen_len": 81.44,
4
+ "eval_loss": 4.306642055511475,
5
+ "eval_rouge1": 35.6639,
6
+ "eval_rouge2": 10.5717,
7
+ "eval_rougeL": 21.095,
8
+ "eval_rougeLsum": 31.2685,
9
+ "eval_runtime": 462.9321,
10
+ "eval_samples": 100,
11
+ "eval_samples_per_second": 0.216,
12
+ "eval_steps_per_second": 0.054,
13
+ "train_loss": 4.326354817708333,
14
+ "train_runtime": 8399.8868,
15
+ "train_samples": 500,
16
+ "train_samples_per_second": 0.179,
17
+ "train_steps_per_second": 0.045
18
+ }
config.json ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sshleifer/distilbart-xsum-12-1",
3
+ "_num_labels": 3,
4
+ "activation_dropout": 0.0,
5
+ "activation_function": "gelu",
6
+ "add_bias_logits": false,
7
+ "add_final_layer_norm": false,
8
+ "architectures": [
9
+ "BartForConditionalGeneration"
10
+ ],
11
+ "attention_dropout": 0.0,
12
+ "bos_token_id": 0,
13
+ "classif_dropout": 0.0,
14
+ "classifier_dropout": 0.0,
15
+ "d_model": 1024,
16
+ "decoder_attention_heads": 16,
17
+ "decoder_ffn_dim": 4096,
18
+ "decoder_layerdrop": 0.0,
19
+ "decoder_layers": 1,
20
+ "decoder_start_token_id": 2,
21
+ "dropout": 0.1,
22
+ "early_stopping": true,
23
+ "encoder_attention_heads": 16,
24
+ "encoder_ffn_dim": 4096,
25
+ "encoder_layerdrop": 0.0,
26
+ "encoder_layers": 12,
27
+ "eos_token_id": 2,
28
+ "eos_token_ids": [
29
+ 2
30
+ ],
31
+ "extra_pos_embeddings": 2,
32
+ "forced_eos_token_id": 2,
33
+ "gradient_checkpointing": false,
34
+ "id2label": {
35
+ "0": "LABEL_0",
36
+ "1": "LABEL_1",
37
+ "2": "LABEL_2"
38
+ },
39
+ "init_std": 0.02,
40
+ "is_encoder_decoder": true,
41
+ "label2id": {
42
+ "LABEL_0": 0,
43
+ "LABEL_1": 1,
44
+ "LABEL_2": 2
45
+ },
46
+ "length_penalty": 0.5,
47
+ "max_length": 62,
48
+ "max_position_embeddings": 1024,
49
+ "min_length": 11,
50
+ "model_type": "bart",
51
+ "no_repeat_ngram_size": 3,
52
+ "normalize_before": false,
53
+ "normalize_embedding": true,
54
+ "num_beams": 6,
55
+ "num_hidden_layers": 12,
56
+ "output_past": true,
57
+ "pad_token_id": 1,
58
+ "prefix": " ",
59
+ "replacing_rate": 0,
60
+ "save_step": 52,
61
+ "scale_embedding": false,
62
+ "static_position_embeddings": false,
63
+ "student_decoder_layers": null,
64
+ "student_encoder_layers": null,
65
+ "task_specific_params": {},
66
+ "torch_dtype": "float32",
67
+ "transformers_version": "4.29.0.dev0",
68
+ "use_cache": true,
69
+ "vocab_size": 50265
70
+ }
eval_results.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_gen_len": 81.44,
4
+ "eval_loss": 4.306642055511475,
5
+ "eval_rouge1": 35.6639,
6
+ "eval_rouge2": 10.5717,
7
+ "eval_rougeL": 21.095,
8
+ "eval_rougeLsum": 31.2685,
9
+ "eval_runtime": 462.9321,
10
+ "eval_samples": 100,
11
+ "eval_samples_per_second": 0.216,
12
+ "eval_steps_per_second": 0.054
13
+ }
generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "decoder_start_token_id": 2,
5
+ "early_stopping": true,
6
+ "eos_token_id": 2,
7
+ "forced_eos_token_id": 2,
8
+ "length_penalty": 0.5,
9
+ "max_length": 62,
10
+ "min_length": 11,
11
+ "no_repeat_ngram_size": 3,
12
+ "num_beams": 6,
13
+ "pad_token_id": 1,
14
+ "transformers_version": "4.29.0.dev0"
15
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62a8f1fb574cd567297d24fdb381d588c35fe715a9bbe3464aadf94703f695ba
3
+ size 886386773
run_summarization.py ADDED
@@ -0,0 +1,759 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """
17
+ Fine-tuning the library models for sequence to sequence.
18
+ """
19
+ # You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
20
+
21
+ import logging
22
+ import os
23
+ import sys
24
+ from dataclasses import dataclass, field
25
+ from typing import Optional
26
+
27
+ import datasets
28
+ import evaluate
29
+ import nltk # Here to have a nice missing dependency error message early on
30
+ import numpy as np
31
+ from datasets import load_dataset
32
+ from filelock import FileLock
33
+
34
+ import transformers
35
+ from transformers import (
36
+ AutoConfig,
37
+ AutoModelForSeq2SeqLM,
38
+ AutoTokenizer,
39
+ DataCollatorForSeq2Seq,
40
+ HfArgumentParser,
41
+ MBart50Tokenizer,
42
+ MBart50TokenizerFast,
43
+ MBartTokenizer,
44
+ MBartTokenizerFast,
45
+ Seq2SeqTrainer,
46
+ Seq2SeqTrainingArguments,
47
+ set_seed,
48
+ )
49
+ from transformers.trainer_utils import get_last_checkpoint
50
+ from transformers.utils import check_min_version, is_offline_mode, send_example_telemetry
51
+ from transformers.utils.versions import require_version
52
+
53
+ train_num = range(500)
54
+ test_num = range(100)
55
+ val_num = range(100)
56
+
57
+
58
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
59
+ check_min_version("4.29.0.dev0")
60
+
61
+ require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
62
+
63
+ logger = logging.getLogger(__name__)
64
+
65
+ try:
66
+ nltk.data.find("tokenizers/punkt")
67
+ except (LookupError, OSError):
68
+ if is_offline_mode():
69
+ raise LookupError(
70
+ "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
71
+ )
72
+ with FileLock(".lock") as lock:
73
+ nltk.download("punkt", quiet=True)
74
+
75
+ # A list of all multilingual tokenizer which require lang attribute.
76
+ MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast]
77
+
78
+
79
+ @dataclass
80
+ class ModelArguments:
81
+ """
82
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
83
+ """
84
+
85
+ model_name_or_path: str = field(
86
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
87
+ )
88
+ config_name: Optional[str] = field(
89
+ default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
90
+ )
91
+ tokenizer_name: Optional[str] = field(
92
+ default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
93
+ )
94
+ cache_dir: Optional[str] = field(
95
+ default=None,
96
+ metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
97
+ )
98
+ use_fast_tokenizer: bool = field(
99
+ default=True,
100
+ metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
101
+ )
102
+ model_revision: str = field(
103
+ default="main",
104
+ metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
105
+ )
106
+ use_auth_token: bool = field(
107
+ default=False,
108
+ metadata={
109
+ "help": (
110
+ "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
111
+ "with private models)."
112
+ )
113
+ },
114
+ )
115
+ resize_position_embeddings: Optional[bool] = field(
116
+ default=None,
117
+ metadata={
118
+ "help": (
119
+ "Whether to automatically resize the position embeddings if `max_source_length` exceeds "
120
+ "the model's position embeddings."
121
+ )
122
+ },
123
+ )
124
+
125
+
126
+ @dataclass
127
+ class DataTrainingArguments:
128
+ """
129
+ Arguments pertaining to what data we are going to input our model for training and eval.
130
+ """
131
+
132
+ lang: Optional[str] = field(default=None, metadata={"help": "Language id for summarization."})
133
+
134
+ dataset_name: Optional[str] = field(
135
+ default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
136
+ )
137
+ dataset_config_name: Optional[str] = field(
138
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
139
+ )
140
+ text_column: Optional[str] = field(
141
+ default=None,
142
+ metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
143
+ )
144
+ summary_column: Optional[str] = field(
145
+ default=None,
146
+ metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
147
+ )
148
+ train_file: Optional[str] = field(
149
+ default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
150
+ )
151
+ validation_file: Optional[str] = field(
152
+ default=None,
153
+ metadata={
154
+ "help": (
155
+ "An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
156
+ )
157
+ },
158
+ )
159
+ test_file: Optional[str] = field(
160
+ default=None,
161
+ metadata={
162
+ "help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
163
+ },
164
+ )
165
+ overwrite_cache: bool = field(
166
+ default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
167
+ )
168
+ preprocessing_num_workers: Optional[int] = field(
169
+ default=None,
170
+ metadata={"help": "The number of processes to use for the preprocessing."},
171
+ )
172
+ max_source_length: Optional[int] = field(
173
+ default=1024,
174
+ metadata={
175
+ "help": (
176
+ "The maximum total input sequence length after tokenization. Sequences longer "
177
+ "than this will be truncated, sequences shorter will be padded."
178
+ )
179
+ },
180
+ )
181
+ max_target_length: Optional[int] = field(
182
+ default=128,
183
+ metadata={
184
+ "help": (
185
+ "The maximum total sequence length for target text after tokenization. Sequences longer "
186
+ "than this will be truncated, sequences shorter will be padded."
187
+ )
188
+ },
189
+ )
190
+ val_max_target_length: Optional[int] = field(
191
+ default=None,
192
+ metadata={
193
+ "help": (
194
+ "The maximum total sequence length for validation target text after tokenization. Sequences longer "
195
+ "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
196
+ "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
197
+ "during ``evaluate`` and ``predict``."
198
+ )
199
+ },
200
+ )
201
+ pad_to_max_length: bool = field(
202
+ default=False,
203
+ metadata={
204
+ "help": (
205
+ "Whether to pad all samples to model maximum sentence length. "
206
+ "If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
207
+ "efficient on GPU but very bad for TPU."
208
+ )
209
+ },
210
+ )
211
+ max_train_samples: Optional[int] = field(
212
+ default=None,
213
+ metadata={
214
+ "help": (
215
+ "For debugging purposes or quicker training, truncate the number of training examples to this "
216
+ "value if set."
217
+ )
218
+ },
219
+ )
220
+ max_eval_samples: Optional[int] = field(
221
+ default=None,
222
+ metadata={
223
+ "help": (
224
+ "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
225
+ "value if set."
226
+ )
227
+ },
228
+ )
229
+ max_predict_samples: Optional[int] = field(
230
+ default=None,
231
+ metadata={
232
+ "help": (
233
+ "For debugging purposes or quicker training, truncate the number of prediction examples to this "
234
+ "value if set."
235
+ )
236
+ },
237
+ )
238
+ num_beams: Optional[int] = field(
239
+ default=None,
240
+ metadata={
241
+ "help": (
242
+ "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
243
+ "which is used during ``evaluate`` and ``predict``."
244
+ )
245
+ },
246
+ )
247
+ ignore_pad_token_for_loss: bool = field(
248
+ default=True,
249
+ metadata={
250
+ "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
251
+ },
252
+ )
253
+ source_prefix: Optional[str] = field(
254
+ default="", metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
255
+ )
256
+
257
+ forced_bos_token: Optional[str] = field(
258
+ default=None,
259
+ metadata={
260
+ "help": (
261
+ "The token to force as the first generated token after the decoder_start_token_id."
262
+ "Useful for multilingual models like mBART where the first generated token"
263
+ "needs to be the target language token (Usually it is the target language token)"
264
+ )
265
+ },
266
+ )
267
+
268
+ def __post_init__(self):
269
+ if (
270
+ self.dataset_name is None
271
+ and self.train_file is None
272
+ and self.validation_file is None
273
+ and self.test_file is None
274
+ ):
275
+ raise ValueError("Need either a dataset name or a training, validation, or test file.")
276
+ else:
277
+ if self.train_file is not None:
278
+ extension = self.train_file.split(".")[-1]
279
+ assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
280
+ if self.validation_file is not None:
281
+ extension = self.validation_file.split(".")[-1]
282
+ assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
283
+ if self.test_file is not None:
284
+ extension = self.test_file.split(".")[-1]
285
+ assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
286
+ if self.val_max_target_length is None:
287
+ self.val_max_target_length = self.max_target_length
288
+
289
+
290
+ summarization_name_mapping = {
291
+ "amazon_reviews_multi": ("review_body", "review_title"),
292
+ "big_patent": ("description", "abstract"),
293
+ "cnn_dailymail": ("article", "highlights"),
294
+ "orange_sum": ("text", "summary"),
295
+ "pn_summary": ("article", "summary"),
296
+ "psc": ("extract_text", "summary_text"),
297
+ "samsum": ("dialogue", "summary"),
298
+ "thaisum": ("body", "summary"),
299
+ "xglue": ("news_body", "news_title"),
300
+ "xsum": ("document", "summary"),
301
+ "wiki_summary": ("article", "highlights"),
302
+ "multi_news": ("document", "summary"),
303
+ "ccdv/arxiv-summarization": ("article", "abstract"),
304
+ }
305
+
306
+
307
+ def main():
308
+ # See all possible arguments in src/transformers/training_args.py
309
+ # or by passing the --help flag to this script.
310
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
311
+
312
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
313
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
314
+ # If we pass only one argument to the script and it's the path to a json file,
315
+ # let's parse it to get our arguments.
316
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
317
+ else:
318
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
319
+
320
+ # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
321
+ # information sent is the one passed as arguments along with your Python/PyTorch versions.
322
+ send_example_telemetry("run_summarization", model_args, data_args)
323
+
324
+ # Setup logging
325
+ logging.basicConfig(
326
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
327
+ datefmt="%m/%d/%Y %H:%M:%S",
328
+ handlers=[logging.StreamHandler(sys.stdout)],
329
+ )
330
+
331
+ if training_args.should_log:
332
+ # The default of training_args.log_level is passive, so we set log level at info here to have that default.
333
+ transformers.utils.logging.set_verbosity_info()
334
+
335
+ log_level = training_args.get_process_log_level()
336
+ logger.setLevel(log_level)
337
+ datasets.utils.logging.set_verbosity(log_level)
338
+ transformers.utils.logging.set_verbosity(log_level)
339
+ transformers.utils.logging.enable_default_handler()
340
+ transformers.utils.logging.enable_explicit_format()
341
+
342
+ # Log on each process the small summary:
343
+ logger.warning(
344
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
345
+ + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
346
+ )
347
+ logger.info(f"Training/evaluation parameters {training_args}")
348
+
349
+ if data_args.source_prefix is None and model_args.model_name_or_path in [
350
+ "t5-small",
351
+ "t5-base",
352
+ "t5-large",
353
+ "t5-3b",
354
+ "t5-11b",
355
+ ]:
356
+ logger.warning(
357
+ "You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
358
+ "`--source_prefix 'summarize: ' `"
359
+ )
360
+
361
+ # Detecting last checkpoint.
362
+ last_checkpoint = None
363
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
364
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
365
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
366
+ raise ValueError(
367
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
368
+ "Use --overwrite_output_dir to overcome."
369
+ )
370
+ elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
371
+ logger.info(
372
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
373
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
374
+ )
375
+
376
+ # Set seed before initializing model.
377
+ set_seed(training_args.seed)
378
+
379
+ # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
380
+ # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
381
+ # (the dataset will be downloaded automatically from the datasets Hub).
382
+ #
383
+ # For CSV/JSON files this script will use the first column for the full texts and the second column for the
384
+ # summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
385
+ #
386
+ # In distributed training, the load_dataset function guarantee that only one local process can concurrently
387
+ # download the dataset.
388
+ if data_args.dataset_name is not None:
389
+ # Downloading and loading a dataset from the hub.
390
+ raw_datasets = load_dataset(
391
+ data_args.dataset_name,
392
+ data_args.dataset_config_name,
393
+ cache_dir=model_args.cache_dir,
394
+ use_auth_token=True if model_args.use_auth_token else None,
395
+ )
396
+ else:
397
+ data_files = {}
398
+ if data_args.train_file is not None:
399
+ data_files["train"] = data_args.train_file
400
+ extension = data_args.train_file.split(".")[-1]
401
+ if data_args.validation_file is not None:
402
+ data_files["validation"] = data_args.validation_file
403
+ extension = data_args.validation_file.split(".")[-1]
404
+ if data_args.test_file is not None:
405
+ data_files["test"] = data_args.test_file
406
+ extension = data_args.test_file.split(".")[-1]
407
+ raw_datasets = load_dataset(
408
+ extension,
409
+ data_files=data_files,
410
+ cache_dir=model_args.cache_dir,
411
+ use_auth_token=True if model_args.use_auth_token else None,
412
+ )
413
+ # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
414
+ # https://huggingface.co/docs/datasets/loading_datasets.html.
415
+
416
+ # Load pretrained model and tokenizer
417
+ #
418
+ # Distributed training:
419
+ # The .from_pretrained methods guarantee that only one local process can concurrently
420
+ # download model & vocab.
421
+ config = AutoConfig.from_pretrained(
422
+ model_args.config_name if model_args.config_name else model_args.model_name_or_path,
423
+ cache_dir=model_args.cache_dir,
424
+ revision=model_args.model_revision,
425
+ use_auth_token=True if model_args.use_auth_token else None,
426
+ )
427
+ tokenizer = AutoTokenizer.from_pretrained(
428
+ model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
429
+ cache_dir=model_args.cache_dir,
430
+ use_fast=model_args.use_fast_tokenizer,
431
+ revision=model_args.model_revision,
432
+ use_auth_token=True if model_args.use_auth_token else None,
433
+ )
434
+ model = AutoModelForSeq2SeqLM.from_pretrained(
435
+ model_args.model_name_or_path,
436
+ from_tf=bool(".ckpt" in model_args.model_name_or_path),
437
+ config=config,
438
+ cache_dir=model_args.cache_dir,
439
+ revision=model_args.model_revision,
440
+ use_auth_token=True if model_args.use_auth_token else None,
441
+ )
442
+
443
+ # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
444
+ # on a small vocab and want a smaller embedding size, remove this test.
445
+ embedding_size = model.get_input_embeddings().weight.shape[0]
446
+ if len(tokenizer) > embedding_size:
447
+ model.resize_token_embeddings(len(tokenizer))
448
+
449
+ if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
450
+ if isinstance(tokenizer, MBartTokenizer):
451
+ model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.lang]
452
+ else:
453
+ model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.lang)
454
+
455
+ if model.config.decoder_start_token_id is None:
456
+ raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
457
+
458
+ if (
459
+ hasattr(model.config, "max_position_embeddings")
460
+ and model.config.max_position_embeddings < data_args.max_source_length
461
+ ):
462
+ if model_args.resize_position_embeddings is None:
463
+ logger.warning(
464
+ "Increasing the model's number of position embedding vectors from"
465
+ f" {model.config.max_position_embeddings} to {data_args.max_source_length}."
466
+ )
467
+ model.resize_position_embeddings(data_args.max_source_length)
468
+ elif model_args.resize_position_embeddings:
469
+ model.resize_position_embeddings(data_args.max_source_length)
470
+ else:
471
+ raise ValueError(
472
+ f"`--max_source_length` is set to {data_args.max_source_length}, but the model only has"
473
+ f" {model.config.max_position_embeddings} position encodings. Consider either reducing"
474
+ f" `--max_source_length` to {model.config.max_position_embeddings} or to automatically resize the"
475
+ " model's position encodings by passing `--resize_position_embeddings`."
476
+ )
477
+
478
+ prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
479
+
480
+ # Preprocessing the datasets.
481
+ # We need to tokenize inputs and targets.
482
+ if training_args.do_train:
483
+ if "train" not in raw_datasets:
484
+ raise ValueError("--do_train requires a train dataset")
485
+ column_names = raw_datasets["train"].column_names
486
+ elif training_args.do_eval:
487
+ if "validation" not in raw_datasets:
488
+ raise ValueError("--do_eval requires a validation dataset")
489
+ column_names = raw_datasets["validation"].column_names
490
+ elif training_args.do_predict:
491
+ if "test" not in raw_datasets:
492
+ raise ValueError("--do_predict requires a test dataset")
493
+ column_names = raw_datasets["test"].column_names
494
+ else:
495
+ logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
496
+ return
497
+
498
+ if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
499
+ assert (
500
+ data_args.lang is not None
501
+ ), f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --lang argument"
502
+
503
+ tokenizer.src_lang = data_args.lang
504
+ tokenizer.tgt_lang = data_args.lang
505
+
506
+ # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
507
+ # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
508
+ forced_bos_token_id = (
509
+ tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
510
+ )
511
+ model.config.forced_bos_token_id = forced_bos_token_id
512
+
513
+ # Get the column names for input/target.
514
+ dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
515
+ if data_args.text_column is None:
516
+ text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
517
+ else:
518
+ text_column = data_args.text_column
519
+ if text_column not in column_names:
520
+ raise ValueError(
521
+ f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
522
+ )
523
+ if data_args.summary_column is None:
524
+ summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
525
+ else:
526
+ summary_column = data_args.summary_column
527
+ if summary_column not in column_names:
528
+ raise ValueError(
529
+ f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
530
+ )
531
+
532
+ # Temporarily set max_target_length for training.
533
+ max_target_length = data_args.max_target_length
534
+ padding = "max_length" if data_args.pad_to_max_length else False
535
+
536
+ if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
537
+ logger.warning(
538
+ "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
539
+ f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
540
+ )
541
+
542
+ def preprocess_function(examples):
543
+ # remove pairs where at least one record is None
544
+
545
+ inputs, targets = [], []
546
+ for i in range(len(examples[text_column])):
547
+ if examples[text_column][i] and examples[summary_column][i]:
548
+ inputs.append(examples[text_column][i])
549
+ targets.append(examples[summary_column][i])
550
+
551
+ inputs = [prefix + inp for inp in inputs]
552
+ model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
553
+
554
+ # Tokenize targets with the `text_target` keyword argument
555
+ labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)
556
+
557
+ # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
558
+ # padding in the loss.
559
+ if padding == "max_length" and data_args.ignore_pad_token_for_loss:
560
+ labels["input_ids"] = [
561
+ [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
562
+ ]
563
+
564
+ model_inputs["labels"] = labels["input_ids"]
565
+ return model_inputs
566
+
567
+ if training_args.do_train:
568
+ print(type(raw_datasets["train"]))
569
+ train_dataset = raw_datasets["train"].select(train_num)
570
+ if data_args.max_train_samples is not None:
571
+ max_train_samples = min(len(train_dataset), data_args.max_train_samples)
572
+ train_dataset = train_dataset.select(range(max_train_samples))
573
+ with training_args.main_process_first(desc="train dataset map pre-processing"):
574
+ train_dataset = train_dataset.map(
575
+ preprocess_function,
576
+ batched=True,
577
+ num_proc=data_args.preprocessing_num_workers,
578
+ remove_columns=column_names,
579
+ load_from_cache_file=not data_args.overwrite_cache,
580
+ desc="Running tokenizer on train dataset",
581
+ )
582
+
583
+ if training_args.do_eval:
584
+ max_target_length = data_args.val_max_target_length
585
+ eval_dataset = raw_datasets["validation"].select(val_num)
586
+ if data_args.max_eval_samples is not None:
587
+ max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
588
+ eval_dataset = eval_dataset.select(range(max_eval_samples))
589
+ with training_args.main_process_first(desc="validation dataset map pre-processing"):
590
+ eval_dataset = eval_dataset.map(
591
+ preprocess_function,
592
+ batched=True,
593
+ num_proc=data_args.preprocessing_num_workers,
594
+ remove_columns=column_names,
595
+ load_from_cache_file=not data_args.overwrite_cache,
596
+ desc="Running tokenizer on validation dataset",
597
+ )
598
+
599
+ if training_args.do_predict:
600
+ max_target_length = data_args.val_max_target_length
601
+ predict_dataset = raw_datasets["test"].select(test_num)
602
+ if data_args.max_predict_samples is not None:
603
+ max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
604
+ predict_dataset = predict_dataset.select(range(max_predict_samples))
605
+ with training_args.main_process_first(desc="prediction dataset map pre-processing"):
606
+ predict_dataset = predict_dataset.map(
607
+ preprocess_function,
608
+ batched=True,
609
+ num_proc=data_args.preprocessing_num_workers,
610
+ remove_columns=column_names,
611
+ load_from_cache_file=not data_args.overwrite_cache,
612
+ desc="Running tokenizer on prediction dataset",
613
+ )
614
+
615
+ # Data collator
616
+ label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
617
+ data_collator = DataCollatorForSeq2Seq(
618
+ tokenizer,
619
+ model=model,
620
+ label_pad_token_id=label_pad_token_id,
621
+ pad_to_multiple_of=8 if training_args.fp16 else None,
622
+ )
623
+
624
+ # Metric
625
+ metric = evaluate.load("rouge")
626
+
627
+ def postprocess_text(preds, labels):
628
+ preds = [pred.strip() for pred in preds]
629
+ labels = [label.strip() for label in labels]
630
+
631
+ # rougeLSum expects newline after each sentence
632
+ preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
633
+ labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
634
+
635
+ return preds, labels
636
+
637
+ def compute_metrics(eval_preds):
638
+ preds, labels = eval_preds
639
+ if isinstance(preds, tuple):
640
+ preds = preds[0]
641
+ # Replace -100s used for padding as we can't decode them
642
+ preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
643
+ decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
644
+ labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
645
+ decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
646
+
647
+ # Some simple post-processing
648
+ decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
649
+
650
+ result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
651
+ result = {k: round(v * 100, 4) for k, v in result.items()}
652
+ prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
653
+ result["gen_len"] = np.mean(prediction_lens)
654
+ return result
655
+
656
+ # Override the decoding parameters of Seq2SeqTrainer
657
+ training_args.generation_max_length = (
658
+ training_args.generation_max_length
659
+ if training_args.generation_max_length is not None
660
+ else data_args.val_max_target_length
661
+ )
662
+ training_args.generation_num_beams = (
663
+ data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
664
+ )
665
+
666
+ # Initialize our Trainer
667
+ trainer = Seq2SeqTrainer(
668
+ model=model,
669
+ args=training_args,
670
+ train_dataset=train_dataset if training_args.do_train else None,
671
+ eval_dataset=eval_dataset if training_args.do_eval else None,
672
+ tokenizer=tokenizer,
673
+ data_collator=data_collator,
674
+ compute_metrics=compute_metrics if training_args.predict_with_generate else None,
675
+ )
676
+
677
+ # Training
678
+ if training_args.do_train:
679
+ checkpoint = None
680
+ if training_args.resume_from_checkpoint is not None:
681
+ checkpoint = training_args.resume_from_checkpoint
682
+ elif last_checkpoint is not None:
683
+ checkpoint = last_checkpoint
684
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
685
+ trainer.save_model() # Saves the tokenizer too for easy upload
686
+
687
+ metrics = train_result.metrics
688
+ max_train_samples = (
689
+ data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
690
+ )
691
+ metrics["train_samples"] = min(max_train_samples, len(train_dataset))
692
+
693
+ trainer.log_metrics("train", metrics)
694
+ trainer.save_metrics("train", metrics)
695
+ trainer.save_state()
696
+
697
+ # Evaluation
698
+ results = {}
699
+ if training_args.do_eval:
700
+ logger.info("*** Evaluate ***")
701
+ metrics = trainer.evaluate(metric_key_prefix="eval")
702
+ max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
703
+ metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
704
+
705
+ trainer.log_metrics("eval", metrics)
706
+ trainer.save_metrics("eval", metrics)
707
+
708
+ if training_args.do_predict:
709
+ logger.info("*** Predict ***")
710
+
711
+ predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict")
712
+ metrics = predict_results.metrics
713
+ max_predict_samples = (
714
+ data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
715
+ )
716
+ metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
717
+
718
+ trainer.log_metrics("predict", metrics)
719
+ trainer.save_metrics("predict", metrics)
720
+
721
+ if trainer.is_world_process_zero():
722
+ if training_args.predict_with_generate:
723
+ predictions = predict_results.predictions
724
+ predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id)
725
+ predictions = tokenizer.batch_decode(
726
+ predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
727
+ )
728
+ predictions = [pred.strip() for pred in predictions]
729
+ output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
730
+ with open(output_prediction_file, "w") as writer:
731
+ writer.write("\n".join(predictions))
732
+
733
+ kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"}
734
+ if data_args.dataset_name is not None:
735
+ kwargs["dataset_tags"] = data_args.dataset_name
736
+ if data_args.dataset_config_name is not None:
737
+ kwargs["dataset_args"] = data_args.dataset_config_name
738
+ kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
739
+ else:
740
+ kwargs["dataset"] = data_args.dataset_name
741
+
742
+ if data_args.lang is not None:
743
+ kwargs["language"] = data_args.lang
744
+
745
+ if training_args.push_to_hub:
746
+ trainer.push_to_hub(**kwargs)
747
+ else:
748
+ trainer.create_model_card(**kwargs)
749
+
750
+ return results
751
+
752
+
753
+ def _mp_fn(index):
754
+ # For xla_spawn (TPUs)
755
+ main()
756
+
757
+
758
+ if __name__ == "__main__":
759
+ main()
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": {
4
+ "__type": "AddedToken",
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false
10
+ },
11
+ "clean_up_tokenization_spaces": true,
12
+ "cls_token": {
13
+ "__type": "AddedToken",
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": true,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "eos_token": {
21
+ "__type": "AddedToken",
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": true,
25
+ "rstrip": false,
26
+ "single_word": false
27
+ },
28
+ "errors": "replace",
29
+ "mask_token": {
30
+ "__type": "AddedToken",
31
+ "content": "<mask>",
32
+ "lstrip": true,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "model_max_length": 1024,
38
+ "pad_token": {
39
+ "__type": "AddedToken",
40
+ "content": "<pad>",
41
+ "lstrip": false,
42
+ "normalized": true,
43
+ "rstrip": false,
44
+ "single_word": false
45
+ },
46
+ "sep_token": {
47
+ "__type": "AddedToken",
48
+ "content": "</s>",
49
+ "lstrip": false,
50
+ "normalized": true,
51
+ "rstrip": false,
52
+ "single_word": false
53
+ },
54
+ "tokenizer_class": "BartTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": {
57
+ "__type": "AddedToken",
58
+ "content": "<unk>",
59
+ "lstrip": false,
60
+ "normalized": true,
61
+ "rstrip": false,
62
+ "single_word": false
63
+ }
64
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "train_loss": 4.326354817708333,
4
+ "train_runtime": 8399.8868,
5
+ "train_samples": 500,
6
+ "train_samples_per_second": 0.179,
7
+ "train_steps_per_second": 0.045
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "global_step": 375,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 3.0,
12
+ "step": 375,
13
+ "total_flos": 1547877482496000.0,
14
+ "train_loss": 4.326354817708333,
15
+ "train_runtime": 8399.8868,
16
+ "train_samples_per_second": 0.179,
17
+ "train_steps_per_second": 0.045
18
+ }
19
+ ],
20
+ "max_steps": 375,
21
+ "num_train_epochs": 3,
22
+ "total_flos": 1547877482496000.0,
23
+ "trial_name": null,
24
+ "trial_params": null
25
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0413397f351779dc3eb1a10fae5091f14a4dc475b25cb11fad75b557e43c1f7
3
+ size 3707
vocab.json ADDED
The diff for this file is too large to render. See raw diff